Tìm hiểu về các phương pháp thiết kế tối ưu (Optimal design methods): Phần 2
lượt xem 3
download
Phần 2 của cuốn sách "Các phương pháp thiết kế tối ưu (Optimal design methods)" gồm 4 chương cuối, trình bày về: Chương 6 - Các phương pháp trực tiếp để giải các bài toán có ràng buộc; Chương 7 - Giới thiệu về phương pháp thuật giải di truyền; Chương 8 - Phương pháp các khái niệm xấp xỉ; Chương 9 - Giới thiệu về chương trình vẽ đường đồng mức;...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tìm hiểu về các phương pháp thiết kế tối ưu (Optimal design methods): Phần 2
- Chapter 6. Direct method for constrained problems Chapter 6. Direct method for constrained problems Ph−¬ng ph¸p trùc tiÕp ®Ó gi¶i c¸c bμi to¸n tèi −u hãa cã rμng buéc 6.1. LAGRANGE MULTIPLIER METHOD Phương pháp nhân tử Lagrange 6.1.1. Lagrange Multiplier for one equality constraint For the constrained problem: find ⃗, such that 𝐟 ⃗ → 𝐦𝐢𝐧 𝐱 𝐱 subject to: ℓ x ⃗ 0 (6.1) We assume that ℓ ⃗ 𝑥 0 can be used to solve for one variable in terms of others as: x ∅ x ,x ,…,x (6.2) Substituting equation (6.2) into equation (6.1), we eliminate 𝑥 from the cost function and obtain the unconstrained problem as: Find 𝐱 𝟐 , 𝐱 𝟑 , … , 𝐱 𝐧 , such that: f ∅ x ,x ,…,x ,x ,x ,…,x → 𝐦𝐢𝐧 (6.3) The necessary condition for the optimum point ⃗ ∗ of equation (6.3) can be expressed as: 𝑥 df f f . 0, i 2,3,, n (6.4) dxi xi xi Since ∅ 𝑥 , 𝑥 , … , 𝑥 may be an implicit function (hàm ẩn), we don’t know , i 2,3,, n . xi However, we have: d x l l ℓ ∅, x , x , … , x 0, and . 0, i 2, 3, , n. dx i x i x i l x i or, (6.5) x i l 115
- Chapter 6. Direct method for constrained problems Substituting equation (6.5) into equation (6.4), we have: f f l 0, i 2, 3, , n (6.6) x i l x i Define the Lagrange multiplier λ as: f λ = (6.7) l and obtain: f l λ. 0, i 2,3,, n (6.8) xi xi Rearranging equation (6.7), we have: f l λ. 0 f l or, + λ. 0 (6.9) x i xi Combining equation (6.8) and equation (6.9), we have the necessary conditions for the optimum points of equation (6.1) as: f l + λ. 0 , i=1, 2, …, n and ℓ x ⃗ 0 x i xi If we define the Lagrange function L ( ⃗, 𝜆 as: 𝑥 L (x λ ⃗, f x ⃗ ⃗ λℓ x then, the necessary conditions of equation (6.1) can be expressed as: ∇ L (x λ ⃗, 0 (6.10) or, f l ∇ ⃗ L (x, λ) 0 λ. 0,i 2,3,, n xi xi ∇ L (x λ ⃗, 0→ℓ x ⃗ 0 Equation (6.10) has n+1 equations, and it can be used to solve n+1 unknown ⃗ 𝑎𝑛𝑑 𝜆∗ 𝑥∗ 116
- Chapter 6. Direct method for constrained problems Physical meaning of the Lagrange multiplier for only one equality constraint: Ý nghĩa vật lý của nhân tử Lagrange đối với một ràng buộc đẳng thức duy nhất: 1. The gradients of the Lagrange function are zeros at the candidate optimum points. So: 𝛻𝐿 ⃗ ∗ , 𝜆∗ 𝑥 0 or 𝛻𝑓 ⃗ ∗ 𝑥 𝜆∗ 𝛻ℓ ⃗ ∗ 𝑥 0 or 𝛻𝑓 ⃗ ∗ 𝑥 𝜆∗ 𝛻ℓ ⃗ ∗ 𝑥 It means that, at the candidate optimum point, ∇𝑓 ⃗ ∗ and ∇𝑙 ⃗ ∗ are along the same 𝑥 𝑥 line, and 𝜆 is the proportional constant of the vector length of ∇𝑓 ⃗ ∗ and ∇ ⃗ ∗ ∗ 𝑥 𝑥 2. For the ℓ ⃗ 𝑥 0, if it is multiplied by -1, the optimum solution is not changed. However, the sign of 𝜆∗ is reversed as: f x1 λ* x x1 It shows that 𝜆∗ for the equality constraint is free in sign. The sign is determined by the form of the equality constraint equation. Example 01: 𝟐 𝟐 Find ⃗, such that: 𝐟 ⃗ 𝐱 𝐱 𝐱𝟏 𝟐 𝐱𝟐 𝟐 → 𝐦𝐢𝐧 Subject to: ℓ x⃗ x x 2 0 1. Graphical solution - Nghiệm ở dạng đồ thị x∗ ⃗ 1, 1 , f ∗ 2 Figure 6.1: Graphical solution of the example 01 of the Lagrange Multiplier for one equality constraint 117
