YOMEDIA
ADSENSE
Application of Taguchi-grey multi responses optimization on process parameters in electro erosion
69
lượt xem 3
download
lượt xem 3
download
Download
Vui lòng tải xuống để xem tài liệu đầy đủ
(BQ) From the experimental results, it has been found that the electrical conductivity of the tool electrode has the most influencing nature on the machining characteristics in EDM process. The optimal combination of the input process parameters has been obtained using Taguchi-grey relational analysis.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Application of Taguchi-grey multi responses optimization on process parameters in electro erosion
Measurement 58 (2014) 495–502<br />
<br />
Contents lists available at ScienceDirect<br />
<br />
Measurement<br />
journal homepage: www.elsevier.com/locate/measurement<br />
<br />
Application of Taguchi-grey multi responses optimization<br />
on process parameters in electro erosion<br />
T. Muthuramalingam a,⇑, B. Mohan b<br />
a<br />
b<br />
<br />
Department of Mechatronics Engineering, SRM University, Kattankulathur, India<br />
Department of Mechanical Engineering, Anna University, Chennai, India<br />
<br />
a r t i c l e<br />
<br />
i n f o<br />
<br />
Article history:<br />
Received 3 April 2014<br />
Received in revised form 4 September 2014<br />
Accepted 11 September 2014<br />
Available online 19 September 2014<br />
Keywords:<br />
Current<br />
Duration<br />
EDM<br />
Optimization<br />
Spark<br />
Taguchi<br />
<br />
a b s t r a c t<br />
Convention Taguchi method deals with only single response optimization problems. Since<br />
the electrical discharge machining process involved with many response parameters,<br />
Taguchi method alone cannot help to obtain optimal process parameters in such process.<br />
In the present work, an endeavor has been made to derive optimal combination of electrical process parameters in electro erosion process using grey relational analysis with<br />
Taguchi method. This multi response optimization of the electrical discharge machining<br />
process has been conducted with AISI 202 stainless steel with different tool electrodes such<br />
as copper, brass and tungsten carbide. Gap voltage, discharge current and duty factor have<br />
been used as electrical excitation parameters with different process levels. Taguchi L27<br />
orthogonal table has been assigned for conducting experiments with the consideration<br />
of interactions among the input electrical process parameters. Material removal rate,<br />
electrode wear rate and surface roughness have been selected as response parameters.<br />
From the experimental results, it has been found that the electrical conductivity of the tool<br />
electrode has the most influencing nature on the machining characteristics in EDM process.<br />
The optimal combination of the input process parameters has been obtained using<br />
Taguchi-grey relational analysis.<br />
Ó 2014 Elsevier Ltd. All rights reserved.<br />
<br />
1. Introduction<br />
1.1. Electro erosion process<br />
Electro erosion process or electrical discharge machining (EDM) is removing material from the work piece by<br />
thermal erosion owing to the spark energy happened<br />
between two conductors. The ionization of dielectric<br />
medium has the important role in such process. Ho and<br />
Newman narrated about the mechanism involved in thermal erosion process [1]. This process can create crater in<br />
any conducting material by thermal energy irrespective<br />
⇑ Corresponding author. Tel.: +91 44 22516155.<br />
