Tuyển chọn 100 bài phương trình và hệ phương trình hay và khó toán học lớp 10
lượt xem 400
download
Tài liệu ôn tập môn Toán lớp 10 gồm tuyển tập 100 bài phương trình, hệ phương trình hay và khó giúp các bạn học sinh rèn luyện kỹ năng giải toán của mình. Tài liệu hay và bổ ích. Mời các bạn...
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Tuyển chọn 100 bài phương trình và hệ phương trình hay và khó toán học lớp 10
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A & H PHƯƠNG TRÌNH TUY N CH N 100 BÀI PHƯƠNG TRÌNH 1
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A GI I PHƯƠNG TRÌNH & H PHƯƠNG TRÌNH 5x 2 + 14x − 9 − x 2 − x − 20 = 5. x + 1 1) 5 3 2) x − 15x + 45 x − 27 = 0 11 25 − =1 3) (x + 5)2 2 x (x − 2 )(4 − x ) + 4 x − 2 + 4 4 − x + 6x 3x = x 3 + 30 4 4) 3 2 x − xy + 2000 y = 0 5) y 3 − yx 2 − 500 x = 0 27 x 10 − 5x 6 + 5 864 = 0 5 6) x 2 + x −1 + − x 2 + x +1 = x 2 − x + 2 7) 12 x 2 − 48x + 64 = y 3 2 3 8) 12 y − 48 y + 64 = z 2 3 12z − 48z + 64 = x x 19 + y 5 = 1890z + z 2001 19 5 2001 9) y + z = 1890 x + x 19 5 2001 z + x = 1890 y + y 2 x + 1 = y 3 + y 2 + y 3 2 10) 2 y + 1 = z + z + z 3 2 2 z + 1 = x + x + x 11) (x − 18)(x − 7 )(x + 35)(x + 90 ) = 2001x 2 12) (2001 − x ) + (2003 − x ) = 2000 4 4 1 − x 2x + x 2 = 13) 1+ x2 x a − bx (b + c )x + x 2 = ð xu t: V i a ,b,c >0 a + x2 cx 2 14) x − 2 + 4 − x = 2 x − 5x − 1 ð xu t : b2 − a 2 b−a a +b b−a x − a + b − x = (b − a )x 2 − x − − − 2 2 2 2 2 (V i a + 2 < b ) 3 3x 2 − x + 2001 − 3 3x 2 − 7 x + 2002 − 3 6x − 2003 = 3 2002 15) 2
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A 3 8x 3 + 2001 16) 2002 = 4004x − 2001 (x − a )(x − b ) + (x − c )(x − b ) + (x − a )(x − c ) = 1 17) c(c − a )(c − b ) a (a − c )(a − b ) b(b − a )(b − c ) x Trong ñó a;b;c khác nhau và khác không ( ) 22 18) x = 1 − 1978 1 − 1978x ( ) 2 19) x x − 1 = 2 x + 2 x + .... + 2 x + 2 3x = x 20) 4 2 x 2 + x −1 + 6 1− x − 1 = 0 21) 1 − x + 2 2 2 22) 1 − x = − x 3 3 x 2 − 2 = 2 − x3 23) [ (1 + x ) − ]= 2 + (1 − x )3 3 2 1− x2 24) 1 + 1 − x 36 4 + = 28 − 4 x − 2 − y − 1 25) x−2 y −1 26) x − 10 x − 2(a − 11)x + 2(5a + 6 )x + 2a + a = 0 4 3 2 2 27) Tìm m ñ phương trình : (x ) − 1 (x + 3)(x + 5) = m 2 có 4 nghi m phân bi t x1 ; x2 ; x3 ; x4 th a mãn 1 1 1 1 + + + = −1 x1 x 2 x 3 x 4 x 5 − x 4 + 2x 2 y = 2 5 4 2 28) y − y + 2 y z = 2 Tìm nghi m dương c a phương trình 5 4 2 z − z + 2 z x = 2 2 29) 18 x − 18x x − 17 x − 8 x − 2 = 0 3 4 8 2x 8 − 1 = 1 30) 17 − x − 2 2 31) x + 2 − x = 2 x 2 − x x 4 + y 4 + z 4 = 8(x + y + z ) 32) xyz = 8 ( ) 4 2 2 x2 − 2 33) 19 + 10 x − 14 x = 5x − 38 x 2 6125 210 12x + 2+ − =0 34) 5 x 5 x 3