- Chapter 6. Direct method for constrained problems 2. Lagrange Multiplier Method: L (x λ ⃗, f x ⃗ λℓ x ⃗ x 2 x 2 λ x x 2 Candidate optimum points: ∇ ⃗ L=0 and ∇ L=0 L 0 2 x1 2 λ 0 x1 L 0 2 x 2 2 λ 0 x2 L 0 x1 x 2 2 0 λ → x∗ ⃗ 1,1 , λ∗ 2 f x x * 2 3. Note that from equation (6.7): λ* 1 * 2 x 1 x 1 4. If we multiply ℓ x ⃗ x x 2 0 by 1, then we can solve the solution as: ⃗ ∗ ∗ 𝐱 𝟏, 𝟏 , 𝛌 𝟐 6.1.2. Lagrange multipliers for multiple equality constraints Các nhân tử Lagrange cho bài toán có nhiều ràng buộc đẳng thức A problem with multiple equality constraints is expressed as: Find ⃗, such that: 𝐟 ⃗ → 𝐦𝐢𝐧 𝐱 𝐱 subject to: 𝓵 𝐣 ⃗ 𝐱 𝟎, 𝐣 𝟏, 𝟐, 𝟑, … , 𝐦; 𝐦 𝐧 (6.11) Theorem (Phát biểu định lý): The necessary conditions for the optimum solution of problem in equation (6.11) is: ⃗, ⃗ ∇ L (x λ 0 or, ⃗, ⃗ ∇ ⃗ L (x λ ⃗, ⃗ 0 , ∇ ⃗ L (x λ 0 (6.12) where L ⃗, ⃗ 𝑥 𝜆 𝑓 ⃗ 𝑥 ∑ 𝜆ℓ ⃗ 𝑥 Proof (chứng minh định lý): Assume d x ⃗ dx , dx , … , dx be any admissible variations about the optimum ∗ ∗ point x . If x is a local optimum point, then: ⃗ ⃗ n f df = x dx i f x* .dx 0 (6.13) i 1 i 118
- Chapter 6. Direct method for constrained problems At the optimum point, ℓ x ∗ ⃗ 0, and dℓ x ∗ ⃗ 0 for any admissible variations dx ⃗ from the optimum point. So, dℓ x ∗ ⃗ ∇ℓ x ∗ . dx 0 ⃗ ⃗ (6.14) Multiply equation (6.14) by λ and add to equation (6.13) we have: n f(x * ) .dx i λ j j (x * ).dx i 0 j1 m f(x* ) λ j j ( f(x )).dx1 = 0 j1 n f x * m ).dx j x * or, ( x λ j x i i 0 (6.15) i 1 i j1 Since only n-m variables are independent. Let x , x , … , x be dependent variables, and x ,x , … , x be independent variables. We can choose values of λ , i = 1, 2, ..., m, such that the coefficients for first m variations of dx in equation (6.15) become zero. i.e, f m j λ j 0, i 1, 2, , m (6.16) x i j1 x i L Or, 0, i 1,2,,m (6.17) xi For dx , dx , … , dx , because they are independent, the coefficients must be zeros, i.e., f m j λ j 0, i m 1, m 2, , n x i j1 x i L or, 0, i m 1, m 2,, n (6.18) xi In addition, we have ℓ x ∗ ⃗ 0, j 1,2, … , m, or, L 0, j 1,2,,m (6.19) λi From equation (6.17) to (6.19), we have necessary conditions for equation (6.11) as: L L 0,i 1, 2,, n ; 0, j 1, 2,.., m x i λ j or ∇ L( x ∗ , λ∗ ⃗ 0 (6.20) or ∇ ⃗ L (x λ ⃗, 0, ∇ ⃗ L (x λ ⃗, 0 6.1.3. Sufficient conditions for problems with multiple equality constraints Các điều kiện đủ cho các bài toán tối ưu có nhiều ràng buộc đẳng thức Theorem - Phát biểu định lý For any candidate minimum points of a problem with multiple equality constraints, ⃗ ⃗ ⃗ If dx Q x ∗ , λ∗ dx 0, then x ∗ is a true local minimum. ⃗ ⃗ 119