E-mail addresses: muthu1060@gmail.com (T. Muthuramalingam),<br />
mohan@mitindia.edu (B. Mohan).<br />
http://dx.doi.org/10.1016/j.measurement.2014.09.029<br />
0263-2241/Ó 2014 Elsevier Ltd. All rights reserved.<br />
<br />
of hardness of the material. This causes less tool wear than<br />
the conventional manufacturing processes. In this process,<br />
two conductors i.e. tool and workpiece are separated by an<br />
isolating region called the dielectric medium. With the<br />
presence of the dielectric medium, the material is removed<br />
by producing precisely controlled electrical discharges<br />
occurring between the tool and the work piece. The tool<br />
electrode does not make contact with the work piece and<br />
it is separated by the distance required for electrical discharge sparking, known as ‘spark gap’. The number of<br />
sparks depends on the DC pulse frequency [2]. The air<br />
gap is filled by the dielectric medium. Whenever the spark<br />
gap is sufficient to ionize the dielectric medium, there is an<br />
electricity flow in a closest point between tool and work<br />
piece. The electrically conductive tool materials such as<br />
graphite, copper, brass, tungsten carbide and copper<br />
<br />
496<br />
<br />
T. Muthuramalingam, B. Mohan / Measurement 58 (2014) 495–502<br />
<br />
Table 1<br />
Chemical composition of AISI 202 stainless steel.<br />
Elements<br />
<br />
C<br />
<br />
Si<br />
<br />
Cu<br />
<br />
Mn<br />
<br />
P<br />
<br />
S<br />
<br />
Mo<br />
<br />
Cr<br />
<br />
Sn<br />
<br />
Ni<br />
<br />
W<br />
<br />
Al<br />
<br />
Ti<br />
<br />
Fe<br />
<br />
% Composition<br />
<br />
0.05<br />
<br />
0.35<br />
<br />
1.93<br />
<br />
8.76<br />
<br />
0.03<br />
<br />
0.011<br />
<br />
0.22<br />
<br />
16.04<br />
<br />
0.09<br />
<br />
1.56<br />
<br />
0.17<br />
<br />
0.07<br />
<br />
0.011<br />
<br />
Remain<br />
<br />
tungsten can be utilized as the tool electrodes in electrical<br />
discharge machining process [3]. A controlled DC pulse<br />
(30–100 V) is applied between tool and workpiece separated by small air gap (0.002–2 mm) with high frequency<br />
(100 kHz–10 MHz) [4]. When the dielectric medium<br />
reaches its breakdown voltage, the ionization effect occurs<br />
in the air gap. This ionization produces a initiation of spark<br />
between tool and workpiece. It leads to dissipation of<br />
higher amount of heat in terms of 8000–12000 °C. Because<br />
of this higher thermal energy, the material is melted and<br />
vaporized. The melted material in the air gap can be<br />
removed by the flushing process.<br />
1.2. Importance of multi response optimization in electro<br />
erosion process<br />
Due to the random nature of such machining process, it<br />
is very essential to optimize the process parameters in<br />
EDM process. Conventional Taguchi method deals with<br />
single response optimization only. It may give different<br />
set of optimal combinations for multiple responses. It is<br />
needed to introduce multi response optimization technique in the process. In this approach, the multiple<br />
responses can be converted into single normalized<br />
response. Then it is easy to obtain the optimal set of<br />
process parameters. Lin et al. discussed about need of optimizing non linear machining process [5]. Lin et al.<br />
<br />
explained about the methodology for finding influencing<br />
process parameters with Taguchi method while machining<br />
high speed steel [6]. Panda proposed the innovative<br />