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A y 3 − 6 x 2 + 12 x − 8 = 0 3 2 35) x − 6z + 12z − 8 = 0 3 2 z − 6 y + 12 y − 8 = 0 ( )( ) 36) x + 3 x + 2 x + 9 x + 18 = 168 x 37) Tìm m ñ h phương trình sau có ñúng 2 nghi m. (x + y )8 = 256 8 x + y 8 = m + 2 38) x = 2 − x 3 − x + 5 − x 3 − x + 5 − x 2 − x 22 + x = x+9 39) x +1 a + x = x + a +1 (a > 1) ð xu t: x +1 40) 13 x − 1 + 9 x + 1 = 16 x 28 27 2 41) 2 . 4 27 x + 24 x + = 1+ x+6 3 2 2 42) 5x − 1 + 3 9 − x = 2 x + 3x − 1 x + y + z = 1 x+y y+z 43) x y z y + z + x = y + z + x + y +1 (x + 2)3 − 6x = 0 3 2 44) x − 3x + 2 a b − = c − xz x z b c * 45) − = a − xy Trong ñó a;b;c ∈ R + y x c a − = c − yz z y ( )( ) 2 2 46) x − 12 x − 64 x + 30 x + 125 + 8000 = 0 47) (x − 2 ) x − 1 − 2x + 2 = 0 x 1 + x 2 + ... + x n = n 48) x 1 + 8 + x 2 + 8 + ... + x n + 8 = 3n 4
- Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008 Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p For Evaluation Only. Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A 49) Cho h phương trình: n ∑ x i = n i =1 ; b > 1 .CMR:H phương trình có nghi m duy nh t x1 n ∑ x + b 2 − 1 = bn i =1 i = x2 = ...= xn = 1 3−x =x 3+x 50) bx + c = x px + q v i a; b; q; p∈ R & q 2 = −3pb. T ng quát: )( ) ( 2 51) x = 2004 + x 1− 1− x T ng quát: ax = (b + c x )(d − ) v i a;b;c;d;e là các h ng s 2 d2 − e x cho trư c. 2 8x 2 − 6x − 10 52) 4 x − 4 x − 10 = x 3 (2 + 3y ) = 1 53) ( ) x y 3 − 2 = 3 x 3 + 3xy 2 = −49 54) x 2 − 8xy + y 2 = 8 y − 17 x 3 4 3 55) 16 x + 5 = 6 . 4 x + x ( ) x 2 (x + 1) = 2 y 3 − x + 1 ( ) 2 56) y (y + 1) = 2 z − y + 1 3 ( ) 2 z (z + 1) = 2 x − z + 1 3 57) 3 3x + 1 + 3 5 − x + 3 2 x − 9 − 3 4 x − 3 = 0 T ng quát: a 1 x + b1 + 3 a 2 x + b 2 + 3 a 3 x + b 3 = 3 (a 1 + a 2 + a 3 )x + b1 + b 2 + b 3 3 x 3 + y = 2 58) y 3 + x = 2 x 6 k +3 + y = 2 (k ∈ N ) T ng quát: y 6 k +3 + x = 2 2 59) x − x − 1000 1 + 8000 x = 1000 60) x + 5 + x − 1 = 6 61) Tìm nghi m dương c a phương trình: x −1 1 1 2x + = 1− + 3 x − x x x x + 4 x (1 − x ) + 4 (1 − x ) = 1 − x + 4 x 3 + 4 x 2 (1 − x ) 2 3 62) 5
- Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008 Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p For Evaluation Only. Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A ( ) 3 3 63) x + 1 = 81x − 27 x +1 − 3 x −1 = 6 x2 −1 3 64) ( ) 2 3 65) 2 x − 3x + 2 = 3 x + 8 y 3 − 9x 2 + 27 x − 27 = 0 3 2 66) z − 9 y + 27 y − 27 = 0 3 2 x − 9z + 27 z − 27 = 0 ( ) ( ) 15 30 x 2 − 4x = 2004 30060 x + 1 + 1 67) 2 2 2 68) 5x + 14 x + 9 − x − x − 20 = 5 x + 1 y 30 2 + 4 y = 2004 x z 69) 30 2 + 4z = 2004 y x 30 2 + 4 x = 2004 z x 2 + 15 = 3 .3 x − 2 + x 2 + 8 70) 3 2 71) x − 3 3x − 3x + 3=0 y − 6x + 12 x − 8 = 0 3 2 3 2 72) z − 6 y + 12 y − 8 = 0 3 2 x − 6z + 12z − 8 = 0 3 3x 2 − x + 2002 − 3 3x 2 − 6x + 2003 − 3 5x − 2004 = 3 2003 73) 3 74) x + 1 = 3 .3 3x − 1 2 75) x − 4 x + 2 = x+2 Bài t p tương t : 2 a) 20 x + 52 x + 53 = 2x − 1 2 b) − 18x + 17 x − 8 = 1 − 5x 2 c) 18x − 37 x + 5 = 14 x + 9 4x + 9 = 7x 2 + 7x d) 28 x7 32 x 2 16 x 3 +1 128 76) 3 + 3 +3 =3 77) Cho 0 < a < c < d < b ; a + b = c + d x + a 2 + x + b2 = x + c2 + x + d2 GPT: 2 2 x 2 − 5 x + 3 + − 3x 2 + 9 x − 5 78) x − 4 x + 6 = 6
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A 2 x + x 2 y = y 2 79) 2 y + y z = z 2 2 z + z x = x x 2 − x + 19 + 7 x 2 + 8x + 13 + 13x 2 + 17 x + 7 = 3 3 (x + 2) 80) 4 − x 2 + 4x + 1 + x 2 + y 2 − 2 y − 3 = 4 x 4 − 16 + 5 − y 81) x 2 − 8x + 816 + x 2 + 10 x + 267 = 2003 82) 1 1 1 3 x + = 4 y + = 5 z + 83) x z y xy + yz + xz =1 x 2 + 21 = y − 1 + y 2 84) y 2 + 21 = x − 1 + x 2 2 = 4 x 3 − 3x 85) 1 − x x2 + x +1 − x2 − x −1 = m 86) Tìm m ñ phương trình có nghi m 87) Tìm a ñ phương trình có nghi m duy nh t 2 + x + 4 − x − 8 + 2x − x 2 = a x + y + z = 0 2 2 2 88) x + y + z = 10 7 7 7 x + y + z = 350 x + 30.4 + y − 2001 = 2121 89) x − 2001 + y + 30.4 = 2121 )( ) ( 2x 2 + 1 − 1 = x 1 + 3x + 8 2 x 2 + 1 90) 3 ( ) 2 3 91) 2 x + 2 − 5 x + 1 = 0 2 3 x + y2 + z2 = 2 3 92) xy + yz + xz = − 4 1 xyz = 8 7
- Edited by Foxit Reader Copyright(C) by Foxit Software Company,2005-2008 Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p For Evaluation Only. Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A x + x 2 − y 2 9x = x − x 2 − y2 5 93) x 5 + 3x y = 6(5 − y ) x 2 + x + 1 x 2 + 3x + 1 5 + = 94) x 2 + 2x + 1 x 2 + 4x + 1 6 25 1 1369 + + = 86 − x − 5 − y − 3 − z − 606 95) x −5 y −3 z − 606 6 10 + =4 96) 2−x 3− x 3 x 2 − 7 x + 8 + 3 x 2 − 6x + 7 − 3 2 x 2 − 13x − 12 = 3 97) 3 98) x − 6 .3 6 x + 4 − 4 = 0 3 2 x4 + x2 +1 99) x − 3x + 1 = − 3 1+ x3 2 = 100) x2 + 2 5 8