- Chapter 6. Direct method for constrained problems Proof - Chứng minh định lý For all sufficiently small admissible variations dx from x ∗ , we have: ⃗ ⃗ m L x * , λ * f x * λ * j j x * f x * (6.21) j1 For all admissible small variations (các biến thiên nhỏ có thể chấp nhận được) dx ⃗ from x ∗ , we have: ⃗ m L (x ∗ ⃗ dx , λ* ) f x * dx λ* j j x * dx f x * dx ⃗ (6.22) j1 Equation (6.22) – equation (6.21), we have: ⃗ ⃗ ⃗ L (x ∗ dx , λ∗ L x∗ ⃗ f x ∗ dx ⃗ ⃗ f x∗ ⃗ Since x ∗ is a local minimum point, then we have: ⃗ f x ∗ dx ⃗ ⃗ f x∗ > 0 ⃗ So, we have: ⃗ ⃗ ⃗ L (x ∗ dx , λ∗ L x∗ ⃗ 0 (6.23) ⃗, ⃗ Taylor series expansion of L (x λ about x ∗ gives: ⃗ ⃗ ⃗ ⃗ L (x ∗ dx , λ∗ L (x ∗ ⃗ ⃗ ⃗ ⃗ dx ∇ ⃗ L (x ∗ , λ∗ ⃗ ⃗ dx Q x ∗ , λ∗ dx ⃗ ⃗ ⃗ ⃗ Since ∇ ⃗ L (x ∗ , λ∗ 0, we have: L (x ∗ ⃗ ⃗ ⃗ dx , λ∗ L x∗ ⃗ ⃗ ⃗ dx Q x ∗ , λ∗ dx ⃗ ⃗ (6.24) From equation (6.23) and equation (6.24), we have: ⃗ ⃗ ⃗ dx Q x ∗ , λ∗ dx 0 ⃗ which are the sufficient conditions of a local minimum point. ⃗ ⃗ ⃗ It is also noted that if dx Q x ∗ , λ∗ dx 0, then x ∗ is a local maximum point. ⃗ ⃗ 6.1.4. Interpretation of the Lagrange Multipliers Sự diễn giải các nhân tử Lagrange Consider the modified problem of the form: Find x, such that: f x → min ⃗ ⃗ Subject to: ℓ x ⃗ b ,j 1,2, … , m Where b , j 1,2, … , m are small variations about zero. Adjusting the values of b can be considered as the tightening or relaxation of the j-th constraint. It is clear that the solution ⃗ ∗ of the perturbed problem (bài toán nhiễu) depends 𝑥 on ⃗, i.e. 𝑏 ⃗ ⃗ x ∗ x ∗ (b . We also have: ⃗ 120
- Chapter 6. Direct method for constrained problems m L ( b) f x b λk ( k x b bk ) k 1 L f x λ x b bk k x b b k λ k ( xk b δ ik ) x n m m n j j b i j1 j i k 1 i k 1 j1 j i f x j λ k x j n m m n = bk k x b bk λ k ( ) λi (6.25) j1 x j b i k 1 i k 1 j1 x j b i f x j λ bk k x b b k λ i n m m = ( λ k k ) j1 x j k 1 x j b i k 1 i ⃗ ⃗ From the necessary conditions, it is also noted that, at the optimum points x ∗ , λ∗ , we have: L f L m 0 λ k k 0 and 0 k x b bk 0 (6.26) x j x j k 1 x j λ k From equation (6.25) and equation (6.26), we have L λ* i (6.27) bi x*,λ* Since, at optimum points ⃗ ∗ , ⃗∗ , 𝑥 𝜆 L f L( b) f b bi bi (6.28) x* ,λ* x* ,λ* From equation (6.27) and equation (6.28): f λ* i (6.29) bi x*,λ* So, we can interpret λ as the sensitivity of f x w.r.t. b at the optimum point. If we ⃗ think of f x as dollars of return and b as the i-th resource, then λ∗ may be interpreted ⃗ as dollars per unit of the i-th resource. It is why the Lagrange multipliers are sometimes called “shadow prices”. The result of equation (6.29) is based on the form of equality constraints ℓ x ⃗ b 0. If we change the form to b ℓ x ⃗ 0, then the result will be: f i* (6.30) bi x*,* The sign of 𝜆∗ may be positive or negative, depending on the form of the equality constraints. 121