modeling of electro erosion process [7]. Mukherjee and<br />
Chakraborty depicted the biogeography based optimization algorithm for selecting thermal erosion process<br />
parameters [8]. Chakravorty et al. discussed about need<br />
of optimizing the electrical process parameters involved<br />
in EDM process [9]. Panda and Yadava explained about<br />
the multi response optimization in chemical spark erosion<br />
process using genetic algorithm [10]. Jailani et al. obtained<br />
the optimal set of sintering parameters in grinding process<br />
using Taguchi method with grey technique [11]. Patel et al.<br />
applied the response surface methodology technique in<br />
machining process for optimization purpose [12]. Meena<br />
and Azad discussed about grey relational analysis in thermal erosion process [13]. Somashekhar et al. described<br />
about the optimization technique in EDM process using<br />
artificial intelligence and genetic techniques [14].<br />
From the above literatures, it is clearly understood that<br />
only multi response optimization technique can give better<br />
optimal set of process parameters [15]. It is very clear that<br />
only few researches have been carried out in EDM process<br />
for optimizing electrical process parameters. While<br />
reviewing the literatures, it has been also found that<br />
interactions have not been taken into account, in case of<br />
electrical parameters optimization in EDM process. Since<br />
<br />
Table 2<br />
Orthogonal table L27 for responses.<br />
Trial no.<br />
<br />
Voltage (V)<br />
<br />
Current (A)<br />
<br />
Duty factor<br />
<br />
Tool<br />
<br />
MRR (mm3/min)<br />
<br />
SR (lm)<br />
<br />
EWR (mm3/min)<br />
<br />
1.<br />
2.<br />
3.<br />
4.<br />
5.<br />
6.<br />
7.<br />
8.<br />
9.<br />
10.<br />
11.<br />
12.<br />
13.<br />
14.<br />
15.<br />
16.<br />
17.<br />
18.<br />
19.<br />
20.<br />
21.<br />
22.<br />
23.<br />
24.<br />
25.<br />
26.<br />
27.<br />
<br />
40<br />
40<br />
40<br />
40<br />
40<br />
40<br />
40<br />
40<br />
40<br />
60<br />
60<br />
60<br />
60<br />
60<br />
60<br />
60<br />
60<br />
60<br />
70<br />
70<br />
70<br />
70<br />
70<br />
70<br />
70<br />
70<br />
70<br />
<br />
9<br />
9<br />
9<br />
12<br />
12<br />
12<br />
15<br />
15<br />
15<br />
9<br />
9<br />
9<br />
12<br />
12<br />
12<br />
15<br />
15<br />
15<br />
9<br />
9<br />
9<br />
12<br />
12<br />
12<br />
15<br />
15<br />
15<br />
<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
0.4<br />
0.6<br />
0.8<br />
<br />
WC<br />
Br<br />
Cu<br />
Br<br />
Cu<br />
WC<br />
Cu<br />
WC<br />
Br<br />
Br<br />
Cu<br />
WC<br />
Cu<br />
WC<br />
Br<br />
WC<br />
Br<br />
Cu<br />
Cu<br />
WC<br />
Br<br />
WC<br />
Br<br />
Cu<br />
Br<br />
Cu<br />
WC<br />
<br />
0.783<br />
4.896<br />
8.097<br />
4.673<br />
8.811<br />
0.971<br />
7.142<br />
0.982<br />
6.562<br />
4.328<br />
8.323<br />
1.157<br />
7.566<br />
1.128<br />
8.862<br />
0.973<br />
7.769<br />
15.485<br />
9.363<br />
1.111<br />
10.647<br />
1.135<br />
8.453<br />
16.621<br />
7.865<br />
13.803<br />
1.568<br />
<br />
0.326<br />
3.724<br />
5.286<br />
5.523<br />
5.604<br />
0.725<br />
5.124<br />
0.731<br />
12.458<br />
3.789<br />
4.464<br />
0.618<br />
3.592<br />
0.674<br />
10.235<br />
0.595<br />
10.357<br />
10.562<br />
3.125<br />
0.595<br />
8.934<br />
0.484<br />
8.128<br />
8.159<br />
7.653<br />
8.364<br />
0.905<br />
<br />
0.0157<br />
1.3219<br />
0.9716<br />
1.2617<br />
1.0573<br />
0.0194<br />
0.857<br />
0.0196<br />
1.7717<br />
1.1686<br />
0.9988<br />
0.0231<br />
0.9079<br />
0.226<br />
2.3927<br />
0.0195<br />
2.0976<br />
1.85282<br />
1.1236<br />
0.0222<br />
2.8747<br />
0.0227<br />
2.2823<br />
1.9945<br />
2.1236<br />
1.6564<br />
0.0314<br />
<br />
T. Muthuramalingam, B. Mohan / Measurement 58 (2014) 495–502<br />
<br />
the electrical parameters have relations between them, it is<br />
important to consider the interactions effect among those<br />
parameters. In this present paper, interactions effects<br />
between the process parameters have been taken into<br />
account for designing orthogonal table. L27 orthogonal<br />
table based Taguchi design of experiment with grey relational analysis methodology has been utilized to perform<br />
multi response optimization in thermal erosion process.<br />
In the aerospace engineering and auto motive engineering<br />
field, surface quality with high material rate is the<br />
favorable one. This multi response optimization can be<br />
adopted for such situations. The main aim of this work<br />
on machinability of AISI 202 stainless steel in EDM process<br />
with different process parameters are as follows:<br />
1. To analyze the effect of process parameters on machining characteristics.<br />
2. To find the optimal combination of input process<br />
parameters for obtaining better multiple response<br />
parameters.<br />
3. To identify the most influencing electrical process<br />
parameter in thermal erosion process.<br />
2. Experiments and methods<br />
In this present study, AISI 202 stainless steel has been<br />
used as the work material. It is widely used in automobile<br />
industries and railway tracks. The stainless steel with<br />
complicated shapes can be easily machined using EDM<br />
process. The chemical composition of that material is<br />
shown in Table 1. Copper, brass and tungsten carbide have<br />
been selected as the tool electrodes due to their various<br />
electrical conductivity. Owing to the uniform energy distribution, the iso current pulse generator has been used for<br />
applying pulses between tool and work piece. Kerosene<br />
has been used as dielectric medium in EDM process. It<br />
has been utilized for insulating purpose and flushing process. Since the discharge energy depends on gap voltage,<br />
duty factor and discharge current, they have been selected<br />
as electrical input process parameters with different types<br />
of tool electrode [2]. Material removal rate (MRR), electrode wear rate (EWR) and surface roughness (Ra) have<br />
<br />
497<br />
<br />
been selected as the response parameters. 40 V, 60 V and<br />
70 V have been selected as gap voltage ranges. Discharge<br />
current has been chosen as 9 A, 12 A and 15 A with duty<br />
factor of 0.4, 0.6 and 0.8. Material removal rate and electrode wear has been calculated on weight difference of<br />
the material during the machining process. The average<br />
surface roughness has been computed by SE1200 surfcoder<br />
surface roughness tester with cutoff length of 0.8 mm.<br />
3. Taguchi method<br />
3.1. Design of experiments<br />
Due to its simplicity and easy adaptability, Taguchi<br />
method can be adopted for optimizing the process<br />
variables. This method provides the desired information<br />
from the minimum number of trials with different number<br />
of levels. The least number of trials can be calculated as per<br />
following equation<br />
<br />
DOF ¼ ðP À 1Þ ðFÞ þ ðP À 1Þ ðP À 1Þ ðQ Þ<br />
þ 1 for the average<br />