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A HƯ NG D N GI I 100 BÀI PT & HPT 1) ðK: x ≥ 5 Chuy n v r i bình phương: (x ) − x − 20 ( x + 1) 5x 2 + 14x + 9 = x 2 + 24x + 5 + 10. 2 ( x − 5)( x + 4 )( x + 1) ⇔ 4x 2 − 10x + 4 = 10. (x ) − 4x − 5 ( x + 4 ) ⇔ 2x 2 − 5x + 2 = 5. 2 (x ) ⇔ 2(x 2 − 4x − 5) + 3 ( x + 4 ) = 5. − 4x − 5 ( x + 4 ) 2 ( ) u= x 2 − 4x − 5 → .... v = ( x + 4) ( ) ( x + 3) x 4 − 3x 3 − 6x 2 + 18x − 9 = 0 4 3 2 2) GPT : x − 3x − 6x + 18x − 9 = 0 x 4 − 3x 2 ( x − 1) − 9 ( x − 1) = 0 2 ⇒ x 4 − 3x 2 y − 9y 2 = 0 ð t: x- 1 = y ⇒ 2x 2 = 3y ± 3y 5 ðK: x ≠ 0; x ≠ −5 3) ð t x+5 = y ≠ 0 → x = ( y − 5 ) 2 PT ⇔ y 4 − 10y3 + 39y 2 − 250y + 625 = 0 625 25 ⇔ y 2 + 2 − 10 y + + 39 = 0 y y 4) ðK: 2 ≤ x ≤ 4 ( x − 2) + ( 4 − x ) = 1 (x − 2) ( 4 − x ) ≤ 4 2 Áp d ng Cauchy: 6x 3x = 2 27x 3 ≤ 27 + x 3 ( ) 2 x −2 + 4 4−x ≤2 4 Áp d ng Bunhia: ( ) x x 2 − y 2 = −2000y (1) 5) ( ) − y x − y = 500x ( 2 ) 2 2 N u x = 0 ⇒ y = 0 ⇒ ( 0;0 ) là n o 9
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A 2 2 N u x ≠ 0.Rút x − y t (1) th vào (2) ta có: y ≠ 0 −2000y −y = 500y ⇒ 2 2 x = 4y x 27 x 10 − 5x 6 + 5 864 = 0 5 6) Vì x = 0 không là nghi m c a pt nên chia c 2 v cho x6 ta ñư c pt: 5 32.27 27 x 4 + =5 5 x6 2 1 x 4 + 6 = 5.5 27 x 2 x4 x4 x4 1 1 1 4 Áp d ng CauChy: x + 6 = + + + 6 + 6 ≥ 5.5 3 3 3x 27 x x x2 + x −1 + − x2 + x + 1 = x2 − x + 2 7) x 2 + x − 1 ≥ 0 ðK: − x 2 + x + 1 ≥ 0 Áp d ng Cauchy: x2 + x −1+1 x2 + x x2 + x −1 ≤ = 2 2 − x + x +1+1 − x2 + x + 2 2 − x2 + x +1 ≤ = 2 2 2 2 x + x −1 + − x + x +1 ≤ x +1 T PT ⇒ x − x + 2 ≤ x + 1 ⇔ (x − 1) ≤ 0 2 2 12 x 2 − 48x + 64 = y 3 (1) 8) 12 y − 48 y + 64 = z (2 ) 2 3 2 12z − 48z + 64 = x (3) 3 G/s (x; y; z) là nghi m c a h phương trình trên thì d th y ( y; z; x); (z; y; x) cũng là nghi m c a h do ñó có th gi s : x = max{x; y; z} ( ) 12 x 2 − 48x + 64 =12 x 2 − 4x + 4 + 16 ≥ 16 T ⇒ y 3 ≥ 16 ⇒ y ≥ 2 Tương t x ≥ 2 ; z ≥ 2 Tr (1) cho (3): y3 – x3 = 12(x2 – z2) – 48(x-z) ⇔ y3 – x3 = 12(x– z)(x+z-4) VT ≤ 0; VT ≥ 0 . D u “=” x y ra ⇔ x = y = z 10