- Chapter 6. Direct method for constrained problems 6.2. PROBLEMS WITH INEQUALITY CONSTRAINTS Các bài toán tối ưu với các ràng buộc bất đẳng thức 6.2.1. Kuhn-Tucker necessary condition - Điều kiện cần Kuhn-Tucker Theorem: For the minimization problem with inequality constraints of the form: find x, such that: f x → min ⃗ ⃗ subject to: g x ⃗ 0; j 1,2, … , m (6.31) The Kuhn-Tucker necessary condition states that, at the optimum point, f (x * ) λ* g j (x * ) 0 j jJ g x∗⃗ 0, j ∈ J (6.32) ∗ λ 0, j ∈ J where J is the set of active constraints. Proof: a. proof of f (x * ) λ * g j (x * ) 0 j jJ The problem of equation (6.31) can be converted to a problem with equality constraints by introducing slack variables s , j 1,2, … , m as: find x, such that f x → min ⃗ ⃗ subject to: g x ⃗ s 0; j 1,2, … , m (6.33) The necessary condition of equation (6.33) is equivalent to find the stationary value of the Lagrange function: m L ( x , s , λ) f x λ j ( g j x s j2 ) j1 m ∇ ⃗ L ( x , s , λ) 0 f x λ j g j x 0 (6.34) j1 ⃗, ⃗ ⃗ ∇ ⃗ L (x s, λ 0 → 2λ s 0, j 1,2, … , m (6.35) ⃗, ⃗ ⃗ ∇ ⃗ L (x s, λ) = 0 → g x ⃗ s 0, j 1,2, … , m (6.36) Equation (6.35) states that, either λ or s should be zero at the optimum point. If s 0 then from equation (6.36) we have g x ∗ ⃗ 0 at optimum point. In other ∗ words, g x is active. ⃗ If s 0, then it must be λ∗ 0. From equation (6.36) we have g x ∗ ⃗ s 0 or g x∗ ⃗ ∗ 0. In other words, g x is inactive, and for inactive constraint, ⃗ λ∗ 0. Hence equation (6.34) can be rewritten as: f (x * ) λ* g j (x * ) 0 j (6.37) j J 122
- Chapter 6. Direct method for constrained problems b. Proof of λ∗ 0 for j ∈ J: Assume dx be any admissible small variations from the optimum point x ∗ . In order ⃗ ⃗ to keep x dx inside the feasible region, we must have: ⃗ ⃗ f x ⃗ f x∗ ⃗ x ⃗ x ∗ . ∇f x ∗ ⃗ ⃗ ⋯ f x ⃗ f x∗ ⃗ ⃗ x x ∗ . ∇f x ∗ ⃗ ⃗ ⋯ df dx. ∇f x ∗ ⃗ ⃗ 0 for any admissible variations dx ⃗ (6.38) ∗ ∗ ∗ g x ⃗ g x ⃗ x ⃗ x . ∇g x +… ⃗ ⃗ g x ⃗ g x∗ ⃗ x ⃗ x ∗ . ∇g x ∗ ⃗ ⃗ ⋯ dg dx ∇g x ∗ ⃗. ⃗ 0 for j ∈ J and any admissible variations dx ⃗ (6.39) dx equation (6.37) gives: ⃗. dx . f (x * ) λ *dx . g j (x * ) 0 j j J df + λ*dg j j 0 or -df = λ*jdg j j J j J From equation (6.38) and equation (6.39), it results that λ∗ 0 for j ∈ J and any admissible variations dx ⃗ * Figure 6.2: Illustration of the Kuhn-Tucker necessary conditions 6.2.2. Computation of Lagrange Multipliers Tính toán các nhân tử Lagrange The Kuhn-Tucker necessary conditions state that, at the optimum point ⃗ ∗ 𝑥 f (x * ) λ*g j (x* ) 0 j j J ∗ λ 0 for j ∈ J 123
- Chapter 6. Direct method for constrained problems Let: {B} = ∇f, or b ,i 1,2, … , n [N] = [ A A … A n×r n ; A ∇g ; j 1,2, … , r The Kuhn-Tucker necessary conditions expressed in matrix form are: λ* ∇g x ∗ j ⃗ ∇f x ∗ → N ∗ ⃗ λ∗ B∗ (6.40) jJ Equation (6.40) has n equations with r unknown variables ⃗∗ . In general r ≤ m and 𝜆 r ≤ n, and thus equation (6.40) is over determined. The solution of equation (6.40) m may be: (i) an unique solution, (ii) no solution, or (iii) infinite number of solutions. ⃗ It is not convenient to solve λ∗ directly from equation (6.40). However, it can be ⃗ solved by the least square error method. Define a residual vector R as: ⃗ R N λ B ⃗ Define the square of two residual vector R as: L ( λ) R.R N λ B N λ B λ T N T N λ 2λ T N T B BT