<br />
ð1Þ<br />
<br />
where DOF is degree of freedom, F is number of independent variables, p is their levels, and Q is number of interactions. The number of trials should be larger than or equal to<br />
DOF for conducting experiments in any process. Since four<br />
input factors have been selected with three interfaces in<br />
the present study, L27 orthogonal table has been chosen<br />
as per the Taguchi design of experiments. Table 2 shows<br />
the L27 orthogonal table with input parameter levels and<br />
response values in EDM process.<br />
3.2. Selection of quality characteristics level<br />
The response in the each trial has to be transformed<br />
into S/N ratio to determine quality characteristics. Since<br />
the MRR has to be maximized, it is chosen as superior<br />
the better type of quality characteristics. Hence the S/N<br />
ratio for this response has been computed from the following equation.<br />
<br />
S=N ratio ¼ À10 Ã logð1=xÞRð1=Y 2 Þ<br />
nj<br />
<br />
ð2Þ<br />
<br />
Surface roughness and TWR are smaller the better type<br />
and their S/N ratios have been computed from the<br />
following equation.<br />
<br />
S=N ratio ¼ À10 Ã logð1=xÞRY 2<br />
nj<br />
<br />
ð3Þ<br />
<br />
where x is number of experimental replication and Ynj is<br />
response of nth trial of jth dependent level.<br />
4. Grey relational optimization<br />
Grey relational technique is used for solving interrelationships among the multiple responses. This analysis<br />
consists of following rules.<br />
<br />
Fig. 1. SEM micro structure image of crater in EDM process.<br />
<br />
Step 1: Transform the responses into the S/N ratio Ynj<br />
using the appropriate equations depending on the<br />
quality characteristics.<br />
<br />
498<br />
<br />
T. Muthuramalingam, B. Mohan / Measurement 58 (2014) 495–502<br />
Table 3<br />
Signal to noise ratio with their normalized value for various response parameters.<br />
<br />
1.<br />
2.<br />
3.<br />
4.<br />
5.<br />
6.<br />
7.<br />
8.<br />
9.<br />
10.<br />
11.<br />
12.<br />
13.<br />
14.<br />
15.<br />
16.<br />
17.<br />
18.<br />
19.<br />
20.<br />
21.<br />
22.<br />
23.<br />
24.<br />
25.<br />
26.<br />
27.<br />
<br />
Material removal rate (mm3/min)<br />
<br />
Surface roughness (lm)<br />
<br />
S/N ratio<br />
<br />
Trial no.<br />
<br />
Electrode wear rate (mm3/min)<br />
<br />
Normalized S/N ratio<br />
<br />
S/N ratio<br />
<br />
Normalized S/N ratio<br />
<br />
S/N ratio<br />
<br />
Normalized S/N ratio<br />
<br />
À2.124765<br />
13.796828<br />
18.166483<br />
13.391916<br />
18.900504<br />
À0.255615<br />
17.076397<br />
À0.15777<br />
16.340725<br />
12.725745<br />
18.405598<br />
1.2666672<br />
17.577327<br />
1.046182<br />
18.950635<br />
À0.237743<br />
17.807302<br />
23.798224<br />
19.4283<br />
0.9142812<br />
20.544545<br />
1.0999172<br />
18.540217<br />
24.413143<br />
17.913975<br />
22.79947<br />
3.9069212<br />
<br />
0<br />
0.599956605<br />
0.764613691<br />
0.584698712<br />
0.792273039<br />
0.070433193<br />
0.723537135<br />
0.074120189<br />
0.695815568<br />
0.559596108<br />
0.773624013<br />
0.127795762<br />
0.742413145<br />
0.119487451<br />
0.794162069<br />
0.071106653<br />
0.751079076<br />
0.976828663<br />
0.812161436<br />
0.114517172<br />
0.854223704<br />
0.1215123<br />
0.778696737<br />
1<br />
0.755098689<br />
0.939193653<br />
0.227285669<br />
<br />
9.735648<br />
À11.4202<br />
À14.4625<br />
À14.8435<br />
À14.97<br />
2.79324<br />
À14.1922<br />
2.721652<br />
À21.909<br />
À11.5705<br />
À12.9945<br />
4.18023<br />
À11.1067<br />
3.426802<br />
À20.2018<br />
4.509661<br />
À20.3047<br />
À20.4749<br />
À9.897<br />
4.509661<br />
À19.0209<br />
6.303093<br />
À18.1997<br />
À18.2327<br />
À17.6766<br />
À18.4483<br />
0.867028<br />
<br />
0<br />
0.66854406<br />
0.764685111<br />
0.776723725<br />
0.78072003<br />
0.219386486<br />
0.756141463<br />
0.221648714<br />
1<br />
0.673293636<br />
0.718293081<br />
0.175556306<br />
0.658638218<br />
0.199365338<br />
0.946049548<br />
0.165146009<br />
0.949301996<br />
0.954681855<br />
0.620409759<br />
0.165146009<br />
0.908733981<br />
0.108471904<br />
0.882781881<br />
0.883826758<br />
0.866253348<br />
0.890638078<br />
0.280256541<br />
<br />
36.08201<br />
À2.42397<br />
0.25025<br />
À2.01912<br />
À0.48396<br />
34.24397<br />
1.340384<br />
34.15488<br />
À4.9678<br />
À1.35332<br />
0.010429<br />
32.72776<br />
0.83924<br />
12.91783<br />
À7.57776<br />
34.19931<br />
À6.43445<br />
À5.35666<br />
À1.01223<br />
33.07294<br />
À9.17185<br />
32.87948<br />
À7.16745<br />
À5.99668<br />
À6.54145<br />
À4.3833<br />
30.06141<br />
<br />
0<br />
0.850888345<br />
0.791794559<br />
0.841942147<br />
0.80801891<br />
0.040616305<br />
0.767705262<br />
0.042584907<br />
0.907100824<br />
0.827229492<br />
0.797094009<br />
0.07412074<br />
0.77877932<br />
0.511871889<br />
0.964774607<br />
0.04160313<br />
0.939510209<br />
0.915693702<br />
0.819692389<br />
0.066493101<br />
1<br />
0.070768044<br />
0.955707747<br />
0.9298365<br />
0.941874667<br />
0.894184815<br />
0.13304065<br />
<br />
Table 4<br />
Grey relational co-efficient with their grade and rank.<br />
Trial<br />
no.<br />
1.<br />
2.<br />
3.<br />
4.<br />
5.<br />
6.<br />
7.<br />
8.<br />
9.<br />
10.<br />
11.<br />
12.<br />
13.<br />
14.<br />
15.<br />
16.<br />
17.<br />
18.<br />
19.<br />
20.<br />
21.<br />
22.<br />
23.<br />
24.<br />
25.<br />
26.<br />
27.<br />
<br />
Grey relational coefficient<br />
MRR<br />
<br />
SR<br />
<br />
EWR<br />
<br />
0.3333<br />
0.5555<br />
0.6799<br />
0.5462<br />
0.7064<br />
0.3497<br />
0.6439<br />
0.3506<br />
0.6217<br />
0.5316<br />
0.6883<br />
0.3643<br />
0.6599<br />
0.3621<br />
0.7083<br />
0.3499<br />
0.6676<br />
0.9557<br />
0.7269<br />
0.3608<br />
0.7742<br />
0.3627<br />
0.6931<br />
1<br />
0.6712<br />
0.8915<br />
0.3928<br />
<br />
0.3333<br />
0.6013<br />
0.6799<br />
0.6912<br />
0.6951<br />
0.3904<br />
0.6721<br />
0.3911<br />
1<br />
0.6048<br />
0.6396<br />
0.3775<br />
0.5942<br />
0.3844<br />
0.9026<br />
0.3745<br />
0.9079<br />
0.9168<br />
0.5684<br />
0.3745<br />
0.8456<br />
0.3593<br />
0.8100<br />
0.8114<br />
0.7889<br />
0.8205<br />
0.4099<br />
<br />
0.3333<br />
0.7702<br />
0.7060<br />
0.7598<br />
0.7225<br />
0.3426<br />
0.6827<br />
0.3430<br />
0.8433<br />
0.7431<br />
0.7113<br />
0.3506<br />
0.6932<br />
0.5060<br />
0.9341<br />
0.3428<br />
0.8920<br />
0.8557<br />
0.7349<br />
0.3487<br />
1<br />
0.3498<br />
0.9186<br />
0.8769<br />
0.8958<br />
0.8253<br />
0.3657<br />
<br />
Grey<br />
relational<br />
grade<br />
<br />
Rank<br />
<br />
0.3333<br />
0.6424<br />
0.6886<br />
0.6658<br />
0.7081<br />
0.3609<br />
0.6663<br />
0.3616<br />
0.8217<br />
0.6266<br />
0.6798<br />
0.3642<br />
0.6492<br />
0.4175<br />
0.8484<br />
0.3558<br />
0.8225<br />
0.9094<br />
0.6768<br />
0.3614<br />
0.8733<br />
0.3573<br />
0.8073<br />
0.8961<br />
0.7853<br />
0.8458<br />
0.3895<br />
<br />
27<br />
17<br />
11<br />
15<br />
10<br />
24<br />
14<br />
22<br />
7<br />
18<br />
12<br />
21<br />
16<br />
19<br />
4<br />
26<br />
6<br />
1<br />
13<br />
23<br />
3<br />
25<br />
8<br />
2<br />
9<br />
5<br />
20<br />
<br />
Table 5<br />
Average grey relational grade for each input parameters.<br />
Factor<br />
Control factor<br />
notation<br />
<br />
Average grey relational<br />
grade<br />
Level 1<br />
<br />
V<br />
I<br />
DF<br />
Tool<br />
<br />
Gap voltage (V)<br />
Discharge<br />
current (A)<br />
Duty factor<br />
Tool material<br />
<br />
Level 2<br />
<br />
Level 3<br />
<br />
0.5832<br />
0.5829<br />
<br />
0.6304<br />
0.6345<br />
<br />
0.6659<br />
0.6620<br />
<br />
0.0827<br />
0.0791<br />
<br />
0.5685<br />
0.7663<br />
<br />
0.6836<br />
0.3668<br />
<br />
0.6270<br />
0.7467<br />
<br />
0.1151<br />
0.3995<br />
<br />
Total mean grey relational grade = 0.6265.<br />
<br />
Z nj ¼ ðY nj À min Y nj Þ=ðmax Y nj À min Y nj Þ<br />
½for larger the better case<br />
<br />
ð4Þ<br />
<br />
Z nj ¼ ðmax Y nj À Y nj Þ=ðmax Y nj À min Y nj Þ<br />
½for smaller the better case<br />
<br />
ð5Þ<br />
<br />
where Znj is the normalized value of nth trial for jth dependent response.<br />
Step 3: Compute the grey co-efficient (GC) for the<br />
normalized S/N ratio values as per following equation<br />
<br />
GCnj ¼ ðWmin þ dWmax Þ=ðWnj þ dWmax Þ<br />
Step 2: Normalize the S/N ratio to distribute the data<br />
evenly and scale it into acceptable range for further<br />
analysis by following equations.<br />
<br />
Max–min<br />
<br />
ð6Þ<br />
<br />
where GC is the grey co-efficient for nth trial of jth dependent response, d is the quality loss and W is the distinctive<br />
co efficient which has value from 0 to 1.<br />
<br />
T. Muthuramalingam, B. Mohan / Measurement 58 (2014) 495–502<br />
<br />
499<br />
<br />
5. Results and discussion<br />
5.1. Computation of S/N ratio and grey relational grade<br />
<br />
Fig. 2. Response graph of average grey relational grade.<br />
<br />
Step 4: Compute grey relation grade by following equation<br />
<br />
Gn ¼ ð1=Q ÞRGCnj<br />
<br />
ð7Þ<br />
<br />
Step 5: Utilize response graph method to select optimal<br />
levels of the input factors based on maximum average<br />
Gn value.<br />
<br />
Fig. 1 shows the surface topography of machined<br />
workpiece using EDM process which has been taken by<br />
scanning electron microscope (SEM) with the input parameter settings of trail number 27. Owing to the higher discharge energy dissipation, larger crater has been<br />
observed [3]. Table 3 depicts the signal to noise ratio with<br />
their normalized value for various response parameters.<br />
MRR has been assumed as higher the best quality whereas<br />
EWR and Ra have been considered as smaller the better<br />
quality characteristics. Since this study has been contained<br />
with both the quality characteristics, the distinguishing<br />
co-efficient value has been taken as 0.5 [11].<br />
The values of grey relational components with their<br />
rank of all the experiments are furnished in Table 4. The<br />
higher value of grey relational grade indicates the better<br />
multi response characteristics during the machining process. Therefore, it has been observed that experiment trial<br />
number 18 has the optimal parameters setting among the<br />
<br />
Fig. 3. Effects of process parameters on material removal rate (MRR).<br />
<br />
ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:
Báo xấu
LAVA
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn