intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Môi Trường - Khí Thải Động Cơ Đốt Trong phần 5

Chia sẻ: Dqwdwegrth Vdhrdthergw | Ngày: | Loại File: PDF | Số trang:17

135
lượt xem
30
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Trong buồng cháy cho phép tăng xác suất đánh lửa, tăng năng lượng đánh lửa và tốc độ cháy mà không làm tăng tổn thất nhiệt.

Chủ đề:
Lưu

Nội dung Text: Môi Trường - Khí Thải Động Cơ Đốt Trong phần 5

  1. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong trong buồng cháy cho phép tăng xác suất đánh lửa, tăng năng lượng đánh lửa và tốc độ cháy mà không làm tăng tổn thất nhiệt. Nhưng giải pháp này làm tăng giá thành và làm giảm tuổi thọ của hệ thống đánh lửa. Những khuynh hướng khác dựa vào sự gia tăng cường độ rối trong buồng cháy động cơ. Bằng cách thay đổi dạng hình học của buồng cháy, nguy cơ màng lửa bị tắt có thể giảm bằng cách giảm tỉ số diện tích bề mặt/thể tích và gia tăng cường độ rối trong quá trình nạp để gia tăng tốc độ cháy. Sự cải tiến dạng buồng cháy cho phép giảm một ít áp suất cực đại, giảm NOx nhưng cho tới nay người ta chưa tìm được dạng buồng cháy lí tưởng nhất và sự thay đổi hình dạng buồng cháy dường như không gây ảnh hưởng đến sự phát sinh HC. Giải pháp đầu tiên làm tăng cường độ rối là thiết kế đường nạp hợp lí. Sự gia tăng cường độ xoáy lốc cho phép giảm khoảng thời gian từ lúc bật tia lửa điện đến khi hỗn hợp bắt đầu cháy cũng như thời gian cháy; các giá trị này có độ lớn tương đương với quá trình cháy cổ điển. Giải pháp thứ hai là trang bị hai soupape nạp cho mỗi cylindre hay lắp trên soupape nạp một bản dẫn hướng. Soupape này đóng lại ở tải cục bộ và mở khi đầy tải. Giải pháp cuối cùng làm tăng cường độ rối ở động cơ riêng rẽ là thực hiện một tia khí cao tốc phun trong một ống dẫn có tiết diện nhỏ hơn ống nạp chính theo hướng tiếp tuyến với thành cylindre ở vị trí soupape nạp. Hệ thống này có hai bướm gió được điều khiển một cách riêng rẽ theo tải động cơ. Nó có ưu điểm là không làm thay đổi dạng hình học của buồng cháy, không cần thiết đánh lửa hai điểm nhưng vẫn cho phép động cơ chạy ở chế độ không tải với độ đậm đặc thấp. Sự gia tăng cường độ rối bằng cách thêm tia khí cho phép dịch chuyển giới hạn cháy ổn định về phía độ đậm đặc thấp hơn (từ 0,95 xuống 0,75), cho phép nhận được sự làm việc ổn định hơn ở chế độ không tải. Khi động cơ làm việc với độ đậm đặc 0,7 thay vì 0,8, nồng độ NOx chỉ còn 1/6 và nồng độ CO giảm đi 50% nhưng làm tăng HC. Vận động rối trong buồng cháy cũng cho phép sử dụng thuận lợi hệ thống hồi lưu khí xả: chẳng hạn nó cho phép tăng từ 20% lên 28% lượng khí xả hồi lưu để làm giảm NOx mà không làm tăng HC. Khi dùng hệ thống phun tập trung quá trình tạo hỗn hợp được cải thiện hơn so với khi sử dụng hệ thống phun riêng rẽ vì thời gian bay hơi của hỗn hợp được kéo dài hơn. Vì vậy hệ thống này cho phép giảm được từ 10 đến 15% HC trong cùng điều kiện làm việc với động cơ phun riêng rẽ. Khi tăng nhiệt độ khí nạp hỗn hợp cũng được chuẩn bị tốt hơn do sự bốc hơi nhiên liệu diễn ra thuận lợi hơn: cùng độ đậm đặc như nhau, nồng độ HC giảm từ 20 đến 30% khi tăng nhiệt độ khí nạp từ 25 lên 80°C, nhưng làm tăng nồng độ NOx từ 35 lên 55%. Do 70 đến 80% nồng độ CO và HC liên quan đến hai phút đầu tiên của chu trình khởi động nguội, theo qui trình FTP-75, vì vậy sấy cục bộ đường nạp trong giai đoạn bộ xúc tác chưa 82
  2. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong đạt được nhiệt độ khởi động sẽ cho phép làm giảm được nồng độ những chất ô nhiễm này. Trong thực tế, người ta bố trí ở mỗi đường nạp của động cơ phun nhiều điểm những phần tử cấp nhiệt để nâng nhiệt độ khu vực sấy lên khoảng 40 đến 50°C và các tia phun hướng về các khu vực này. Công suất điện cung cấp cho những phần tử nhiệt này giảm dần và cắt đi hoàn toàn khi nhiệt độ nước làm mát khoảng 60-65°C. Tốc độ lưu thông của khí nạp cũng ảnh hưởng đến mức độ phát sinh HC. Tốc độ này được khống chế bởi đường kính soupape nạp. Khi giảm đường kính soupape nạp từ 35 đến 29mm thì mức độ phát sinh HC giảm đi được từ 15 đến 25%. Khi phun riêng rẽ, vị trí đặt vòi phun trong trường hợp cylindre có hai soupape nạp có ảnh hưởng lớn đến mức độ phát sinh HC cũng như momen của động cơ. Tuy nhiên vị trí đặt vòi phun chủ yếu được lựa chọn sao cho động cơ có thể được khởi động dễ dàng. Người ta cũng nghiên cứu những hệ thống để cải thiện việc chuẩn bị hỗn hợp trong trường hợp phun riêng rẽ như sấy nóng hỗn hợp, phun khí nạp với tốc độ lớn, xé tia phun bằng siêu âm... Chất lượng xé tơi tia phun đóng vai trò quan trọng đến mức độ phát sinh ô nhiễm. Những hạt nhiên liệu có đường kính bé sẽ bị cuốn theo dòng không khí trong ống