B T ⃗ L (λ is minimized: L ∇ ⃗ L= 0, or 0, j 1, 2, , r λ j 2N ⃗ Nλ ⃗ 2N B 0 or N ⃗ Nλ ⃗ ⃗ N B → λ∗ can be uniquely solved for non-singular N N. * * ⃗ For the solution λ∗ , if λ∗ ⃗ ⃗ 0, j = 1, 2, …, r, and L (λ ) = 0 (or R λ = 0, N λ = {B}), then the K.T, necessary conditions are satisfied. So, procedures for testing the Kuhn-Tucker necessary conditions are: ⃗ 1. Compute λ∗ N N ⃗ ⃗ N B and R N λ∗ B. 2. If λ∗ ⃗ 0 and R 0, then the Kuhn-Tucker necessary conditions are satisfied. 6.2.3. Projection vector and Projection matrix Ma trận hình chiếu và Véc tơ hình chiếu The projection of a vector ⃗ onto the intersection of all tangent planes of active 𝐵 constrains can be expressed as: ⃗ B B ⃗ ⃗ B → B ⃗ ⃗ B ⃗ B 124
- Chapter 6. Direct method for constrained problems Figure 6.3: Illustration of the projection vector and projection matrix ⃗ The vertical component B can be expressed as: B ⃗ ∑ ∈ u . ∇g , and B P B u j . g j , B P g j , j J( g j A j ) j J A i .B P 0 , i 1, 2 , , r , or A i .B u j .A i A j 0 , i 1, 2 , , r j J or N B N N u 0, or N N u N B, or {u} = N N N B 1 BP B u j .g j B N u B N N N N T B T jJ = I N N N N B or, ⃗ B P B [P] = [I] – [N] N N N : the projection matrix - Ma trận hình chiếu For K.T. necessary conditions: ⃗ [N]{λ} = {B ∗ , and λ N N N B or, {B} – [N]{λ}= 0 {B} – [N] N N N B 0 ([I] – [N] N N N B 0 or, ⃗ [P]{B} = 0, or B 0 So, the Kuhn-Tucker necessary conditions state that, at the optimum point, the projection of ∇f x ∗ onto the intersection of tangent planes (các mặt phẳng tiếp ⃗ tuyến) of active constraints is a null vector (véc tơ không). 125
- Chapter 6. Direct method for constrained problems 6.3. METHOD OF FEASIBLE DIRECTIONS Phương pháp tìm các hướng khả thi Figure 6.4: Illustration of the method of feasible directions Basic concepts - Các khái niệm cơ bản Feasible design: g x ⃗ 0 ⃗ ⃗ Feasible direction: S points to the feasible region, or S . ∇g x ⃗ 0, j ∈ J. ⃗ ⃗ Usable direction: S is in downward direction, or S . ∇f x ⃗ 0. ⃗ Usable-feasible direction: S . ∇g ⃗ 0, for j ∈ J and S . ∆f x ⃗ 0. Method of find a usable-feasible search direction: ⃗ (1) If no active constrain exists, then S ∇f x ⃗ ⃗ (2) If some active constraints exist, then S must satisfy conditions of the usable- feasible directions. It can be found by the following methods: a. Random method: Generate a random direction and test if it is a usable-feasible direction. b. Projection method: B⃗ ⃗ ∇f x , S ⃗ ⃗ B ⃗ PB P ∇f x ⃗ The projection direction can also be found by the following problem: ⃗ STf find S, such that: cosγ max S . f 126
- Chapter 6. Direct method for constrained problems ⃗ subject to: S. ∇g 0, j ∈ J 1≤S 1, i 1,2, … , m c. Method of feasible direction: The direction finding problem in the method of feasible direction is expressed as: ⃗ ⃗ Find S and β, such that f (S, β β → max ⃗ Subject to: (i) S. ∇g θ β 0, jϵJ ⃗ (ii) S. ∇f β 0 (iii) -1 ≤ S 1, i 1,2, … , n where θ for j ∈ J is a given positive number and called the push-off factors. ⃗ Suppose the solution of this problem is S∗ and β∗ , and ⃗ If β∗ 0, then S∗ . ∇g ⃗ θ β∗ 0, S ∗ . ∇f β∗ 0 ⃗ → S ∗ is a usable-feasible direction (hướng khả thi có thể sử dụng) If β∗ 0, then no usable-feasible sector exists. =0 Figure 6.5: Illustration of direction finding problem in the method of feasible direction θ : push-off factors (1) θ 0 for linear constraints (2) θ 1 for nonlinear constraints θ ⃗ 0, S∗ is the projection of -∇f x ⃗ onto the tangent plane of g x ⃗ 0 at x ⃗ θ ⃗ 0, S. ∇g ⃗ θ β, S. ∇f β. 127
- Chapter 6. Direct method for constrained problems Procedure for the method of feasible directions: ⃗ (1) Find a usable-feasible direction S . ⃗ ⃗ (2) 1-D search along S , x x ⃗ ⃗ α∗ . S There are two possibilities at the point x ⃗ : i. One or more active constraints is encountered. ii. No active constraint exists. (3) repeat step (1) & (2) until the convergent criteria are satisfied. 6.3.1. 1-D search in method of feasible directions: Sự tìm kiếm một chiều trong phương pháp các hướng khả thi There are two possibilities for the result of 1-D search in M.F.D: 1. One or more constraints is active. 2. No constraint is active. 0 0 Figure 6.6: Illustration of 1-D search in method of feasible directions The two situations can be identified as: 1. Find α such that at least one constraint is active in the feasible region. Let: ⃗ x ⃗ x α S ⃗ df 2. Compete at x : ⃗ dα df n f x i f x .Sq dα i1 xi α df Sq .f x t dα αmax 128
- Chapter 6. Direct method for constrained problems df df 3. If 0, than 0 α* α max ;if 0, than α* α max . dα α max dα α max df d df 0 d max 0 max 0 Figure 6.7: Illustration of finding αmax in the feasible region. Procedure to find ⃗ 𝐭 from ⃗ 𝐪 : 𝐱 𝐱 1) Find an initial trial step length 𝛂 𝐭 , ⃗ 𝐱 ⃗𝐪 𝐱 ⃗ 𝛂𝐒 𝐪 There are some procedures can be used to predict the initial step size α (gia số) as following: a α is selected to reduce f x by a given amount ∆ : ⃗ f (x ⃗ αS⃗ f α a bα α 0→f 0 a f x ⃗ df f 0 b ⃗ S . ∇f x ⃗ dα f α f x ⃗ ⃗ S . ∇f x α ⃗ f α f x ⃗ ⃗ S . ∇f x α → ⃗ ∆ ⃗ S . ∇f x α ⃗ f (x q ) αt Sq . f(x q ) If a percentage ∆ is given: ∆ ∆f x ;∆ ⃗ 0.05 ~ 0.10 αt f xq f Sq . f xq 𝑏 α is selected such that ∆x produces same predetermined change ε: x x ⃗ ⃗ ⃗ αS , ∆x α .S , ε m ax α t .S q ,i , i 1 , 2 , , n i ε or α t max Sq,i ,i 1, 2, , n i 129
- Chapter 6. Direct method for constrained problems If ε is the percentage change of ∆x , then, x i α t .Sq,i xi xi αt .Sq,i ε max ,i 1, 2,, n i x i ε or α t Sq,i max , i 1, 2, , n i x i 2) Correcting the step size 𝛂 𝐭 : Figure 6.8: Illustration of correcting the step size αt There are three possible situations at the design with α α : a) x⃗ x ⃗ ⃗ α S is feasible and no active constraint is encountered. b) x is feasible, and some constraints are active. ⃗ A constraint tolerance ε is given to identify whether a constraint is inactive, active, or violated: Inactive constraint: g x ⃗ ε Active constraint: |g x | ⃗ ε, ε g x ⃗ ε Violated constraint: g x ⃗ ε Usually, we let ε 10 c x is in infeasible region. ⃗ A linear interpolation is required to locate α on active constraint boundary. 130
- Chapter 6. Direct method for constrained problems Figure 6.9: Illustration of A linear interpolation is required to locate 𝛼 on active constraint boundary. g α a bα g x ⃗ g α 0 a g x ⃗ g α a bα gk x t gk xq a = gk xq , b αt a g x k q g k α t 0 a bα I 0 α I αt b gk xt gk xq If several constraints are violated at x , then all α for each violated constraint g x ⃗ ⃗ should be found, and the final α is the minimum value of α , k ∈ J: α min α , k ∈ J If all the constraints are scaled properly, then the most violated constraint can be selected to find α . Usually, we scale the constraints in the range -1 ≤ g x ⃗ 0 for feasible x. ⃗ There is a special case in which the linear interpolation will fail. In this situation, the quadratic interpolation should be used to find α . The linear interpolation: g x ⃗ 0; g x⃗ 0 αI gk x q αt 0 Linear interpolation will fail in predicating α . g k x t gk x q 131
- Chapter 6. Direct method for constrained problems Quadratic interpolation to predict 𝛂 𝐈 : g α a bα cα α 0→a g α 0 g x ⃗ dgk α dg α Sq .gk α ; k b 2cα dα dα α 0→b ⃗ S . ∇g x ⃗ α α →g x ⃗ g α a bα cα c= g k x t g k x q Sq .g k x q 2 αt b b 2 4ac gk αt 0 αt 2c 6.3.2. The zigzagging phenomena in MFD Hiện tượng đường zigzag trong phương pháp tìm các hướng khả thi The zigzag problem in MFD can be solved by: (1) Use large constraint tolerance 𝜀 in identifying active constraints. (2) If a constraint is active too many times in alternative successions, it is considered as an active constraint when finding the search direction, whether or not it is truly active. Figure 6.10: The zig-zag in method of feasible directions 6.4. CPP PROGRAMS FOR METHOD OF FEASIBLE DIRECTIONS Các chương trình máy tính C++ cho phương pháp tìm kiếm các hướng khả thi 6.4.1. Direction Finding in Method of Feasible Directions For the constrained problem expressed as: 132
- Chapter 6. Direct method for constrained problems Find x, such that f (x) min (6.41) Subject to:g j x 0, j 1, 2, , n c Assume that x is a feasible design, and we are going to find a search direction ⃗ ⃗ ⃗ S that will yield an improved design. S must satisfy the conditions of usable and feasible direction: S.f 0 (6.42) S.g j 0, j J ; J = {j:g j (xq ) 0, j 1, 2,, m Where J is the set of active constraints. For any search direction {S}. If we define an artificial variable α as: α max S.f , S.g j for j J (6.43) If α ⃗ 0, then S. ∇f ⃗ 0 and S. ∇g 0 for j ∈ J. It means that {S} is a usable and feasible direction. This problem of finding the usable - feasible direction can be expressed as: Find S and α, such that f (S, α α min Subject to :S.f α (6.44) S.g j α for j J 1 Si 1,for i 1, 2, , n Substituting α by – β, the optimization problem can be expressed as: Find S and β,such that f(S, β)= β min Subject to :S.f β 0 (6.45) S. g j β 0 for j J 1 Si 1, for i 1, 2, , n If the solution of this problem, β ∗ ⃗ ∗ 0 then S is a usable feasible direction. Zoutendijk introduced “push-off” factors θ for each active constraints to push the search direction S ⃗ off the constraints boundary, and the direction finding problem is expressed as: Find S and β,such that f (S, β) β min Subject to : S.f β 0 (6.46) S.g j θ jβ 0 for j J 1 Si 1, for i 1, 2, , n In general, we use θ 1.0 for nonlinear constraints, θ 0.0 for linear constraints. In order to convert equation (6.46) to the standard form of linear programming, we let y S 1 for i 1,2, … , n and the linear problem is expressed as: 133
- Chapter 6. Direct method for constrained problems Find y and β, such that f y, β β min (a) n f Subject to : y.f β (b) i 1 x i n g (6.47) j y.g j θ jβ for j J (c) i 1 x i 0 yi 2 for i 1, 2,, n (d) Let yn+1 = β, and add n slack variables y , y , … , y , for equation (6.47-b), add one slack variable y for equation (6.47-a), and finally add n slack variables y ,y ,…,y for equation (6.47-c). The number of slack variables would be n 1 n . Then equation (6.47) can be converted to the standard form of linear programming as: g1,1 g1,2 … g1,n θ1 1 0 … 0 0 0 0 … 0 g2,1 g2,2 … g θ2 0 1 … 0 0 0 0 … 0 … … … … … … … … … … … … … … 2,n gn ,1 gn ,2 … gn ,n θnj 0 0 … 1 0 0 0 … 0 j j j f,1 f,2 … f,n 1 0 0 … 0 1 0 0 … 0 {y} = 1 0 … 0 0 0 0 … 0 0 1 0 … 0 0 1 … 0 0 0 0 … 0 0 0 1 … 0 … … … … … … … … … … … … … … 0 0 … 1 0 0 0 … 0 0 0 0 … 1 n g1,i in 1 g i 1 2,i n g n ,i = i 1 j n f ,i (6.48) i 1 2 2 2 The function fdir() in MFDUtil.CPP is developed to find the feasible direction for constrained problems. The flowchart for finding the usable-feasible direction is shown in the following figure 6.11. Example FDIR01.CPP: 15 For the following problem with given initial point 2,1 1.9365, 1 : x0 134
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tài liệu đào tạo kỹ thuật sơn - Các phương pháp chuẩn bị bề mặt, giai đoạn 1 Tập 2
41 p | 265 | 82
-
Hướng dẫn lập tiến độ thi công theo phương pháp sơ đồ ngang với phần mềm Microsoft Project
43 p | 650 | 77
-
Tìm hiểu về quy trình sản xuất muối tôm
19 p | 449 | 44
-
Tìm hiểu khả năng dùng vật liệu XADO để khôi phục bề mặt cổ trục bằng phương pháp lăn miết, chương 6
7 p | 151 | 28
-
Bài giảng Điện tử số - KS. Nguyễn Trung Hiếu
234 p | 155 | 28
-
Bài giảng Kỹ thuật điện tử: Chương 1 - Tổng quan về mạch điện các phương pháp giải mạch một chiều (DC)
44 p | 140 | 12
-
Các phương pháp gia công biến dạng: Phần 2
31 p | 15 | 5
-
Các phương pháp gia công biến dạng: Phần 1
36 p | 21 | 5
-
Tìm hiểu về thông tin di động: Phần 1
197 p | 24 | 5
-
Bài giảng Kỹ thuật số - Phần 9: Tìm hiểu về mạch đếm
17 p | 84 | 5
-
Bài giảng Kỹ thuật số - Phần 7: Tìm hiểu về Flip - Flop
15 p | 71 | 5
-
Tìm hiểu về các phương pháp thiết kế tối ưu (Optimal design methods): Phần 1
114 p | 17 | 4
-
Các phương pháp đơn giản cài đặt ứng dụng cho Android ( phần 2)
4 p | 80 | 3
-
Tìm hiểu về các phương pháp thi công xây dựng: Phần 1
177 p | 6 | 3
-
Các phương pháp quản lý hoạt động đầu tư
4 p | 76 | 2
-
Tìm hiểu về các phương pháp thi công xây dựng: Phần 2
142 p | 7 | 2
-
Tìm hiểu về phương pháp mô hình hóa dựa trên tác nhân (ABM) và ứng dụng
7 p | 3 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn