intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Effect and Optimization of Machine Process Parameters on MRR for EN19 & EN41 materials using Taguchi

Chia sẻ: Đăng Xuân Phương | Ngày: | Loại File: PDF | Số trang:7

38
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

(BQ) The present work deals with the comparison of the MRR for EN19 and EN41 material in a die sinking EDM machine. The various input factors like Pulse ON time, Pulse OFF time, Discharge current and voltage were considered as the input processing parameters, while the MRR is considered as the output. Optimization using Taguchi method was performed to predict the best combination of inputs towards maximum output. A comparison was done to obtain the effect of these input parameters over the MRR for both the material, and simultaneously the impact of the carbon percentage over the MRR was investigated.

Chủ đề:
Lưu

Nội dung Text: Effect and Optimization of Machine Process Parameters on MRR for EN19 & EN41 materials using Taguchi

Available online at www.sciencedirect.com<br /> <br /> ScienceDirect<br /> Procedia Technology 14 (2014) 204 – 210<br /> <br /> 2nd International Conference on Innovations in Automation and Mechatronics Engineering,<br /> ICIAME 2014<br /> <br /> Effect and Optimization of Machine Process Parameters on MRR<br /> for EN19 & EN41 materials using Taguchi<br /> tool steel<br /> <br /> Vikasa, Shashikanta, A.K.Royb and Kaushik Kumarb*<br /> b<br /> <br /> a<br /> Research Scholar, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India<br /> Associate Professor, Department of Mechanical Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India<br /> <br /> Abstract<br /> <br /> The present work deals with the comparison of the MRR for EN19 and EN41 material in a die sinking EDM<br /> machine. The various input factors like Pulse ON time, Pulse OFF time, Discharge current and voltage were<br /> considered as the input processing parameters, while the MRR is considered as the output. Optimization using<br /> Taguchi method was performed to predict the best combination of inputs towards maximum output. A comparison<br /> was done to obtain the effect of these input parameters over the MRR for both the material, and simultaneously the<br /> impact of the carbon percentage over the MRR was investigated. It was found that the Discharge current in case of<br /> the EN41 material and EN19 material had a larger impact as compare to other processing parameters on the MRR. A<br /> relative study of the carbon composition for both the material was also done.<br /> © 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license<br /> © 2014 The Authors. Published by Elsevier Ltd.<br /> (http://creativecommons.org/licenses/by-nc-nd/3.0/).<br /> Selection and/or peer-review under responsibility of the Organizing Committee of ICIAME 2014.<br /> Peer-review under responsibility of the Organizing Committee of ICIAME 2014.<br /> Keywords: EN19, EN41, EDM, MRR,Taguchi, Design of Experiments, Optimization<br /> <br /> * Corresponding author. Tel.: +91-9431597463.<br /> E-mail address: kkumar@bitmesra.ac.in<br /> <br /> 1. Introduction<br /> In an EDM process, choosing the correct parameter for finding out the Optimized value of MRR is very important.<br /> Different input parameters like Pulse-ON time, Pulse-OFF time, Discharge current and Voltage affects the MRR for<br /> both EN19 and EN41 material in a different manner. Apart from these input parameters, there are many other<br /> parameters, which affect the MRR differently. They may be flushing pressure, feed rate, etc. A lot of work has been<br /> carried out in this field for the optimization of the MRR with different materials and in the presence of different<br /> <br /> 2212-0173 © 2014 Elsevier Ltd. This is an open access article under the CC BY-NC-ND license<br /> (http://creativecommons.org/licenses/by-nc-nd/3.0/).<br /> Peer-review under responsibility of the Organizing Committee of ICIAME 2014.<br /> doi:10.1016/j.protcy.2014.08.027<br /> <br /> Vikas et al. / Procedia Technology 14 (2014) 204 – 210<br /> <br /> methods. Vikas et al (2013) carried out the optimization of the MRR for EN41 material based on the 4 input<br /> parameters like the pulse on time, pulse off time, discharge current and gap voltage. He found out that the current<br /> along with the pulse-off time had a larger impact over the MRR followed by some of the interaction plot, while the<br /> affect of the other parameters were negligible. Kamal Hassan et al (2012) carried out the same optimization<br /> technique using Taguchi to optimize the MRR for medium brass alloy in CNC turning machine. He used the various<br /> input parameters like cutting speed, depth of cut, feed, etc to optimize the MRR. He found that the cutting speed and<br /> the feed rate had significant effect over the MRR followed by their interaction. He found that the cutting speed and<br /> the feed rate had direct effect over the MRR, as they increased directly with them. Similarly, Kuldeep ojha et al<br /> (2010) and AKM Asif Iqbal et al (2010) also carried out the improvement of the MRR on the different input<br /> parameters. Many researcher (Bhaduri et al (2009), Belgassim and Abusada (2012), Ikram et al (2013), Natrajan<br /> and Arunachalam (2011), Tiwari (2013), Sanchez et al (2002), Singh et al (2004), Kurnia et al (2008), Jahan et al<br /> (2009), and Antony (2001)) have worked with different materials and on different non conventional machines using<br /> different parameters to obtain most optimized value in order to economize the outputs.<br /> <br /> Nomenclature<br /> C1<br /> C2<br /> C3<br /> C4<br /> A<br /> B<br /> C<br /> D<br /> <br /> Pulse-On time for EN19 material<br /> Pulse-Off time for EN19 material<br /> Discharge Current for EN19 material<br /> Voltage for EN19 material<br /> Pulse-On time for EN41 material<br /> Pulse-Off time for EN41 material<br /> Discharge Current for EN41 material<br /> Voltage for EN41 material<br /> <br /> 2. Experimental Setup<br /> The entire experiment was carried on a Die sinking EDM machine (Electronica EMT-43 Machine). Experiment<br /> was performed individually for both the materials one after another. The work-piece on which the EDM process was<br /> carried out was EN19 and EN41 material of cylindrical crossTool for EDM operation was a rectangular positive polarity Copper of dimension 25x25mm. Paraffin oil was<br /> selected as the dielectric medium. First of all the initial weight of the work-piece was taken before carrying out the<br /> EDM operation. The final weight was then compared with the initial weight and the difference of the two weights<br /> yield the MRR for the EN material. The experiment was carried out according to the design of experiment table<br /> generated by the taguchi design of experiments. For each set of experiments, the value of all the 4-input parameters<br /> were made constant and accordingly, the material removal was carried out in the EDM machine. The process was<br /> repeated for all the 27 experiments. The percentage composition of the different elements were obtained by Energy<br /> Dispersive X-Ray Spectroscopy (EDX) (JSM 63901v, Resolution=3nm at 30kV at high vaccum mode and 4nm at<br /> 40 kV low vaccum mode). The numbers of levels are selected by dividing the total span of available values of each<br /> of the input parameters in three parts namely Lower level, medium level and the upper level. The Taguchi design of<br /> experiments is constructed on the basis of the same. A set of 4-input values of A, B, C, D, C1, C2, C3 and C4 were<br /> considered and depicted in the table below:<br /> <br /> 205<br /> <br /> 206<br /> <br /> Vikas et al. / Procedia Technology 14 (2014) 204 – 210<br /> Table I: Design factor along with their levels:<br /> <br /> Variable<br /> <br /> Coding for<br /> EN41<br /> <br /> Coding for<br /> EN19<br /> <br /> Level<br /> <br /> 1<br /> Pulse ON<br /> Time(Ton)<br /> <br /> A<br /> <br /> 2<br /> <br /> 3<br /> <br /> 200<br /> <br /> 300<br /> <br /> 400<br /> <br /> C1<br /> <br /> Pulse OFF time<br /> (Toff)<br /> <br /> B<br /> <br /> 2300<br /> <br /> 2200<br /> <br /> 2100<br /> <br /> C2<br /> <br /> Discharge<br /> current (Ip)<br /> (Amp)<br /> <br /> C<br /> <br /> 8<br /> <br /> 16<br /> <br /> 24<br /> <br /> C3<br /> <br /> Gap voltage (V)<br /> (Volt)<br /> <br /> D<br /> <br /> 40<br /> <br /> 60<br /> <br /> 80<br /> <br /> C4<br /> <br /> Table II: Chemical composition of EN 41 Tool Steel<br /> <br /> Element<br /> <br /> App Conc.<br /> <br /> Intensity<br /> Corrn.<br /> <br /> Weight%<br /> <br /> Weight%<br /> Sigma<br /> <br /> Atomic%<br /> <br /> CK<br /> <br /> 2.36<br /> <br /> 0.5005<br /> <br /> 9.02<br /> <br /> 2.23<br /> <br /> 22.97<br /> <br /> OK<br /> <br /> 13.86<br /> <br /> 1.2359<br /> <br /> 21.48<br /> <br /> 1.44<br /> <br /> 41.07<br /> <br /> Cr K<br /> <br /> 1.01<br /> <br /> 1.1053<br /> <br /> 1.76<br /> <br /> 0.43<br /> <br /> 1.03<br /> <br /> Fe K<br /> <br /> 29.95<br /> <br /> 0.9322<br /> <br /> 61.46<br /> <br /> 2.07<br /> <br /> 33.67<br /> <br /> Eu L<br /> <br /> 2.95<br /> <br /> 0.8966<br /> <br /> 6.29<br /> <br /> 1.30<br /> <br /> 1.27<br /> <br /> TOTAL<br /> <br /> 100<br /> <br /> Table III: Chemical composition of EN 19 Tool Steel<br /> <br /> Element<br /> <br /> App Conc.<br /> <br /> Intensity<br /> Corrn.<br /> <br /> Weight%<br /> <br /> Weight%<br /> Sigma<br /> <br /> Atomic%<br /> <br /> CK<br /> <br /> 2.45<br /> <br /> 0.5073<br /> <br /> 13.67<br /> <br /> 3.03<br /> <br /> 30.75<br /> <br /> OK<br /> <br /> 9.25<br /> <br /> 1.1469<br /> <br /> 22.79<br /> <br /> 1.48<br /> <br /> 38.50<br /> <br /> Fe K<br /> <br /> 20.58<br /> <br /> 0.9142<br /> <br /> 63.54<br /> <br /> 2.49<br /> <br /> 30.75<br /> <br /> TOTAL<br /> <br /> 100<br /> <br /> 3. Result and Discussion :<br /> 3.1 Taguchi Method: The Taguchi method of optimization is a 3-step process (Jameson (2001), Montgomery<br /> (2001)), which deals with the selection of raw material at the first stage, based on the engineering properties of that<br /> material. At the 2nd stage, the optimization process is carried out on the basis of the design of experiment table. The<br /> 3rd stage is the stage, where the comparison between the experimental and the predicted values are done to validate<br /> the result.<br /> On the basis of the different combinations of inputs obtained by the Taguchi method, the corresponding S/N ratio<br /> was generated for both the materials individually by the use of Minitab 16 software (Minitab Manual 2010).<br /> Table IV: Experimental Results:<br /> <br /> 207<br /> <br /> Vikas et al. / Procedia Technology 14 (2014) 204 – 210<br /> <br /> A<br /> (TON)<br /> <br /> B<br /> (TOFF)<br /> <br /> C<br /> (IP)<br /> <br /> D<br /> (V)<br /> <br /> EN41<br /> <br /> EN19<br /> <br /> MRR<br /> (gm/min)<br /> <br /> S/N<br /> Ratio(dB)<br /> <br /> MRR<br /> (gm/min)<br /> <br /> S/N<br /> Ratio(dB)<br /> <br /> 1<br /> 1<br /> <br /> 1<br /> 1<br /> <br /> 1<br /> 2<br /> <br /> 1<br /> 2<br /> <br /> 7.222222<br /> 12.05263<br /> <br /> 17.17342<br /> 21.62164<br /> <br /> 5.1956<br /> 9.6296<br /> <br /> 14.3127<br /> 19.6722<br /> <br /> 1<br /> 1<br /> 1<br /> 1<br /> 1<br /> 1<br /> 1<br /> 2<br /> 2<br /> 2<br /> 2<br /> 2<br /> 2<br /> 2<br /> 2<br /> 2<br /> 3<br /> 3<br /> 3<br /> 3<br /> 3<br /> 3<br /> 3<br /> 3<br /> 3<br /> <br /> 1<br /> 2<br /> 2<br /> 2<br /> 3<br /> 3<br /> 3<br /> 1<br /> 1<br /> 1<br /> 2<br /> 2<br /> 2<br /> 3<br /> 3<br /> 3<br /> 1<br /> 1<br /> 1<br /> 2<br /> 2<br /> 2<br /> 3<br /> 3<br /> 3<br /> <br /> 3<br /> 1<br /> 2<br /> 3<br /> 1<br /> 2<br /> 3<br /> 1<br /> 2<br /> 3<br /> 1<br /> 2<br /> 3<br /> 1<br /> 2<br /> 3<br /> 1<br /> 2<br /> 3<br /> 1<br /> 2<br /> 3<br /> 1<br /> 2<br /> 3<br /> <br /> 3<br /> 2<br /> 3<br /> 1<br /> 3<br /> 1<br /> 2<br /> 2<br /> 3<br /> 1<br /> 3<br /> 1<br /> 2<br /> 1<br /> 2<br /> 3<br /> 3<br /> 1<br /> 2<br /> 1<br /> 2<br /> 3<br /> 2<br /> 3<br /> 1<br /> <br /> 16.53125<br /> 7.380952<br /> 14.1<br /> 31<br /> 7.827586<br /> 24.9<br /> 31.96<br /> 5.569767<br /> 11.18182<br /> 24.63889<br /> 6.090909<br /> 20.2766<br /> 27.82759<br /> 11.30435<br /> 21.0625<br /> 29<br /> 4.693878<br /> 15.9322<br /> 23.24<br /> 9.142857<br /> 17.25532<br /> 23.72727<br /> 8.949153<br /> 17.43137<br /> 41.73333<br /> <br /> 24.36611<br /> 17.36225<br /> 22.98438<br /> 29.82723<br /> 17.87256<br /> 27.92399<br /> 30.09214<br /> 14.91674<br /> 20.97025<br /> 27.83242<br /> 15.69364<br /> 26.1399<br /> 28.88951<br /> 21.06491<br /> 26.4702<br /> 29.24796<br /> 13.43064<br /> 24.04551<br /> 27.32472<br /> 19.22164<br /> 24.73846<br /> 27.50496<br /> 19.03564<br /> 24.82663<br /> 32.40966<br /> <br /> 13.7146<br /> 4.5641<br /> 11.6657<br /> 26.3242<br /> 4.4659<br /> 21.4438<br /> 28.4438<br /> 2.4438<br /> 7.4437<br /> 20.2521<br /> 3.6310<br /> 16.5551<br /> 21.2836<br /> 16.4579<br /> 18.3849<br /> 24.4432<br /> 2.2377<br /> 11.4052<br /> 19.4559<br /> 6.4533<br /> 12.4428<br /> 18.8812<br /> 4.3619<br /> 13.4438<br /> 35.4438<br /> <br /> 22.7437<br /> 13.1871<br /> 21.3383<br /> 28.4071<br /> 12.9982<br /> 26.6260<br /> 29.0797<br /> 7.7611<br /> 17.4358<br /> 26.1294<br /> 11.2004<br /> 24.3787<br /> 26.5609<br /> 24.3275<br /> 25.2892<br /> 27.7632<br /> 6.9962<br /> 21.1421<br /> 25.7810<br /> 16.1957<br /> 21.8983<br /> 25.5206<br /> 12.7935<br /> 22.5704<br /> 30.9908<br /> <br /> After the generation of the above table, the Response table for Mean S/N ratio for both the materials were<br /> obtained, on the basis of which the corresponding the rank of the different parameters were used to find the level of<br /> importance towards affecting the MRR.<br /> Table V: Response table for Mean S/N ratio for EN41:<br /> Level<br /> 1<br /> 2<br /> 3<br /> Delta<br /> Rank<br /> <br /> A<br /> (TON)<br /> 23.25<br /> 23.47<br /> 23.62<br /> 0.37<br /> 4<br /> <br /> B<br /> (TOFF)<br /> 21.3<br /> 23.6<br /> 25.44<br /> 4.14<br /> 2<br /> <br /> C<br /> (IP)<br /> 17.31<br /> 24.41<br /> 28.61<br /> 11.3<br /> 1<br /> <br /> D<br /> (V)<br /> 25.07<br /> 23.38<br /> 21.88<br /> 3.19<br /> 3<br /> <br /> Mean<br /> (A+B+C+D)/4<br /> 21.7325<br /> 23.715<br /> 24.8875<br /> <br /> Table VI: Response table for Mean S/N ratio for EN19:<br /> Level<br /> 1<br /> 2<br /> 3<br /> Delta<br /> Rank<br /> <br /> C1<br /> (TON)<br /> 13.939<br /> 14.544<br /> 13.792<br /> 0.752<br /> 4<br /> <br /> C2<br /> (TOFF)<br /> 18.543<br /> 13.533<br /> 10.198<br /> 8.346<br /> 2<br /> <br /> C3<br /> (IP)<br /> 5.535<br /> 13.602<br /> 23.138<br /> 17.603<br /> 1<br /> <br /> C4<br /> (V)<br /> 17.726<br /> 13.446<br /> 11.103<br /> 6.623<br /> 3<br /> <br /> Mean<br /> (A+B+C+D)/4<br /> 13.93575<br /> 13.78125<br /> 14.5575<br /> <br /> 208<br /> <br /> Vikas et al. / Procedia Technology 14 (2014) 204 – 210<br /> <br /> The graphs were then plotted on the basis of the response table so obtained. From the graph, the optimized value<br /> for EN41 material was obtained at A3B3C3D1; While, the optimal condition for EN19 material were found out at [C1]3 [C2]1 [C3]3 [C4]1.<br /> <br /> Fig1: S/N plot for EN41 and EN19 material<br /> <br /> The ANOVA table, also called the Analysis of Variance table was then generated using the Minitab software.<br /> The ANOVA table is the table showing the importance of the different parameters towards the MRR. The entire<br /> result was confirmed at 95% confidence level and in both the cases, it was found out that Current followed by the<br /> Pulse-off time and voltage had larger impact over the MRR. However, the Pulse-ON time and the interaction of<br /> parameters did not have any impact over the MRR.<br /> Table VII: ANOVA Results for EN41:<br /> Source<br /> <br /> DOF<br /> <br /> A<br /> <br /> 2<br /> <br /> B<br /> <br /> 2<br /> <br /> C<br /> <br /> 2<br /> <br /> Seq SS<br /> <br /> Adj SS<br /> <br /> Adj MS<br /> <br /> F<br /> <br /> 4.66<br /> <br /> 4.66<br /> <br /> 2.33<br /> <br /> 0.66<br /> <br /> 296.96<br /> <br /> 296.96<br /> <br /> 148.48<br /> <br /> 41.78*<br /> <br /> 1831.31<br /> <br /> 1831.31<br /> <br /> 915.65<br /> <br /> 257.64*<br /> 24.23*<br /> <br /> D<br /> <br /> 2<br /> <br /> 172.23<br /> <br /> 172.23<br /> <br /> 86.12<br /> <br /> A*B<br /> <br /> 4<br /> <br /> 17.08<br /> <br /> 17.08<br /> <br /> 4.27<br /> <br /> 12<br /> <br /> A*C<br /> <br /> 4<br /> <br /> 11.73<br /> <br /> 11.73<br /> <br /> 2.93<br /> <br /> 0.82<br /> 4.51<br /> <br /> B*C<br /> <br /> 4<br /> <br /> 64.10<br /> <br /> 64.10<br /> <br /> 16.02<br /> <br /> Error<br /> <br /> 6<br /> <br /> 21.32<br /> <br /> 21.32<br /> <br /> 3.55<br /> <br /> Total<br /> <br /> 26<br /> <br /> 2419.39<br /> <br /> Significant at 95% confidence level(*F0.05,2,6=19.33)<br /> <br /> Table VIII: ANOVA Results for EN19:<br /> Source<br /> C1<br /> C2<br /> C3<br /> C4<br /> C1*C2<br /> C1*C3<br /> C2*C3<br /> Error<br /> Total<br /> <br /> DOF<br /> <br /> Seq SS<br /> <br /> Adj SS<br /> <br /> Adj MS<br /> <br /> 2<br /> 2.861<br /> 2.861<br /> 1.431<br /> 2<br /> 317.625<br /> 317.625<br /> 148.48<br /> 2<br /> 1397.705<br /> 1397.705<br /> 915.65<br /> 2<br /> 203<br /> 203<br /> 101.500<br /> 4<br /> 11.774<br /> 11.774<br /> 2.944<br /> 4<br /> 33.698<br /> 33.698<br /> 8.424<br /> 4<br /> 31.715<br /> 31.715<br /> 7.929<br /> 6<br /> 27.532<br /> 27.532<br /> 4.589<br /> 26<br /> 2025.911<br /> Significant at 95% confidence level(*F0.05,2,6=19.33)<br /> <br /> F<br /> 0.31<br /> 34.61*<br /> 152.3*<br /> 22.12*<br /> 0.64<br /> 1.84<br /> 1.73<br /> <br />
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2