Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

Chapter 4

ESTIMATION BY INSTRUMENTAL VARIABLES

(Instrumental Variable Estimators)

I. ENDOGENEITY:

Now suppose ε, X are not independently generated: Cov(ε,X)≠ 0 and E(ε|X) ≠ 0.

There are 4 sources of this problem:

1. Errors in measurement of independent variables:

Suppose that the true regression equation is given by:

yi = β0 + β1xi + εi

=

=

=

where E(εi) = E(εixi) = 0

Cov

x

E

x

x

E

x

E

x

,

)

(

)]

,

)

,

)

ε ( i

i

ε [ i

i

ε ( i

i

ε ( i

i

ε E x ( , )  i 0

=

Note:

,

)

↔= 0

,

)

0

Cov

x

E

x

ε ( i

i

ε ( i

i

=*

+

So if

x

x

i

e i

i

Suppose

Assume: E(ei) = E(eixi) = 0

* + ui

=*

+

→ estimate: yi = β0 + β1xi

x

x

i

e i

i

correlated with where: ui = εi - β1ei through terms ei

,

0

i xuCov (

* ≠i )

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

1

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

2. Variables on both sides of regression equation are jointly determined (endogenous) →

=

+

0

h i

=

+

+

0

e i

ββ + u e 1 i i εαα h 1 i i

  

=

+

+

RHS variables are endogenous.

u

e i

i

ε i

1

1

βαα + 0 1 0 βα − 1 1 1

α 1 βα − 1 1

1 βα 1 1

0

i euCov , (

≠i )

=

+

+

+

a

w i

βββ s 1 2

0

i

i

ε i

=

+

s

u

3. Omitted variables:

w i

0 ββ +

1

i

i

u

0

Estimate:

= 2

i

β + a i

ε i

i suCov , (

≠i )

Where: , if ai and si are correlated →

+=

+

+

ε t

t

− 1

Cov

Y

,

)

0

4. Lagged dependent variables (Yt-1) as a regressor and auto correlated errors.

ε ( t

t

− 1

λβα X Y +

=

t u

Y t ε t

ρε t

t

− 1

  

because Yt-1 and εt both contain εt-1.

=

εβ+

Y

Model:

X ×kn

(1)

(2) X and ε are not generated independently

(3) E(ε|X) ≠ 0

(4) E(εε'|X) = σ2I

p

lim(

XX

=′ )

XXΣ

′ i XXE i × × 1 kn k

  

 = 

1 n

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

2

(5) X consists of stationary random variables with:

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

≠=

p

lim(

γεX )

0

1 n

Σ+

Σ+

ˆ = ββ

′ = βε

≠ βγ

p

X

lim

lim(

− 1 XX

− 1 XX

1 p ) n    ≠ 0

Now and

βˆ is also no longer unbiased

1

→ βˆ is an inconsistent estimator.

′ = β + ≠ β ˆ( β E X ) ( ′ XX ) ε XEX ( )  ≠ 0

II. ESTIMATION BY INSTRUMENTAL VARIABLES:

W × kn

Suppose we can find a set of k variables that have two properties:

1. Exogeneity (validity): They are uncorrelated with the disturbance ε.

2. Relevance: They are correlated with the independent variable X.

=

ε WE (

)

→= 0

wE (

ε )'

0

ε

=

p

W

lim

'

0

1 n

E

' WW

(

Σ=′ )

WWE i i

WW

1 n

  

 = 

Σ=

p

lim

' XW

WW

          

1 n

Such that:

(W & X are stationary random variables).

1− ( YWXW )

'

'

ˆ =β IV

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

3

Then W is a set of instrumental variables and we define:

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

IVβˆ

: IV estimator.

IVβˆ

=

1− ( YWXW )

'

'

('

εβ+ )

'

− 1 ) ( XWXW

ˆ =β IV

1

ε

=

+

β

IVβˆ

Consistency: IV estimator is consistent:

XW ' n

W ' n

  

  

  

  

1

ε

=

+

β

p βˆ lim

p

IV

XW ' n

W ' n

 lim  

  

  p lim      0

=

β

Σ+

=

β

− 0.1

WX

(Slutsky theorem).

β

=

+

)

(

) β =

( WE βˆ

)IV

( ) ε ' WEWE  0

( − 1 ' XWE  −Σ 1 WX

IV estimator is unbiased.

)

0

ε ( XE

ε

)

== 0

lim

'

ε ( WE

p

W

1 n

W × kn

Σ=

lim

p

' WW

WW

Σ=

lim

non

singular

p

' XW

WX

          

1 n 1 n

III. TWO-STAGE LEAST SQUARES ESTIMATION:

Z × qn

Now we have a set of instruments , that are unrelated to ε.

X consists two parts:

)

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

4

= X × kn X 2 × rn X 1 −× rkn (      

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

X1: exogenous variables

X2: endogenous variables

Note: q must be ≥ r (if q < r → (W'W)-1 doesn't exist.

+Π=2 Z × × rqqn

V × rn

X × rn

=

X

X

2 2

r 2

X 2 × kn

1 X 2 × 1 n

 

 

Z includes X1, We can define reduced form equations for X2:

r

Π 2 ΠΠ=Π 1 × rq × q 1      

2 V

V r

= V × rn

 V  1 × 1 n

 

+Π=

X

Z

1 2

1

V 1

+Π=

X

Z

V

2 2

2

2

Z × qn

+Π= q

r X 2 × n 1

r × 1

V r × n 1

      

So:

Π are estimators: rq×

Estimate this system by OLS,

X

X

2 2

r 2

ˆ +Π ˆ Z V × × × rqqn rn

1 X 2 × 1 n

 

 

=

+

2

r

[ ˆ ˆ VV 1 2

]rV ˆ

 ˆ Π = Z ˆ ˆ ΠΠ 1 × 1 q      

ˆX is a good instrument.

ˆ X

Π= ˆ Z

2

2

Then we get: →

ˆ X

Π= ˆ Z

(

)0

Cov

=εZ ),

ˆX is correlated with X2 but not correlated with ε because

2

2

( ,

]WY

ˆXX

1

]2

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

5

. Apply OLS on [ we have: • After the first stage we get the set W = [

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

1

− ( YWWW )

'

'

2

ˆ =β SLS

→ two-stage least squares estimator.

ˆXX

1

]2

1

1− YWXW ( )

'

'

(

ZZ '

)

' XZ

ˆ =β IV

2

as an instrument variable and get: • We can also use W = [

ˆ ˆ ββ = 2

IV

SLS

We can show that:

IVβˆ

1

=

n

ˆ( − ββ )

' XW

W

'

n

IV

1 n

1 n

  

  

  

 ε  

W

n

11  Σ= −  WX n 

 ε'  

2

n

=

ε

W

'

IV. ASYMPTOTIC DISTRIBUTION OF

3

iW

ε i

i

= 1

w ik

       

Wi =

=

=

)

(

)

w

)

0

ε wE ( i i

EwE i

ε ( i

=

Σ

)

2 σ ε

2 σ ε

ε wVar ( i i

εε wE ( i i i

=′ w ) i

=′ wwE ( ) i i

WW

1   w  i  w i     

n

W

So by the central limit theorem:

N

,0(

)

2 Σεσ

XX

1 n

  

 ε'  

1

→

Σ −

Σ

N

,0(

)

n

2 εσ

WW

ˆ( ββ −IV )

WX

~

University of Economics - HCMC - Vietnam

Nam T. Hoang University of New England - Australia 6

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

1

2

→d

N

,0(

)

( Σ′

) εσ−

− 1 ΣΣ WX

WW

WX

− 1

→asy

N

IVβˆ

( − 1 Σ′ ΣΣ WX WW    AsyVarCov

2 εσ ) WX n   ˆ( β )

IV

     

  β ,    

β

E

ˆ( β =) IV

IVβˆ

OLS

βˆ Note: → is also an unbiased estimator. is asymptotically

IVβˆ

efficient to .

V. HAUSMAN SPECIFICATION TEST AND AN APPLICATION TO IV

ESTIMATION:

−Σ

1. Theorem:

Z

'

1 ~ Z

2 χ ][ r

Z ~ ( ×r )1

Let then: N ) ,0( × 1 r Σ XX × rr

0

Proof:

0

0

0 λ 0 2  nλ

     

λ  1  0     

[ 1= CCC

2

]rC

jC : eigenvector 1×r

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

7

Recall: for λj: eigenvalue

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

λ 1

2/1

2/1

2/1 =Λ

ΛΛ=Λ=

'

C

C

Σ × rr

0 

0

0

0 0 λ 0 2  nλ

      

      

2/1

2/1

Λ

we have:

Λ=ΣCC

(

'

()'

)

2/1

2/1

2/1

2/1

2/1

− Λ

Λ

Λ

− Λ

=

I=

(

()'

()'

)(

)

)'

2/1 ΛΣ Λ ( ' ( ) CC 

'

D

D

2/1−Λ= CD

=Σ' IDD

1

1

1

1

Σ

=

with →

(

D

)'

D

'

DD

(

D

)'

D

1

Σ='DD

D

D

(

− 1)'

→ →

Note: C' = C-1, CC' = I

= ' ZDW × × × 1 rrr 1 r

Let → W ~ N(0,DΣD') = N(0,I)

W 1×r

~ N(0,I)

2 rχ ][~

WW ' ×r 1

(

ZDZD ()'

'

'

)

2 rχ ][~

2 rχ ][~

1

−Σ

→ ' ' ZDDZ −Σ 1

2 rχ ][~

Finally: Z ' Z

=

εβ

=+

Y

X

X

X

β 1 1

+ εβ 2

2

+ ×rn

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

8

2. Hausman Test:

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

=

XE ε (

)

2

0 × r 1

)

(

0

2 ≠XE ε

H0:

H0:

OLSβˆ

Two alternative estimators:

IVβˆ

: consistent under H0 but not under HA

1

=

+

β

ε

X

(

XX '

)

'

1

+

ε

WXW ) (

'

'

IV

ˆ  β  OLS  ˆ  = ββ

: consistent under both H0, HA (but inefficient compare to OLSβˆ )

ˆ = ˆ IV ββ OLS

Under H0:

1

′ )

[ VarCov

] ( )

2 rχ ][~

( ˆ ˆ − ββ OLS

IV

( ˆ ˆ − ββ OLS

IV

)OLS ˆ ˆ − ββ

IV

1

Construct the Hausman's test statistic:

−Σ

,0( ΣN

)

2 ][~

rχ )

=

+

2

VarCov

VarCov

VarCov

Cov

)

)

)

( ˆ ˆ − ββ OLS

IV

( ˆ β IV

( ˆ β OLS

( ˆ ˆ, ββ IV

)OLS

→ (Note: Z ~ Z ' Z

Cov

= − E

) β '

( ˆ ββ ˆ,

[ { ( )( ˆ ˆ − βββ OLS

IV

IV

)OLS

] }XW ,

− 1

− 1

=

)

εε '

'

XXX

(

'

)

[ { ( ' WXWE

] }XW ) ,

1

=

XXX

− 1 EWXW ( )

'

'

(

'

)

εε )' (  2 εσ I

1

1

2

=

XXXWXW ( '

)

(

'

'

)

εσ−

2

=

=

(

XX '

εσ− 1)

( VarCov βˆ

)OLS

=

VarCov

VarCov

VarCov

)

)

( ˆ ˆ − ββ OLS

IV

( ˆ β IV

( )OLS ˆ β

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

9

So

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

1

VarCov

′ )

)

[ VarCov

] ( )

2 rχ ][~

( ˆ ˆ − ββ OLS

IV

( ˆ β IV

( ˆ β OLS

)OLS ˆ ˆ − ββ

IV

2 rχ ][~

Then, the Hausman's test statistic is:

Under H0: H

=

+

Y

X

X

β 1 1

+ εβ 2

2

)

(

0

2 =XE ε

3. Wu's approach:

Do we have:

In the first stage of IV estimation:

ˆX

2

V × rn

X 2 × rn

ˆ +Π= Z × × rqqn  ˆ X

2

=

+

+

Y

X

X

ˆ X

β 1 1

β 2

2

* εγ + 2

r ≤ q → we get

=

+

+

* εγ +

(

Y

X

X

X

)ˆ V

β 1 1

β 2

2

2

=

+

Y

X

X

ˆ * εγ + V

β 1 1

γβ + ( ) 2

2

=

0 × 1 r

γ × 1 r

(

)

0

Test: H0:

2 ≠XE ε

If reject H0 →

VI. CHOOSING THE INSTRUMENTS:

1. If we are working with time-series data, lagged values of regressors will generally

=

+

β

+

ε

y

x

provide appropriate instruments.

+ ββ 2

1

2

x 33

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

10

EX:

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

x

x

02

03

x 12 

x 13 

=

=

X

W

x 12 

x 13 

x

x

n

1

n

2

1      1 

    

x

x

n

2,1

n

3,1

      

 1  1     1  

IVβˆ

. 2. Choice of Z affects asymptotic efficiency of

Generally want to choose instruments to be highly corrected with the regressors (but

uncorrelated with the errors).

3. With the cross-section data, not always easy. One option is to use the ranks of the

=

+

data to form Z.

ε

y

x

i

+ ββ 2

1

i

14

2

1

=

=

Z

X

5

8

3

10

          

71     21     11   41     51   31     61  

1   1   1  1   1  1   1 

Example:

Appendix:

=

εβ+

Measurement Error in Linear Regression

Y × 1 n

X × kn

(1)

=*

We don't observe X, but observe X*

X × kn

+ VX × × kn kn

=

= 2 σ

XE ε (

)

εε ' (

)

E

X

(2)

I × nn

0 × n 1

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

11

Where:

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

*

=

(

X

V

)

Y × n 1

εβ+ × k 1

=

+

Y

X

(

* − βεβ V )  u

Put (2) into (1) yields:

The error term u = ε - Vβ is correlated with the regressor X* through the measurement

error V.

*

=

lim

p

X

p

′* uX

lim

− βε V ( )

1 n

1 n

=

lim

(

p

+ VX

−′ βε V () )

1 n

ε

+

=

lim

lim

'

lim

)

lim

'

X

βε − p

V

p

β p

' VV

1 n

1 ' p VX n    0

1 n 0

1 n 0

0≠Σ−= VVβ

Formally, we have:

*

+

+

=

p

lim

′ * XX

p

lim

(

′ () VXVX

)

1 n

1 n

=

+

+

+

p

pXX

pVX

pXV

' VV

lim

'

lim

'

lim

'

lim

1 n

1 n

1 n

1 n

Σ=

XX Σ+

vv

*

*

*

* β

+

′ * XX

′ * YX

′ * XX

X

X

u

(

)

An OLS regression of Y on X will lead to an inconsistent estimate of β.

OLSβˆ

  

  

  

 = 

  

  

 

 

*

*

=

  

′  * uXXX  

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

12

= +β

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

1

*

βˆ

limp

lim

p

′ * XX

′ * uX

1 n

1 n

  

  

  

  

−1

Σ+

Σ

)

= +β

VV

XX

βVV

= −β ( Σ

2

−1

Σ+

Σ

βˆ

)

limp

VV

βVV

XX

3 β = = −β ( Σ

4     5        

Clearly, OLS is inconsistent as long as there are measurement errors and ΣVV ≠ 0

ˆ β is inconsistent as long as ΣVV ≠ 0. ×k 1

1)

2) If there are some variables which are correctly measured.

→ Their coefficient estimators are also inconsistent. A badly measured variable

contaminates all the least squares estimates.

→ The effect of measurement errors is also called: "contamination bias".

00

0

=Σ VV

00  

00

0   2 σ v

     

     

3) For example if only one regressor is measured with errors

→ the bias and inconsistent of all correctly measured variables depend on the

form of ΣXX → unknown.

4) In practice, it seems that the coefficients of the correctly measured variables are

consistent but this depends on the special form of ΣXX

Research questions: In practice

→ What kind of ΣXX we will count on the coefficients of correctly measured

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

13

variables?

Advanced Econometrics

Chapter 4: Estimation By Instrumental Variables

→ If we cannot find a good instrumental variable: omit wrongly measured

variables or don't omit? Which form of ΣXX.

Computer programs could answer these questions (I guess). The form of ΣXX can

be tested by simulations.

5) There are other cases that endogeneity is a problem → what is the role of ΣXX in

affecting the inconsistency of the coefficients in those cases.

Nam T. Hoang University of New England - Australia

University of Economics - HCMC - Vietnam

14

6) Endogeneity by measurement errors is a serious problem.