xoắn của đường nạp, giảm nguy cơ va chạm vào thành. Khi đường kính thủy lực của hạt nhiên liệu khoảng 10 micron thì sự va chạm của hạt nhiên liệu vào thành hầu như không xảy ra, đảm bảo sự phân bố tối ưu của hỗn hợp nhiên liệu không khí giữa các cylindre. Trong thực tế, bộ chế hòa khí cho phép phân bố tốt hỗn hợp khi động cơ làm việc ở tải thấp, ngược lại phun nhiên liệu đảm bảo sự phân bố tốt hỗn hợp khi động cơ làm việc ở tải cao. Thật vậy, ở chế độ tải thấp do độ chân không trên đường nạp lớn, chất lượng xé tơi nhiên liệu sau khi ra khỏi vòi phun trong trường hợp bộ chế hòa khí tốt hơn; ngược lại trong trường hợp tải cao, chất lương xé tơi nhiên liệu xấu đi rất nhiều so với trường hợp phun nhiên liệu. Điều chỉnh góc độ phối khí cũng có ảnh hưởng đến mức độ phát sinh ô nhiễm. Góc độ này được điều chỉnh sao cho các giá trị áp suất cực đại, momen ở chế độ tải thấp tối ưu cũng như khả năng động cơ làm việc ổn định khi chạy không tải với tốc độ thấp. Tăng thời kì trùng điệp ở chế độ không tải làm tăng mức độ phát sinh ô nhiễm và sự làm việc không ổn định của động cơ, nhưng nó cải thiện tính năng động cơ ở chế độ tốc độ cao đồng thời cũng làm giảm NOx do hỗn hợp nạp mới bị làm bẩn bởi một bộ phận khí cháy đẩy vào đường nạp khi piston đi lên. Sự gia tăng góc độ trùng điệp hợp lí có thể làm giảm được 80% nồng độ HC. Lượng HC trong sản phẩm cháy thoát ra đường thải có thể được xem chứa trong hai bọng khí: bọng khí thứ nhất tương ứng với những thể tích chết ở gần soupape thải (các không gian chết quanh soupape, ren nến đánh lửa...) và bọng khí thứ hai tương ứng với thể tích chết xa hơn (khe hở segment...). Gia tăng góc độ trùng điệp có thể loại trừ hoàn toàn bọng khí thứ hai ở đường xả. Khi thời gian cháy giảm, nhiệt độ cháy tăng, mức độ phát sinh NOx gia tăng. Giảm góc đánh lửa sớm trong một số điều kiện làm việc của động cơ cho phép kéo dài thời gian cháy, do đó nhiệt độ cháy giảm, thuận lợi cho việc giảm NOx. Mặt khác, đánh lửa muộn làm gia tăng nhiệt độ khí thải tạo điều kiện thuận lợi cho việc đốt cháy thành phần HC có mặt trong khí xả. 83
  3. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Gia tăng tỉ số S/D làm tăng tốc độ cháy và tạo điều kiện dễ dàng cho sự bén lửa do đó động cơ có thể làm việc với hệ số dư lượng không khí cao hơn. Điều này có lợi trong trường hợp động cơ làm việc với tải cục bộ nhưng ít có lợi khi động cơ làm việc ở tải cao. Một phương án khác để làm tăng tốc độ cháy và tốc độ lan tràn màng lửa là tăng tỉ số nén (đến 18), trong điều kiện không xảy ra hiện tượng kích nổ. Tăng tỉ số nén có khuynh hướng tăng mức độ phát sinh NOx. Khi động cơ làm việc với hỗn hợp nghèo hay giàu, nồng độ NOx đều giảm mạnh (hình 6.3). Hoàn thiện việc chuẩn bị hỗn hợp bao hàm việc khống chế đúng mức độ đậm đặc trong mỗi cylindre ngay cả trong giai đoạn quá độ. Phương án tốt nhất là phun nhiên liệu riêng rẽ kết hợp với sấy nóng vòi phun và đường nạp. Phương án này còn cho phép cải thiện tính năng khởi động ở trạng thái nguội. Mặt khác sấy nóng đường nạp còn có tác dụng đặc biệt trong việc tránh sự ngưng tụ nhiên liệu trên thành đường nạp (lớp nhiên liệu ngưng tụ này sẽ bốc hơi lại ở chế độ đầy tải làm tăng độ đậm đặc của hỗn hợp). Làm mát riêng rẽ thân động cơ và nắp cylindre cho phép duy trì thân động cơ một nhiệt độ cao hơn nắp cylindre điều này cho phép thu hồi nhiệt độ thân máy ở tải thấp có tác dụng tích cực đến việc giảm HC và NOx. N=2000 v/ph Hình 6.3: Ảnh hưởng của tỉ số nén đến mức độ phát sinh ô nhiễm và suất tiêu hao nhiên liệu (động cơ xăng 4 cylindre, dung tích 2 lít, l: độ đậm đặc của hỗn hợp; be: suất tiêu hao nhiên liệu, we: công có ích, e: tỉ số nén, _ _ : e = 9,3; -.-: e =11,0; ---: e =13,0; ___: e =15,0) Khi động cơ chuyển sang làm việc với hỗn hợp nghèo, sự lệch chu kì của áp suất chỉ thị trung bình sẽ trở nên quan trọng: nếu độ đậm đặc của hỗn hợp l=0,8, áp suất có ích trung bình dao động cực đại 20kPa, dao động này có thể đạt 140kPa khi l=1,2. Do đó, để cải thiện tính năng phát lực của động cơ làm việc với hỗn hợp nghèo, người ta phải khống chế sự dao động của momen (đo được bằng cảm biến gia tốc lắp trên bánh đà của động cơ) bằng cách điều chỉnh thời điểm bắt đầu phun và thời gian phun nhờ một hệ thống khép kín hay theo biểu đồ thiết lập trước. Sự khống chế dao động momen cũng cho phép giảm đến mức tối thiểu mức độ phát sinh HC, chất ô nhiễm tăng nhanh chóng theo sự làm việc không đồng đều của động cơ. 84
  4. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong 6.2.3 Ảnh hưởng của các chế độ vận hành động cơ xăng 6.2.3.1. Cắt nhiên liệu khi giảm tốc Để hạn chế nồng độ HC trong giai đoạn động cơ đóng vai trò phanh ô tô (khi giảm tốc nhưng vẫn cài li hợp), biện pháp tốt nhất là ngưng cung cấp nhiên liệu. Tuy nhiên động tác này có thể dẫn tới điều bất lợi là làm xuất hiện hai điểm cực đại HC: đỉnh cực đại HC ở thời điểm cắt nhiên liệu và điểm cực đại thứ hai khi cấp nhiên liệu trở lại. Đối với động cơ dùng bộ chế hòa khí, để tránh giai đoạn quá độ khi động cơ phát lực trở lại, người ta sử dụng một hệ thống cho phép cung cấp thêm nhiên liệu dự trữ. Nhiên liệu này được tích trữ trong hệ thống bù trừ ở giai đoạn giảm tốc. Sự cung cấp nhiên liệu bổ sung này cho phép duy trì được độ đậm đặc của hỗn hợp một cách hợp lí ở thời điểm mở đột ngột bướm ga trở lại. Đối với động cơ phun nhiên liệu, người ta sử dụng một hệ thống cho phép điều chỉnh lượng nhiên liệu phun vào đường nạp theo lưu lượng không khí. Khi giảm tốc, bướm ga đóng lại, một van giảm tốc mở ra để cung cấp không khí cho động cơ và người ta sử dụng lượng không khí này để điều khiển lượng nhiên liệu. Trong trường hợp đó, động cơ hút một thể tích khí lớn hơn trong trường hợp động cơ dùng chế hòa khí. Hai điểm cực đại của HC cũng xuất hiện giống như trong trường hợp động cơ dùng bộ chế hòa khí. 6.2.3.2. Dừng động cơ ở đèn đỏ Chế độ dừng động cơ hợp lí khi ô tô chạy trong thành phố có thể làm giảm đồng thời mức độ phát sinh ô nhiễm và suất tiêu hao nhiên liệu. Thực nghiệm cho thấy khi thời gian dừng ô tô vượt quá một giá trị cực đoan thì nên tắt động cơ. Nếu không xét đến suất tiêu hao nhiên liệu thì việc tắt động cơ không đem lại lợi ích gì về mặt giảm ô nhiễm trong trường hợp động cơ có bộ xúc tác trên đường xả. Trung bình thời gian dừng cực đoan là 50s. Khi vượt quá thời gian này nên tắt động cơ nếu động tác này không làm giảm tuổi thọ của máy khởi động và bình điện. 6.3. Trường hợp động cơ Diesel Kĩ thuật tổ chức quá trình cháy của động cơ Diesel ảnh hưởng trực tiếp đến mức độ phát sinh ô nhiễm. Động cơ Diesel phun trực tiếp, có suất tiêu hao nhiên liệu riêng thấp hơn động cơ có buồng cháy ngăn cách khoảng 10% và mức độ phát sinh bồ hóng cũng thấp hơn khi động cơ làm việc ở chế độ tải cục bộ. Tuy nhiên động cơ phun trực tiếp làm việc ồn hơn và phát sinh nhiều chất ô nhiễm khác (NOx, HC). Vì vậy, ngày nay dạng buồng cháy này chỉ dùng đối với động cơ ô tô tải hạng nặng. Việc hạn chế mức độ phát sinh ô nhiễm tối ưu đối với động cơ Diesel cần phải cân đối giữa nồng độ hai chất ô nhiễm chính đó là NOx và bồ hóng. 85
  5. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong 6.3.1. Ảnh hưởng của góc phun sớm và tối ưu hóa hệ thống phun Ảnh hưởng của chất lượng hệ thống phun đối với động cơ phun trực tiếp lớn hơn đối với động cơ phun gián tiếp về phương diện phát sinh ô nhiễm,. Trong cả hai trường hợp, sự thay đổi góc phun sớm có ảnh hưởng ngược nhau đối với sự phát sinh NOx, HC và bồ hóng (hình 6.4). Tăng góc phun sớm làm tăng áp suất cực đại và nhiệt độ quá trình cháy, do đó làm tăng nồng độ NO. Thông thường, động cơ phun trực tiếp có góc phun sớm lớn hơn nên phát sinh NO nhiều hơn động cơ có buồng cháy ngăn cách. Giảm góc phun sớm là biện pháp hữu hiệu làm giảm nồng độ NOx trong khí xả. Tuy nhiên việc giảm góc phun sớm cần phải xem xét đến chế độ tốc độ và chế độ tải để tránh sự gia tăng suất tiêu hao nhiên liệu. Mức độ phát ô nhiễm Bồ hóng NO HC Hình 6.4: Ảnh hưởng của góc iảm gócớm đếsn m G phun s phun ớ mức độ phát ô nhiễm của động cơ Diesel Phạm vi thay đổi đối với ô tô từ 1000 đến 1600kg, động cơ buồng cháy dự bị, không hồi lưu khí xả HC NOx (%) (%) độ góc quay trục khuỷu Góc phun tối ưu Muộn Sớm 86
  6. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Hình 6.5: Ảnh hưởng của góc phun sớm đến mức độ phát sinh HC và NOx (động cơ buồng cháy dự bị, chu trình FTP-75) Mặt khác, khi tăng góc phun sớm, do quá trình cháy trễ kéo dài, lượng nhiên liệu hòa trộn trước với hệ số dư lượng không khí lớn gia tăng. Hỗn hợp này khó bén lửa do đó chúng thường cháy không hoàn toàn và phát sinh nhiều CO. Về mặt lí thuyết, tăng góc đánh lửa sớm có thể làm giảm HC do quá trình cháy có thể diễn ra thuận lợi hơn (hình 6.5), nhưng trên thực tế nó có tác dụng ngược lại. Thật vậy, do thời gian bén lửa kéo dài, nhiên liệu phun ra có thể bám trên thành buồng cháy, đó là nguồn phát sinh HC. Đối với động cơ phun trực tiếp, sự giảm góc phun sớm làm tăng độ khói và cũng làm tăng suất tiêu hao nhiên liệu nhưng làm giảm nồng độ NOx và thành phần SOF. Đối với động cơ Diesel cỡ lớn, giảm góc phun sớm có thể làm giảm đi 50% nồng độ NO trong khí xả. Đối với động cơ có buồng cháy ngăn cách, giảm góc phun sớm làm làm tăng nồng độ HC nhưng làm giảm nồng độ NO và bồ hóng, đặc biệt là ở chế độ đầy tải. Khi góc phun sớm thay đổi từ 8 đến 23 độ trước ĐCT, lượng bồ hóng tăng gấp đôi theo chu trình thử FTP75 đối với một động cơ buồng cháy ngăn cách có góc đánh lửa sớm bình thường 15 độ trước ĐCT. Sự thay đổi góc phun sớm phù hợp theo tốc độ và tải cho phép chọn được vị trí điều chỉnh tối ưu hài hòa giữa nồng độ các chất ô nhiễm và hiệu suất động cơ. Đối với động cơ có buồng cháy dự bị, sự điều khiển góc đánh lửa sớm tối ưu bằng hệ thống điện tử theo chế độ tốc độ và chế độ tải cho phép giảm 15% nồng độ NOx và 25% nồng độ bồ hóng theo chu trình thử FTP75 trong phạm vi gia tăng suất tiêu hao nhiên liệu không đáng kể. Tốc độ phun cao (nhờ tăng áp suất phun) có ảnh hưởng đến quá trình phát sinh ô nhiễm của động cơ phun trực tiếp. Thật vậy, do tăng tốc độ hòa trộn nhiên liệu và không khí, lượng nhiên liệu cháy ở điều kiện hòa trộn trước gia tăng, do đó nồng độ NOx tăng nhưng lượng bồ hóng giảm. Tuy nhiên sự gia tăng áp suất phun (hơn 100MPa) làm tăng lượng hạt rắn do tăng lượng phát sinh SOF. Sử dụng vòi phun có nhiều lỗ phun đường kính bé làm tăng chất lượng hòa trộn không khí và nhiên liệu do kích thước hạt nhiên liệu giảm, hỗn hợp bốc cháy dễ dàng hơn, bù trừ được sự phun trễ do đó làm giảm NOx. Với cùng lượng phát thải NOx cho trước, sự gia tăng số lượng lỗ phun làm giảm nồng độ bồ hóng. Đối với động cơ phun trực tiếp, áp suất phun tối ưu thay đổi từ 75 đến 100MPa tùy theo chế độ động cơ. Vượt quá áp suất này, với cùng lượng phát sinh NOx, lượng hạt rắn phát sinh giảm nhưng suất tiêu hao nhiên liệu và độ ồn của quá trình cháy gia tăng do sự tăng đột ngột của áp suất. Điều này có thể khắc phục được bằng cách dùng một tia phun mồi. Quy luật phun cũng có ảnh hưởng quan trọng đến quá trình phát sinh các chất ô nhiễm. Thời gian phun rút ngắn, áp suất phun cao cho phép gia tốc quá trình cung cấp nhiên liệu dẫn đến giảm lượng HC không cháy hết. Các tiến bộ mới đây về kĩ thuật phun nhằm giảm mức độ phát sinh ô nhiễm bao gồm quy luật phun hai giai đoạn, quy luật phun 87
  7. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong ‘hình chữ nhật’ (phun đều đặn nhiên liệu và cắt nhanh khi kết thúc phun) để tránh hiện tượng phun rớt. Phun rớt là nguyên nhân làm tăng hydrocacbure chưa cháy và hạt rắn trong khí xả động cơ. Đối với động cơ có buồng cháy ngăn cách, sự khống chế lưu lượng nhiên liệu kèm theo việc giảm góc phun sớm có thể làm giảm 30% lượng NOx trong khí thải nhưng làm tăng lượng HC lên 100%, CO lên 70% và bồ hóng lên 150%. Để có thể đảm bảo qui luật phun phù hợp ở mọi chế độ làm việc của động cơ cả về phương diện phát ô nhiễm lẫn tính năng kinh tế-kĩ thuật, trên những động cơ thế hệ mới hiện nay người ta sử dụng cảm biến λ lắp trên đường xả. Kết hợp thông số cho bởi cảm biến này với các cảm biến áp suất, nhiệt độ khí nạp và tốc độ động cơ người ta co thể điều khiển chính xác thời điểm phun và lượng nhiên liệu cung cấp cho mỗi chu trình. Giải pháp này đặc biệt có lợi đối với động cơ Diesel lắp trên ô tô nhằm giảm độ khói khi gia tốc. 6.3.2. Ảnh hưởng của dạng hình học buồng cháy Dạng buồng cháy hợp lí cho phép tránh được lớp nhiên liệu bám trên thành do đó giảm được nồng độ HC trong khí xả. Đối với động cơ phun trực tiếp, biện pháp có hiệu quả nhất để làm giảm nồng độ bồ hóng là gia tăng cường độ rối và kết hợp với việc sử dụng vòi phun nhiều lỗ. Buồng cháy tốt cần thỏa mãn các điều kiện sau đây: - Hành trình tự do của tia nhiên liệu trong buồng cháy lớn. - Bề mặt buồng cháy trên piston đủ lớn để tránh sự giao thoa của các tia phun. - Cường độ rối cao trong vùng phân bố tia nhiên liệu. - Tiếp tục duy trì được vận động rối của dòng khí trong buồng cháy sau ĐCT. Việc gia tăng áp suất trong buồng cháy đơn thuần có khuynh hướng thuận lợi cho sự hình thành bồ hóng. Tuy nhiên, sự gia tăng áp suất cực đại sẽ làm tăng đồng thời nhiệt độ khí cháy cho phép gia tăng tốc độ oxy hóa bồ hóng nên lượng bồ hóng trong khí xả không tăng. Sự gia tăng áp suất làm tăng độ ồn và sự phát sinh NOx. Đối với động cơ phun trực tiếp, tỉ lệ nén cao cho phép khởi động dễ dàng ở nhiệt độ thấp. Sự gia tăng tỉ số nén vừa phải đồng thời cũng làm giảm HC và thành phần SOF của hạt rắn. Khi tỉ số nén tăng quá cao, động cơ sẽ phát sinh nhiều bồ hóng ở chế độ đầy tải. Vì vậy ở động cơ có tỉ số nén lớn, cần phải thiết kế dạng buồng cháy tối ưu cho phép tăng cường sự dịch chuyển của dòng không khí thuận lợi cho việc đốt cháy bồ hóng. Để tăng cường tốc độ đốt cháy bồ hóng, người ta thiết kế thêm một buồng chứa không khí bổ sung ở động cơ phun trực tiếp. Buồng không khí bổ sung này lưu trữ không khí trong kì nén và lượng không khí đó sẽ cung cấp lại cho buồng cháy động cơ ở kì giãn nở để tạo điều kiện oxy hóa hạt bồ hóng. Tuy nhiên, kết cấu này làm tăng suất tiêu hao nhiên liệu. Ở động cơ phun gián tiếp, buồng không khí bổ sung cho phép làm giảm 40% lượng bồ hóng phát sinh và làm gia tăng suất tiêu hao nhiên liệu thêm 3%. 88
  8. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Đối với động cơ có buồng cháy ngăn cách, sự gia tăng tỉ lệ giữa thể tích buồng cháy phụ và buồng cháy chính cho phép giảm sự hình thành bồ hóng nhờ tăng cường thêm không khí cho buồng cháy phụ. Tiết diện đường thông giữa hai buồng cháy khống chế cường độ rối sinh ra ở thời điểm dịch chuyển lượng khí cháy từ buồng cháy phụ sang buồng cháy chính. Giảm nhỏ tiết diện này sẽ làm giảm nồng độ bồ hóng ở chế độ đầy tải nhưng làm tăng lượng bồ hóng ở chế độ tải cục bộ. Trong thiết kế, tiết diện tối ưu của đường nối này được chọn ở chế độ đầy tải. 6.3.3. Ảnh hưởng của vận động rối trong buồng cháy Sự rối phát sinh trong quá trình nạp có ảnh hưởng trái ngược nhau giữa sự phát sinh NOx, tiếng ồn, HC và bồ hóng. Để làm giảm mức độ ảnh hưởng của giai đoạn hỗn hợp đậm đặc đến sự phát sinh bồ hóng trong cylindre, cần tăng hiệu quả của việc hòa trộn nhiên liệu-không khí ngay từ lúc bắt đầu giai đoạn cháy trễ (tăng cường xoáy lốc). Nhưng điều này gây nhược điểm là làm tăng áp suất cực đại trong buồng cháy cùng với sự tăng tiếng ồn và mức độ phát sinh NOx. Hướng tia phun trong buồng cháy dự bị cho phép điều chỉnh được tốc độ hòa trộn nhiên liệu-không khí, do đó cải thiện sự phát sinh bồ hóng. Hướng tia phun cũng ảnh hưởng đến lượng nhiên liệu bám trên thành và đó là nguồn phát sinh HC. Vị trí của vòi phun trong buồng cháy phụ cũng có ảnh hưởng đến sự hình thành NOx. 6.3.4. Ảnh hưởng của chế độ làm việc của động cơ và chế độ quá độ Khi giảm tốc độ động cơ từ 750 đến 680 v/phút, nồng độ các chất ô nhiễm đều giảm khi đo theo chu trình FTP75: HC (-14%); CO(-2%); NO (-3%) và bồ hóng (-5%). Trong thử nghiệm động cơ theo chu trình tiêu chuẩn cũng như trong thực tế, sự thay đổi chế độ tốc độ là yếu tố làm gia tăng sự phát ô nhiễm. Nồng độ bồ hóng trong khí xả động cơ Diesel gia tăng rất mạnh khi gia tốc vì độ đậm đặc trung bình của hỗn hợp gia tăng. Lượng gia tăng này càng lớn khi thời gian gia tốc càng dài. Để giảm thời gian gia tốc, cần phải tối ưu hóa việc thiết kế động cơ để có thể: - Giảm momen quán tính các bộ phận chuyển động quay - Giảm thể tích các bộ phận nạp thải - Giảm nhiệt dung riêng của hệ thống làm mát - Gia tăng công suất dự trữ 6.3.5. Ảnh hưởng của chỉ số cétane của nhiên liệu Lượng bồ hóng giảm khi thời gian cháy trễ kéo dài, nghĩa là khi dùng nhiên liệu có chỉ số cétane thấp. Tuy nhiên việc sử dụng nhiên liệu có chỉ số cétane thấp có thể dẫn đến những nhược điểm quan trọng: gia tăng độ ồn nếu quá trình cháy bắt đầu quá muộn, gia tăng lượng nhiên liệu bám trên thành cylindre và buồng cháy làm tăng mức độ phát sinh HC và bồ hóng. 89
  9. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong 6.3.6. Ảnh hưởng của nhiệt độ khí Giảm nhiệt độ khí nạp sẽ làm giảm nhiệt độ cực đại của quá trình cháy và do đó nồng độ NOx cũng giảm. Vì vậy, ở động cơ tăng áp người ta có khuynh hướng làm mát khí sau máy nén để đảm bảo nhiệt độ khí nạp không vượt quá 500C. Nhưng sự làm mát khí nạp có thể kéo dài thời kì cháy trễ làm tăng mức độ phát sinh ô nhiễm như đã nêu (những giọt nhiên liệu bám vào thành cylindre làm tăng thành phần HC và bồ hóng trong khí xả). Khi khởi động động cơ ở trạng thái nguội, sự sấy buồng cháy hay sấy khí nạp là cần thiết để làm giảm mức độ phát sinh HC và khói trắng. Việc sấy nóng khí nạp có thể thực hiện nhờ nến điện hay bằng cách đốt trước một ít nhiên liệu trong khí nạp. Nhiệt độ của khí đường thải cũng ảnh hưởng đến sự phát sinh ô nhiễm, nhất là đối với thành phần HC. Thật vậy, ở chế độ tải thấp, HC ngưng tụ trên đường thải rồi bốc hơi lại khi tăng tải làm tăng nồng độ HC. Đường thải bằng vật liệu gốm cho phép tái oxyhóa bồ hóng và HC, nhưng làm tăng NOx. Động cơ Diesel phun trực tiếp có buồng cháy bằng vật liệu gốm, không làm mát cho phép làm giảm được nồng độ các chất ô nhiễm ở chế độ tải thấp. Nhưng khi tải cao, nồng độ NOx và bồ hóng đều tăng dù nhiệt độ thành buồng cháy cao cho phép tái đốt cháy bồ hóng ở cuối chu trình. 6.3.7. Ảnh hưởng của tăng áp Monoxy carbon CO hình thành là do quá trình cháy thiếu không khí, đặc biệt là ở tải cao. Do đó, tăng áp là biện pháp hữu hiệu làm giảm CO. Lượng không khí thừa do tăng áp đồng thời cũng cho phép tái đốt cháy bồ hóng, bù trừ lượng tăng bồ hóng do khí xả hồi lưu mang vào buồng cháy. Hệ thống hồi lưu khí xả trong trường hợp động cơ tăng áp có thể làm giảm 50% lượng NOx mà không làm tăng bồ hóng. 6.3.8. Ảnh hưởng của hệ thống hồi lưu khí xả Mặc dù tỉ lệ khí hồi lưu lớn gây tác hại xấu đối với động cơ (tăng mài mòn) nhưng nó có tác dụng đáng kể trong việc làm giảm NOx do giảm nhiệt độ cháy. Đối với động cơ phun trực tiếp làm việc với nhiệt độ khí nạp từ 40-600C (làm việc ở các hầm mỏ), hệ thống hồi lưu khí xả có thể làm giảm 30% và 50% nồng độ NOx theo thứ tự. Nếu làm ẩm thêm không khí nạp, cùng điều kiện làm việc như trên mức độ giảm NOx có thể đạt đến 50% và 85% theo thứ tự. Tuy nhiên, hồi lưu khí xả có tác động xấu đối với các chất ô nhiễm khác: làm tăng nồng độ CO và bồ hóng, ngay cả khi thêm hơi nước. Phun hơi nước cho phép hạn chế phản ứng cracking tạo bồ hóng nhờ giảm nhiệt độ cháy. Đối với động cơ buồng cháy ngăn cách, nồng độ bồ hóng gia tăng trước hết chậm, sau đó tăng nhanh theo lượng nước phun vào buồng cháy phụ; biến thiên của nồng độ CO và HC cũng tương tự. Hơi nước chỉ có tác dụng làm giảm nồng độ NO. Sự điều chỉnh tỉ lệ khí xả hồi lưu cần được căn cứ theo tải và theo tốc độ. Hệ thống điện tử cho phép điều chỉnh van hồi lưu khí xả theo các đường đặc tính chọn trước: cắt lượng khí xả hồi lưu khi động cơ nguội; sau đó lượng khí xả hồi lưu tăng dần phụ thuộc nhiệt độ nước làm mát, áp suất môi trường, lượng nhiên liệu cung cấp. Mặt khác, hệ thống cũng cắt lượng khí hồi lưu ở chế độ gia tốc lớn để hạn chế nồng độ bồ hóng. Hồi lưu khí xả tối ưu cho phép giảm được 40% NOx mà không 90
  10. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong làm tăng suất tiêu hao nhiên liệu cũng như không làm tăng CO và bồ hóng. Kết hợp với tăng áp, hệ thống hồi lưu khí xả cho phép làm giảm đồng thời NOx, HC và bồ hóng. 6.3.9. Điều khiển vòi phun và hệ thống hồi lưu khí xả Việc điều chỉnh các thông số công tác động cơ thường có tác dụng mâu thuẫn nhau đối với các chất ô nhiễm khác nhau. Tuy nhiên, do mức độ ảnh hưởng đó không đồng đều ở các điểm làm việc khác nhau của động cơ nên ở mỗi chế độ công tác ta có thể lựa chọn một bộ thông số điều khiển tối ưu đối với các chất ô nhiễm HC, NOx và bồ hóng. Việc điều khiển phức tạp như vậy chỉ có thể thực hiện được nhờ hệ thống điện tử. Hệ thống điều khiển điện tử phải thỏa mãn các điều kiện sau: - Độ chính xác cao và nhạy, làm việc ổn định theo thời gian. - Có khả năng điều chỉnh theo nhiều thông số - Mềm dẻo trong lập chương trình hệ thống điều khiển để có thể áp dụng trong các điều kiện sử dụng ô tô khác nhau (tùy theo yêu cầu của luật môi trường của từng quốc gia) - Thực hiện việc điều chỉnh động cơ theo những chỉ tiêu cho trước Thêm vào đó, hệ thống phải hoạt động tin cậy trong mọi tình huống, phải được bảo vệ chống nhiễu và chống hỏng hóc, bảo trì dễ dàng nhờ hệ thống chẩn đoán nhanh. Khi hoạt động, máy tính điều khiển chuyên dụng nhận số liệu từ các cảm biến: vị trí thanh răng hay cần gia tốc, vị trí kim phun, tốc độ động cơ, nhiệt độ không khí nạp, nhiệt độ nhiên liệu, nhiệt độ nước làm mát, áp suất trong xilanh,.... Sau khi xử lí, máy tính phát tín hiệu điều khiển đến bộ phận chấp hành. Bộ phận này sẽ tác động lên cơ cấu điều khiển lượng nhiên liệu chu trình, thời điểm bắt đầu phun, lượng khí xả hồi lưu, tỉ số truyền của hộp số. Hệ thống điều khiển điện tử hoàn hảo như vậy cho phép làm giảm đồng thời nồng độ bồ hóng, NOx và tăng tính kinh tế của động cơ so với hệ thống điều khiển cơ khí, đặc biệt là kết hợp bộ điều khiển quá trình phun và điều khiển góc phun sớm, mức độ phát ô nhiễm của động cơ có thể giảm đi 3 lần. 6.4. Ảnh hưởng của việc giới hạn tốc độ ô tô đến mức độ phát sinh ô nhiễm Khi ô tô hoạt động ổn định người ta thấy nồng độ CO đạt cực tiểu ở tốc độ 80÷90km/h, nồng độ HC giảm dần đến khi tốc độ đạt khoảng 100km/h sau đó tăng lên chậm còn nồng độ NOx tăng từ từ đến khi tốc độ động cơ đạt 70÷80km/h sau đó tăng mạnh, nhất là đối với động cơ có dung tích cylindre lớn. Các kết quả đo đạc trên chu trình có điều kiện thử gần với điều kiện vận hành thực tế cho thấy giới hạn tốc độ ít gây ảnh hưởng đến mức độ phát sinh ô nhiễm. Khi giảm mạnh giới hạn tốc độ, nồng độ NOx có thể giảm đi vài phần trăm, nhưng làm tăng đôi chút CO, HC. Khi tăng tốc độ ô tô, nhờ sự rối của không khí phía sau xe, các chất ô nhiễm thải ra khỏi ống xả khuếch tán nhanh chóng trong không gian, làm giảm nồng độ cục bộ của chúng trong môi trường. 91
  11. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Trên xa lộ Châu Âu, tốc độ giới hạn là 130km/h. Khi đại bộ phận ô tô giảm tốc độ từ 119 đến 107km/h người ta thấy nồng độ các chất ô nhiễm trong bầu không khí quanh hệ thống xa lộ giảm đi đáng kể: -12% đối với CO; -1,7% đối với HC và -10,5% đối với NOx. Một thí nghiệm khác được thực hiện bằng cách giảm tốc độ giới hạn từ 100 xuống 60km/h trên một bộ phận xa lộ người ta nhận thấy lượng NOx giảm đi 50% trong 6 tháng. 6.5. Ảnh hưởng của nhiên liệu đến mức độ phát ô nhiễm của động cơ 6.5.1. Nhiên liệu động cơ xăng Việc điều chỉnh động cơ có ảnh hưởng đến lượng ô nhiễm phát sinh vì việc điều chỉnh này tác động đến cơ chế hình thành hay phân hủy các chất ô nhiễm trước khi thoát ra ngoài khí quyển. Nhiên liệu cũng gây ảnh hưởng đến sự phát ô nhiễm, chủ yếu là do tỉ số không khí/nhiên liệu có thể bị thay đổi do sự thay đổi các đặc trưng hóa lí của chúng không phải lúc nào cũng được bù lại bởi sự điều chỉnh các thông số của động cơ. Như chúng ta đã biết, độ đậm đặc của hỗn hợp ảnh hưởng lớn đến mức độ phát sinh ô nhiễm: NOx đạt cực đại trong môi trường hơi nghèo; CO, HC đạt cực tiểu trong môi trường nghèo; sự xuất hiện bồ hóng diễn ra trong môi trường rất giàu (a100 và chỉ số octane động cơ MON thường lớn hơn 90. Do đó thêm thành phần hydrocarbure thơm vào nhiên liệu là một biện pháp làm tăng tính chống kích nổ của nhiên liệu hiện đại. 92
  12. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Hiện nay người ta có khuynh hướng gia tăng hàm lượng các chất hydrocarbure thơm trong nhiên liệu nhằm phổ biến nhiên liệu không chì. Theo tiêu chuẩn Cộng Đồng Châu Âu, hàm lượng benzene trong nhiên liệu phải thấp hơn 5%. Nồng độ thể tích NOx (ppmx100) a Tốc độ: 1500 vg/phút Áp suất có ích trung bình: 500kPa Tì số nén: 11 Hình 6.6: Ảnh hưởng của tỉ số không khí/nhiên liệu đến NOx Các hydrocarbure thơm có tỉ số C/H cao hơn do đó khối lượng riêng lớn hơn. Do nhiệt lượng tỏa ra đối với một đơn vị thể tích cao hơn nên nhiệt độ cháy của hỗn hợp tăng làm tăng NOx. Hình 6.6 cho thấy ví dụ trên động cơ có tốc độ 1500 vòng/phút ở chế độ tải trung bình sự thay đổi NOx theo tỉ số không khí/nhiên liệu đối với alkylat không thơm và đối với nhiên liệu super thơm. Chúng ta thấy ở vị trí phát ô nhiễm cực đại, alkylat làm giảm nồng độ ô nhiễm khoảng 20%. Mức độ phát sinh CO ít bị ảnh hưởng bởi hàm lượng hydrocarbure thơm. Tuy nhiên, các hydrocarbure thơm có cấu tạo ổn định hơn parafine nên có động học phản ứng cháy chậm hơn. Do đó trong cùng điều kiện cháy, sự phát sinh hydrocarbure chưa cháy của nhiên liệu chứa nhiều hydrocarbure thơm hơn sẽ cao hơn. Khi chuyển từ nhiên liệu super thơm sang alkylat, mức độ phát sinh HC giảm đi 16% (hình 6.7). 93
  13. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Nồng độ thể tích HC (ppmx100) a Tốc độ: 1500 vg/phút Áp suất có ích trung bình: 500kPa Tỉ số nén: 11 Hình 6.7: Ảnh hưởng của tỉ số không khí/nhiên liệu đến nồng độ HC trong khí xả Mặt khác, các chất thơm trong nhiên liệu giữ vai trò phát sinh các hydrocarbure thơm đa nhân HAP, phènol và aldehyde thơm mà những chất này tăng theo các chất thơm còn formaldehyde thì giảm. Sự phụ thuộc của HAP vào tỉ lệ các chất thơm trong nhiên liệu thay đổi một mặt theo HAP xem xét và mặt khác theo dạng chất thơm trong nhiên liệu: benzene ít ảnh hưởng đến HAP hình thành, HAP nhẹ (đến 4 nhân) gia tăng tuyến tính theo tỉ lệ các chất thơm trong nhiên liệu, những HAP nặng hơn (đến 5 nhân) (hình 6.8) không chịu ảnh hưởng bởi tỉ lệ này. HAP đã có mặt trong nhiên liệu cũng ảnh hưởng đến mức độ phát sinh HAP trong khí xả. 6.5.1.3. Ảnh hưởng của tính bay hơi Tính bay hơi của nhiên liệu thường được đặc trưng bởi đường cong chưng cất và áp suất hơi Reid (PVR) đo ở 37,8°C. Đó là một đặc tính quan trọng đối với hoạt động của động cơ, nó ảnh hưởng đến thời gian khởi động động cơ ở trạng thái nguội, tính ưu việt khi gia tốc và tính ổn định khi làm việc ở chế độ không tải và khi chạy nóng. Những thành phần quá nặng (bay hơi ở nhiệt độ lớn hơn 200-220°C) có ảnh hưởng đến sự phát sinh hydrocrabure chưa cháy, do sự bốc hơi kém dẫn tới sự cháy không hoàn toàn với sự hình thành aldehydes và sự gia tăng HC. 94
  14. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Phát thải HAP (mg/kg nhiên liệu) Thành phần cacbua hydro thơm Trong nhiên liệu (%V) Hình 6.8: Ảnh hưởng của thành phần nhiên liệu thơm đến mức độ phát sinh HAP Những thành phần nhẹ hơn, cần thiết cho việc khởi động và làm việc ở trạng thái nguộI, ảnh hưởng đến sự phát ô nhiễm của khí xả và nhất là ảnh hưởng đến tổn thất do bay hơi. Tính chất bay hơi tiêu chuẩn của nhiên liệu phụ thuộc vào điều kiện khí hậu và mùa. Chẳng hạn ở Pháp, tính chất bay hơi của nhiên liệu được qui định như sau: - 45
  15. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong - Những chất phụ gia làm tăng chỉ số octane: Alkyle chì, méthylcyclopenta-diényl mangan tricarbonyle (MMT), ferrocène,... - Những chất phụ gia chống oxy hóa, ngăn chận sự hình thành oléphine gồm: phénylène diamin, aminophénol và phénol alkylé. - Những chất phụ gia làm sạch bề mặt đường ống nạp do hơi dầu bôi trơn và những chất không bị lọc gió giữ lại trên đường nạp. - Màu và các chất phụ gia chống nhầm lẫn. Những chất phụ gia chì, dù rằng thành phần chlore và brome đảm bảo biến chì thành dạng halogene nhẹ, không đủ để loại trừ hoàn toàn những lớp bám trong buồng cháy. Sự hiện diện của các lớp bám này dường như không gây ảnh hưởng đến nồng độ CO và NOx nhưng làm tăng HC. Chì không gây ảnh hưởng đến sự hình thành aldéhyde. Những chất phụ gia mangan (MMT) gây ảnh hưởng xấu đến sự phát sinh HC và aldéhyde. Nếu sự phát sinh CO và NOx không bị ảnh hưởng, nồng độ HC tăng tuyến tính theo nồng độ MMT: sự chuyển đổi ở bộ xúc tác không hạn chế hoàn toàn được sự gia tăng này và bộ xúc tác dần dần bị bao phủ bởi lớp bám Mn3O4. Các chất phụ gia hữu cơ hay hữu cơ-kim loại (organometallique) thêm vào nhiên liệu để tác động đến các phản ứng cháy dường như không gây ảnh hưởng đến mức độ phát ô nhiễm, các chất phụ gia chống các lớp bám cũng vậy. Tuy nhiên, việc duy trì độ sạch trên đường nạp cho phép giữ được sự điều chỉnh ban đầu và sự ổn định về mức độ phát sinh CO ở chế độ không tải. 6.5.1.6. Ảnh hưởng của việc sử dụng nhầm nhiên liệu Từ 'nhầm’ nhiên liệu dùng để chỉ việc cung cấp không đúng nhiên liệu cho động cơ, chẳng hạn cung cấp dầu Diesel cho động cơ đánh lửa cưỡng bức. Trong thực tế thường diễn ra sự nhầm lẫn cung cấp nhiên liệu pha chì cho động cơ có ống xả xúc tác. Sự 'đầu độc' bộ xúc tác do chì làm giảm dần hiệu quả của bộ xúc tác dẫn đến sự gia tăng HC và aldehyde ở phía sau ống xả. Hình 6.9 cho thấy sự gia tăng nhanh chóng của HC và aldehyde ngay khi cung cấp nhiên liệu pha chì. Mặt dù khi cung cấp lại xăng không chì, tính năng của bộ xúc tác được phục hồi trở lại nhưng không bao giờ đạt được hiệu quả ban đầu. 96
  16. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong g/dặm Không có bộ xúc tác Xăng pha chì Xăng không pha chì Quãng đường lăn bánh (x1000 dặm) g/dặm Không có bộ xúc tác Xăng pha chì Xăng không pha chì Quãng đường lăn bánh (x1000 dặm) Hình 6.9: Ảnh hưởng của việc sử dụng nhiên liệu không phù hợp 6.5.2. Ảnh hưởng của nhiên liệu Diesel Chúng ta sẽ khảo sát sau đây ảnh hưởng của khối lượng riêng, chỉ số cetane, thành phần lưu huỳnh, các chất phụ gia đến mức độ phát sinh ô nhiễm của động cơ Diesel. Các chất ô nhiễm quan tâm như động cơ đánh lửa cưỡng bức nhưng phải thêm vào những hạt rắn và các chất hữu cơ liên quan (SOF) là những chất ô nhiễm đặc biệt ở động cơ Diesel. 6.5.2.1. Ảnh hưởng của khối lượng riêng Sự gia tăng khối lượng riêng của dầu Diesel dẫn tới sự gia tăng nồng độ hạt rắn. Hình 6.10 giới thiệu mức độ phát sinh hạt rắn tính theo gam/lít nhiên liệu theo khối lượng riêng ứng với động cơ V8, 10,4 lít chạy ở tốc độ 1700 vòng/phút và một động cơ tăng áp 14 lít, chạy ở 1700 vòng/phút. Tương tự như vậy, nồng độ SOF cũng tăng theo khối lượng riêng. 97
  17. Chương 6: Các yếu tố ảnh hưởng đến nồng độ các chất ô nhiễm trong khí xả động cơ đốt trong Mức độ phát sinh bồ hóng (kg bồ hóng/lít nhiên liệu) r (kg/dm3) Hình 6.10: Ảnh hưởng của khối lượng riêng nhiên liệu Diesel 6.5.2.2. Ảnh hưởng của thành phần thơm Thành phần thơm của nhiên liệu Diesel ảnh hưởng trực tiếp đến chỉ số cetane. Nhiên liệu không cháy hết, hạt rắn, SOF gia tăng theo hàm lượng thơm. Nồng độ NOx ít bị ảnh hưởng. Động cơ Diesel phun trực tiếp, ít bị ảnh hưởng bởi thành phần thơm 6.5.2.3. Ảnh hưởng của chỉ số cétane Kéo dài thời gian cháy trễ do giảm chỉ số cétane dẫn đến sự gia tăng HC, hạt rắn và CO. Hình 6.11 giới thiệu ảnh hưởng của chỉ số cétane đến mức độ phát sinh ô nhiễm của động cơ phun gián tiếp: NOx ít bị ảnh hưởng bởi chỉ số cétane. Đối với động cơ có buồng cháy ngăn cách, ảnh hưởng của chỉ số cétane chủ yếu đến bộ phận SOF dẫn xuất (extractible), thành phần hạt rắn không hòa tan dường như không bị ảnh hưởng. Chỉ số cétane cũng ảnh hưởng đến sự phát sinh khói xanh hay khói trắng, sương mù trong khí xả gồm những hạt nhiên liệu không cháy, hiện tượng gặp khi khởi động hay khi làm việc trên cao áp suất giảm. 6.5.2.4. Ảnh hưởng của thành phần lưu huỳnh Thành phần lưu huỳnh là một trong những đặc trưng quan trong được qui định nghiêm ngặt đối với nhiên liệu Diesel. Ở Pháp thành phần lưu huỳnh cho phép là 0,3%. Ở Châu Âu, thành phần lưu huỳnh dao động từ 0,05% đến 0,65%. Ở Thụy sĩ, thành phần lưu huỳnh giới hạn 0,2% còn ở California, người ta hướng tới giới hạn 0,05%. Đại bộ phận chất ô nhiễm do lưu huỳnh gây ra tồn tại dưới dạng SO2: Nhiên liệu chứa 0,3% lưu huỳnh thì ở trong khí xả có khoảng 100ppm SO2. Tuy nhiên, một bộ phận SO2 (khoảng 2 đến 3%) bị oxy hóa thành SO3 và acide sulfurique. Động cơ phun gián tiếp 98 Không tăng áp Tăng áp Không tăng áp Tăng áp
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
4=>1