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A x 19 + y 5 = 1890z + z 2001 19 5 2001 9) y + z = 1890 x + x 19 5 2001 z + x = 1890 y + y Ta ñi cm h trên có nghi m duy nh t x = y = z Gi s (x,y,z) là nghi m c a h ⇒ ( − x; − y; −z) cũng là nghi m c a h ⇒ không m t tính t ng quát ta gi s ít nh t 2 trong 3 s x, y, z không âm. Ví d : x ≥ 0; y ≥ 0 . T phương trình (1) ⇒ z ≥ 0 . C ng t ng v phương trình ta có: ( z2001 + 1890z ) + ( x 2001 + 1890x ) + ( y2001 + 1890z ) = ( z19 + z5 ) + ( x19 + x 5 ) + ( y19 + y5 ) . Ta có: 0 < t ≤ 1 ⇒ t 2001 + 1890t ≥ t19 + t 5 t 2000 + 1890 ≥ t18 + t 4 (ñúng) t > 1 ⇒ t 2001 + 1890t > t19 + t 5 Th t v y: t 2001 + 1890 > 1 + t 2000 ≥ 2t1000 cô si > t18 + t 4 (ñpcm) V yx=y=z −1 −1 −1 ( 3) ⇒ 2z + 1 < 0 ⇒ z < ⇒y< ⇒x< Bài 10: + N u x < 0 t 2 2 2 C ng 3 phương trình v i nhau: ( x + 1) ( x − 1) + ( y + 1) ( y − 1) + ( z + 1) ( z − 1) = 0 (*) 2 2 2 1 1 1 V i x < − ; y < − ;z < − ⇒ (*) vô nghi m 2 2 2 ⇒ x > 0; y > 0;z > 0 G i ( x; y;z ) là nghi m c a h phương trình, không m t tính t ng quát ta gi s : x = max {x;y;z} Tr (1) cho (3) ta ñư c: 2 ( x − z ) = ( y − x ) ( x 2 + y 2 + xy + x + y + 1) VT ≤ 0 d u " = " ⇔ x = y = z ⇒ .... VP ≥ 0 Bài 11: PT ⇔ ( x 2 + 17x − 630 ) ( x 2 + 83x − 630 ) = 2001x 2 . Do x = 0 không ph i là nghi m c a phương trình ⇒ chia 2 v phương trình cho x 2 630 630 Ta có: x + 17 − x + 83 − = 2001 x x 630 ð t: x − =t x Bài 12: t/d: pt: ( x + a ) + ( x + b ) = c 4 4 a+b ð t: y = x + 2 11
- Onbai.org - eBook.here.vn T i mi n phí eBook, ð thi tr c nghi m, Tài li u h c t p Tuy n ch n 100 bài phương trình, h pt hay & khó l p 10 - NTP - Hoa L A Bài 13: ðk: 0 < x ≤ 1 1− x 2x − 1 PT ⇔ = 1+ (*) 1+ x2 x 1 + x = là nghi m pt (*) 2 VP > 1 1 + < x ≤1 : VT < 1 2 1 VT>1 + 0
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Tuyển chọn 100 bài phương trình, hệ phương trình nâng cao lớp 10
12 p | 6559 | 916
-
Tuyển chọn 100 bài phương trình, hệ phương trình hay và khó lớp 10
14 p | 3053 | 873
-
Tuyển chọn 100 bài phương trình và hệ phương trình
12 p | 567 | 213
-
Tuyển chọn 100 bài phương trình, hệ pt hay & khó lớp 10
14 p | 467 | 149
-
Đề thi tuyển sinh cao đẳng năm 2011 môn tiếng Pháp khối D mã 573
5 p | 134 | 21
-
Đề Thi Thử Đại Học Môn Vật Lý Khối A- đề số 2
6 p | 78 | 19
-
Đè thi thử đại học môn vật lý khối A -số 8
6 p | 114 | 14
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn