Chương 5:Phương pháp tích phân kinh điển

➢ 5.1.Phương pháp tích phân kinh điển ➢ 5.2. Đáp ứng mạch RC và RL bậc nhất ➢ 1.Đáp ứng ‘natural’ mạch RC ➢ 2.Đáp ứng ‘natural’ mạch RL ➢ 3.Đáp ứng ‘step’ mạch RC ➢ 4.Đáp ứng ‘step’ mạch RL ➢ 5.Nghiệm tổng quát đáp ứng mạch RC và RL ➢ 5.3. Đáp ứng mạch RLC bậc hai ➢ 1.Đáp ứng ‘natural’ mach RLC song song ➢ 2.Đáp ứng ‘step’ mach RLC song song ➢ 3.Đáp ứng ‘natural’ mach RLC nối tiếp ➢ 4.Đáp ứng ‘step’ mach RLC nối tiếp

5.1.phương pháp tích phân kinh điển Chúng ta sẽ phân tích mạch LTI (tuyến tính bất biến) và nguồn độc lập Quan hệ giữa các giá trị tức thời của dòng điện và điện áp trên các phần tử ta đã xét ở các chương trước. Mạch bao gồm các phần tử RLCM được mô tả bởi phương trình vi tích phân được thành lập dựa trên các định luật Kirchhoff và Ohm. Để tiện việc giải hệ phương trình , người ta thường đưa về một phương trình vi phân cấp n (m):

*Trong đó y(t)(hoặc x(t)) là nghiệm cần tìm, còn x(t)(hoặc y(t)) là hàm đã cho, các hằng số ak; bk biểu diễn các thông số của mạch.

Ví dụ

i(t) e(t) i1

i2 II C R L1

➢ Áp dụng KVL để thành lập phương trình áp theo 2 vòng:

➢ Khử i1 từ 2 phương trình và lấy đạo hàm 2 vế ta được:

I L2

1.Nghiệm của phương trình vi phân hệ số hằng

*Từ ví dụ trên ta thấy rằng dòng điện i(t) hay điện áp e(t) trong mạch là nghiệm của phương trình vi phân tuyến tính hệ số hằng. Giả sử rằng vế phải của phương trình đã xác định do nguồn e(t) cho trước, ta ký hiệu là f(t) còn vế trái là nghiệm cần tìm (là điện áp hay dòng điện) ta có:

Nghiệm phương trình vi phân có dạng: Y(t) = yxl (t) + yqđ (t) *yqđ (t): được gọi là thành phần quá độ (tự do) nó không phụ thuộc vào hàm f(t) * yxl (t): được gọi là thành phần cưỡng bức (xác lập)

a.Nghiệm của phương trình thuần nhất

* = -α -jβ . Thì:

Thành phần yqđ chính là nghiệm của phương trình thuần nhất. Xét phương trình đặc tính: an pn + an-1 pn -1 +…+ a1 p + a0 = 0 Có 3 trường hợp: 1.Nếu tất cả các nghiệm p1; p2;…pn là thực và đơn thì: yqđ = k1 ep1t + k2 ep2t +..+kn epnt 2.Nếu là nghiệm đơn phức thì luôn luôn là 1 cặp nghiệm phức liên

hiệp. Ví dư: p1 = -α +jβ và p2 = p1

yqđ = y1 + y2 = e-αt (k1 ejβt + k2 e-jβt ) = ke-αt cos(βt + Φ) với k = 2|k1| và Φ = arg k1 .

3.Nếu p1 là nghiệm bội h (có h nghiệm trùng nhau) và số còn

. lại là đơn, thì: yqđ = (k1 + k2 t+… +kh th-1)ep1t +…+ kn epnt

Ví dụ về tìm thành phần quá độ

i(t)

C L R

➢ Hãy tính thành phần quá độ của điện áp u(t) như hình trên

➢ Giải:

➢ Ta có:

➢ Với giả thuyết i(t) = 0. Lấy đạo hàm 2 vế ta được:

2 = 1/LC; α =1/2RC

➢ Với: ω0

+ u(t) -

Ví dụ về tìm thành phần quá độ

2 = 0

Phương trình đặc tính của mạch:

p2 +2αp + ω0

2 (2 nghiệm thực đơn), thành phần quá độ sẽ là:

Có các nghiệm:

2 ( nghiệm thực kép = -α), thành phần quá độ sẽ là:

*Nếu α2 > ω0

*Nếu α2 = ω0

2 (cặp nghiệm thực liên hiêp),thành phần quá độ là:

uqđ (t)= (k1 + k2 t)e-αt .

*Nếu α2 < ω0

uqđ (t)= ke-αt cos(βt +Φ) ; với:

b)Nghiệm của phương trình không thuần nhất

i(t) C R

➢ Để tìm thành phần yxl ta dùng phương pháp hệ số không xác định. Vấn đề là phải đoán trước dạng của nghiệm ph.trình (5.2) ➢ Ta xét ví dụ: Hãy xác định điện áp u(t) của mạch như hình.Nếu ➢ 1. i(t)=1 A; 2. i(t) = cosωt A; 3. i(t) = e-t cost A; C =1F; R =1/3 Ω ➢ 4. i(t) = e-2t A; C =1F; R =1/2 Ω

➢ Giải: ➢ Điện áp u(t) là nghiệm của phương trình vi phân: ➢ Cdu/dt + u/R = i(t) ➢ Bao gồm 2 thành phần: uqđ là nghiệm của phương trình vi phân thuần nhất và uxl là nghiệm của phương trình không thuần nhất

+ u(t) -

b)Nghiệm của phương trình không thuần nhất Thành phần quá độ không phụ thuộc vào kích thích: uqđ (t) = ke-t/RC Thành phần cưỡng bức phụ thuộc vào nguồn kích thích nên cần xét các trường hợp cụ thể: 1. i(t) = 1 A. Ta đoán nghiệm riêng của phương trình không thuần nhất có dạng uxl = B và thay vào phương trình vi phân ta thấy nó thỏa mãn với B = Ri(t) = R. Do đó điện áp u(t) là: u(t) = uxl(t) + uqđ(t) = R.1+ ke-t/RC V 2. i(t) = cosωt. Ta giả sử uxl = Acosωt + Bsinωt và thay vào phương trình mạch: C(-Aωsinωt + Bωcosωt) + (Acosωt + Bsinωt)/R = cosωt. Hay (A + ωRCB)cosωt + (B - ωRCA)sinωt = Rcosωt. →A = R/[1+(ωRC)2] ; B = ωR2C/[1+(ωRC)2]. Ta lại có: Acosωt + Bsinωt = cos(ωt-φ) ; Với :

Vậy thành phần xác lập sẽ có dạng:

*Từ hai trường hợp trên ta thấy để tính thành phần xác lập ta có thể tính theo phương pháp đã biết ở các chương khác (khi tính không để ý đến việc phân tích quá trình quá độ) và sẽ thu được kết quả nhanh chóng. Với mạch có nguồn kích thích 1 chiều (tụ hở mạch) thì điện áp u = R.1 V. Với nguồn điều hòa , ở trạng thái xác lập ta dùng phương pháp biên độ phức. Dẩn nạp tương đương: Y = 1/R + jωC. Vậy biên độ phức sẽ là:

Vậy: u(t) = uxl(t) + uqđ(t) = ke-t/RC + cos(ωt-φ)

3. i(t) = e-t cost A; C =1F; R =1/3 Ω. Nguồn kích thích có dạng suy giảm. Ta đặt uxl = e-t(Acost + Bsint) và thay vào phương trình mạch ta sẽ được: A = 2/5; B = 1/5 Vậy điện áp u(t) = uxl(t) + uqđ(t) = ke-1/RC + e-t(2/5cost + 1/5sint) 4. i(t) = e-2t A; C =1F; R =1/2 Ω Chú ý trường hợp này thành phần quá độ có cùng hệ số suy giảm giống nguồn kích thích. Ta giả sử uxl = Ae-2t và thế vào phương trình mạch, ta có: -2Ae-2t + 2Ae-2t = e-2t →không tìm được A nên không phải là nghiệm. Trường hợp này ta đặt: uxl = Ate-2t và thay vào phương trình: Ae-2t - 2Ate-2t + 2Ate-2t = e-2t →A = 1. Nghiệm đầy đủ: u(t) = uxl(t) + uqđ(t) = ke-1/RC + te-2t .

2.Điều kiện đầu Nghiệm của phương trình vi phân cho đến giờ vẫn được viết dưới dạng tổng quát do các hằng số k1; k2;..kn vẫn chưa được xác định. Do nghiệm y(t) được xét trong khoảng [0 ∞) phải thỏa điều kiện đầu tại t = 0 là: y(0); y’(0); y’’(0);…yn-1 (0) *Do năng lượng điện từ trường là liên tục nên tại t = 0 ta có thể viết: uC (0-) = uC(0+) = uo iL (0-) = iL(0+) = io Ở đây t = 0- là giới hạn bên trái của thời điểm thay đổi năng lượng t = 0+ là giới hạn bên phải của thời điểm thay đổi năng lượng *Chú ý rằng các đại lượng khác không nhất thiết phải liên tục tại t = 0, ví dụ điện áp trên cuộn dây hay dòng qua tụ có thể không liên tục ( có bước nhảy vọt). Từ nay khi nói điều kiện đầu thì hiểu rằng đó là các giá trị ban đầu của điện áp trên tụ và dòng qua cuộn dây nó sẽ xác định điều kiện đầu của phương trình.

Ví dụ về điều kiện đầu

i(t) C R

➢ *Ta trở lại ví dụ trước. Hãy xác định điện áp u(t) của mạch như hình. Giả thiết tại t =0 nguồn được nối vào mạch, còn t < 0 tụ không được nạp điện. Ta xét trong 2 trường hợp:

➢ 1. i(t)=1 A; 2. i(t) = cosωt A

➢ Giải: ➢ 1. i(t)=1 A; Theo kết quả trước: ➢ u(t) = uxl(t) + uqđ(t) = R.1+ ke-t/RC V ; t ≥ 0 ➢ Hằng số k được xác định dựa trên điều kiện đầu: Do giả thiết uC (0-) = 0 → uC (0+ ) = 0. Nên: ➢ u(0+) = uC (0+ ) = R + k = 0 → k = - R. Vậy: ➢ u(t) = R(1 - e-t/RC ) V ; t ≥ 0

+ u(t) -

Ví dụ về điều kiện đầu

i(t) C R

➢ Giải: ➢ 2. i(t) = cosωt A; Theo kết quả trước: ➢ u(t) = uxl(t) + uqđ(t) = ke-t/RC + cos(ωt-φ) V ; t ≥ 0 ➢ Hằng số k được xác định dựa trên điều kiện đầu: Do giả thiết uC (0-) = 0 → uC (0+ ) = 0. Nên: ➢ u(0+) = uC (0+ ) = k + cosφ = 0

➢ → k = -

➢ u(t) = (-

+ u(t) -

cosφ. Vậy: cosφe-t/RC + cos(ωt-φ) ) V ; t ≥ 0

Ví dụ 4 1

t=0

2 i(t) L 1H

E

➢ Tại t= 0 khóa k chuyển từ 1 sang 2.Tính i(t)? Với t > 0. Biết ➢ E = 5 V; e(t) = 10cos(10t + 450 )

➢ Giải: ➢ ở t < 0, mạch xác lập 1 chiều, cuộn dây ngắn mạch, dòng qua nó: iL (0-) = 5/10 = 0,5 A. ➢ Ở t > 0, dòng i(t) trong mạch là nghiệm của phương trình: ➢ Ri(t) +Ldi/dt = e(t) ➢ Thành phần quá độ là nghiệm của phương trình thuần nhất: ➢ iqđ (t)= ke-Rt/L = ke-10t

e(t) R 10Ω

Để tìm thành phần xác lập ta dùng phương pháp biên độ phức: Z = 10 + j10 = 10√2ej45 Biên độ phức của nguồn kích thích: = 10ej45 Biên độ phức của thành phần xác lập: = /Z = 10/450 /(10√2/450 ) =1/√2 Thành phần xác lập của dòng điện: ixl (t) = (1/√2)cos10t Dòng điện i(t) trong mạch khi t > 0 là: i(t) = iqđ (t) + ixl (t) = ke-10t + (1/√2)cos10t Dựa vào điều kiện ban đầu: iL (0+) = iL (0-) = 0,5 A iL (0+) = k + 1/√2 = 0,5 → k = -0,207 Vậy : i(t) = (1/√2)cos10t – 0,207e-10t

Ví dụ 5

+

K

u(t) i(t) R R iC(t)

➢ Xét mạch RLC như hình.Biết điều kiện đầu bằng 0: iL(0-) = ➢ uC(0-) = 0. Tại t = 0 kích thích lên mạch nguồn dòng i(t) = 1 A.

R iL(t) C L -

➢ Giải: ➢ Ta viết phương trình áp cho mạch vòng có nhánh RLC

Hãy tìm iL(t); ic(t); u(t) khi t ≥ 0? Biết R2 = L/C

Do i(t) = 1 A →di(t)/dt = 0 và thành phần xác lập của iL = 1 Để tìm thành phần quá độ của iL ta tìm nghiệm của phương trình thuần nhất:

Phương trình đặc tính: p2 + (2R/L)p + 1/LC = 0 Theo giả thiết R2 = L/C →∆’ = (R/L)2 - 1/LC = 0. Ta có nghiệm kép p1 = p2 = - R/L. Thành phần quá độ có dạng: iLqđ (t) = (k1 + k2 t) e-(R/L)t Dòng qua cuộn dây: iL (t) = 1 + (k1 + k2 t) e-(R/L)t Theo điều kiện đầu: iL(0-) = iL(0+) = 0 uC(0-) = uC(0+) = 0. Ta lại có: i(t) = iL(t) +iC (t) → i(0+) = iL(0+) +iC (0+) = 1 →iC (0+) = 1

u(0+) = RiC (0+) + uC(0+) = iL(0+)R + L diL(0+)/dt → diL(0+)/dt = R/L Các hệ số k1; k2 được xác định từ 2 phương trình sau: iL(0+) = (k1+k2 .0)e-0 +1 = 0 diL(0+)/dt = -(R/L)(k1+ k2.0)e0 + k2 e-0 = R/L → k1 = -1; k2 = 0 Vậy dòng qua cuộn dây: iL = 1 – e-Rt/L ; t ≥ 0 Dòng qua tụ: iC = i(t) – iL = e-Rt/L ; t > 0 Điện áp u(t): u(t) = LdiL/dt + RiL = R; t > 0

5.2. Đáp ứng mạch RC và RL bậc nhất •Mạch bậc nhất : Mạch chỉ chứa 1 tụ điện hay 1 cuộn dây và bao gồm các nguồn DC, điện trở và khóa điện. •Cũng có thể phân tích mạch chứa nhiều tụ điện hay cuộn dây nếu ta có thể biến đổi chúng thành 1 phần tử tương đương tụ điện hay cuộn dây •Ta phân tích mạch dùng KCL và KVL •Ta có được phương trình vi phân bậc nhất •Giải phương trình vi phân để tìm đáp ứng •Cuối cùng ta bàn đến 1 cách dể hơn để tìm đáp ứng •Nếu trong mạch không có nguồn thì gọi là đáp ứng ‘natural’ tức chỉ có thành phần tự do (quá độ) •Nếu trong mạch có nguồn thì gọi là đáp ứng ‘step’ gồm 2 thành phần tự do và cưỡng bức (xác lập)

1.Đáp ứng ‘Natural’ Mạch RC: Điều kiện đầu t = 0-

t = 0

V0

➢T,

Với t < 0 khóa điện ở trạng thái đóng (trong thời gian dài). •Điện áp 2 đầu tụ tại t = 0- ? •Năng lượng trử trong tụ tại t = 0- ? •Dòng chạy qua tụ tại t = 0- ?

+ v - R iR C ic

1.Đáp ứng ‘Natural’ Mạch RC: Điều kiện đầu t = 0+

t = 0

V0

➢T,

Với t < 0 khóa điện ở trạng thái đóng (trong thời gian dài). •Điện áp 2 đầu tụ tại t = 0+ ? •Năng lượng trử trong tụ tại t = 0+ ? •Dòng chạy qua tụ tại t = 0+ ?

+ v - R iR C ic

1.Đáp ứng ‘Natural’ Mạch RC: Điều kiện cuối t → ∞

t = 0

V0

➢T,

Với t → ∞ khóa điện ở trạng thái mở (trong thời gian dài). •Điện áp 2 đầu tụ tại t → ∞? •Dòng chạy qua tụ tại t → ∞? •Năng lượng trử trong tụ tại t → ∞? •Năng lượng đã đi đâu?

+ v - R iR C ic

1. Đáp ứng ‘Natural’ Mạch RC: Phương trình vi phân

t = 0

V0

➢T,

Tính v(t). Ta biết với t ≤ 0, v(t) = V0 . Với t ≥ o : iC (t) + iR (t) = 0

+ v - R iR C ic

1.Đáp ứng ‘Natural’ Mạch RC

1.Đáp ứng ‘Natural’ Mạch RC: Tóm tắt

t = 0

V0

➢T,

Với t > 0.

+ v - R iR C ic

1.Đáp ứng ‘Natural’ Mạch RC: Đồ thị

v(t) V0

0

Time (s)

0

Đáp ứng ‘natural’: đáp ứng của mạch không có nguồn kích thích bên ngoài Điện áp giảm theo thời gian được đo bằng thời hằng

1.Đáp ứng ‘Natural’ Mạch RC: Năng lượng

t = 0

V0

Với t ≥ 0.

➢T,

Năng lượng trử trong tụ:

Năng lượng tổn hao bởi điện trở:

Năng lượng trử trong tụ ban đầu? Năng lượng trử trong tụ tại t → ∞?

+ v - R iR C ic

Ví dụ về đáp ứng ‘Natural’ mạch RC

i0 t = 0 32 kΩ 10 kΩ

b a

+ + 100 V

240 kΩ 60 kΩ 0,5µF vC - v0 -

Khóa điện ở vị trí a trong thời gian dài. Tại t = 0 khóa điện chuyển

sang vị trí b. Tìm:

a) vC với t ≥ 0 b) v0 với t > 0 c) i0 với t > 0 d) Năng lượng tổn hao bởi điện trở 60 kΩ

i0

32 kΩ

t = 0

10 kΩ

+

+

100 V

v0

vC

240 kΩ

60 kΩ

0,5µF

-

-

➢ a) Ta có : vC (0+ ) = vC (0- ) = 100 V; Điện trở tương đương của

➢ (0,5 x 10-6 )(80 x 103 ) = 40 ms. Vậy: vC (t) = 100e-25t (V), t ≥ 0 ➢ b) v0 được tính theo vC từ mạch phân áp: v0 (t) = 48 vC (t)/80 ➢ v0 (t) = 60e-25t (V), t > 0 ; Biểu thức v0 (t) có giá trị với t > 0 vì ➢ v0 (0- ) = 0. ➢ c) i0 (t) được tính từ đ.l.Ohm: i0 (t) = v0 (t)/(60x103 ) = e-25t , t > 0 2x60x103 =60e-50t (mW) ➢ d) Công suất tổn hao bởi 60 kΩ: P(t) = i0 ➢ Năng lượng tổn hao:

mạch nhìn từ 2 đầu tụ là 80 kΩ. Hằng số thời gian:

Ví dụ về đáp ứng ‘Natural’ mạch RC

i(t)

-

C1(5µF)

+

t = 0

4V

+

+

v1(t) -

v(t)

250 kΩ

+

-

+

24V

C2(20µF)

-

v2(t) -

➢ Điện áp ban đầu (t = 0- ) của tụ C1 và C2 có giá trị như hình vẽ.

➢ a) Tính: v1 (t); v2 (t); v(t) với t ≥ 0; và i(t) với t > 0. ➢ b)Tính năng lượng trử tổng cộng ban đầu của tụ C1 và C2 ? ➢ c)Tính năng lượng trử tổng cộng trong các tụ khi t → ∞? ➢ d) Chứng tỏ năng lượng cung cấp cho điện trở 250 kΩ thì bằng

Khóa điện đóng tại t = 0.

với sự sai biệt kết quả câu b và c

i(t)

-

C1(5µF)

+

t = 0

4V

t = 0

+

+

250 kΩ

v(t)

v1(t) -

+

i(t)

+

-

4 µF 250kΩ

24V

C2(20µF)

-

+ 20V - + v(t) -

v2(t) -

➢ a)Ta thay 2 tụ nối tiếp C1; C2 bằng tụ tương đương như hình.

Mạch tương đương

➢ Biết i(t) ta tính v1(t); v2(t) như sau:

Điện áp v(t) có giá trị ban đầu v(0+) = v(0- ) = 20 V.Hằng số thời gian của mạch: (4)(250)x10-3 =1s. Vậy: v(t) = 20e-t (V); t ≥ 0 . Dòng điện i(t) sẽ là: i(t) = v(t)/250000 = 80e-t (µA); t > 0.

➢ b) Năng lượng trử ban đầu trong tụ C1 : ➢ w1 = (5 x 10-6 )(-4)2/2 = 40 µJ. ➢ Năng lượng trử ban đầu trong tụ C2 : ➢ w2 = (20 x 10-6 )(24)2/2 = 5760 µJ. ➢ Năng lượng trử tổng cộng ban đầu trong 2 tụ: ➢ w0 = w1 + w2 = 40 + 5760 = 5800 µJ ➢ c) Khi t → ∞ : v1 → - 20 V; v2 → +20 V, năng lương

trử trong 2 tụ lúc đó sẽ là:

➢ w∞ = (5+20) x 10-6 (20)2/2 = 5000 µJ ➢ d) Năng lượng cung cấp cho điện trở 250 kΩ là:

➢ So sánh với kết quả (b) và (c): 800 = (5800 – 5000)

Ví dụ về đáp ứng ‘Natural’ mạch RC 20 kΩ

t = 0

7,5 mA 80 kΩ 50 kΩ 0,4 µF

➢ (A.P.7.3).Khóa ở vị trí đóng trong thời gian dài, tại t = 0 khóa

+ v(t) -

mở ra.Tính: ➢ a) v(t) với t ≥ 0 ➢ b) Năng lượng trử ban đầu của tụ ➢ c) Thời gian để năng lượng trong tụ tổn hao mất 75% năng

➢ Trả lời: a) 200e-50t (V) ; b) 8 mJ; c) 13,86 ms

lượng ban đầu

Ví dụ về đáp ứng ‘Natural’ mạch RC

t = 0 5 µF

15 kΩ

+ 20 kΩ

-

➢ (A.P.7.4).Khóa ở vị trí đóng trong thời gian dài, tại t = 0 khóa

15 V 40 kΩ v0(t) 1 µF

mở ra.Tính: ➢ a) v0 (t) với t ≥ 0 ➢ b) Năng lượng trử ban đầu của mạch đã tổn hao bao nhiêu

➢ Trả lời: a) 8e-25t + 4e-10t (V); b) 81,05%

phần trăm sau khi khóa mở được 60 ms?

Ví dụ về đáp ứng ‘Natural’ Mạch RC

20 kΩ

0,125 mv1 t = 0

18 mA 5 kΩ 0,2 µF 10 kΩ

(7.28). Tính: vc với t ≥ 0; v1 với t >0? Trả lời: 90e-1000t V; 180e-1000t V

+ v1 - + vc -

2.Đáp ứng ‘Natural’ mạch RL: Điều kiện đầu t = 0-

t = 0

R t = 0 I0

Với t < 0, các khóa điện không thay đổi vị trí trong thời gian dài. Dòng điện chạy qua cuộn dây tại t = 0- ? Điện áp 2 đầu cuộn dây tại t = 0- ? Năng lượng trử trong cuộn dây tại t = 0- ?

L i + v -

2.Đáp ứng ‘Natural’ mạch RL: Điều kiện đầu t = 0+

t = 0

R t = 0 I0

Với t < 0, các khóa điện không thay đổi vị trí trong thời gian dài. Dòng điện chạy qua cuộn dây tại t = 0+ ? Điện áp 2 đầu cuộn dây tại t = 0+ ? Năng lượng trử trong cuộn dây tại t = 0+ ?

L i + v -

2.Đáp ứng ‘Natural’ mạch RL: Điều kiện cuối t → ∞

t = 0

R t = 0 I0

Với t → ∞ , các khóa điện không thay đổi vị trí trong thời gian dài. Dòng điện chạy qua cuộn dây tại t → ∞ ? Điện áp 2 đầu cuộn dây tại t → ∞ ? Năng lượng trử trong cuộn dây tại t → ∞ ? Năng lượng đã đi đâu?

L i + v -

2.Đáp ứng ‘Natural’ mạch RL: phương trình vi phân

t = 0

R t = 0 I0

Tính i(t). Ta có: t < 0; i(t) = I0 . Với t > 0:

v(t) + Ri(t) = 0

L i + v -

2.Đáp ứng ‘Natural’ mạch RL: phương trình vi phân

2.Đáp ứng ‘Natural’ mạch RL: Tóm tắt

t = 0

R t = 0 I0

Với t > 0:

L i + v -

2.Đáp ứng ‘Natural’ mạch RL: năng lượng

t = 0

R t = 0 I0

Với t ≥ 0: Năng lượng trử trong cuộn dây:

Năng lượng tổn hao bởi điện trở:

Năng lượng trử trong cuộn dây ban đầu? Năng lượng trử trong cuộn dây tại t → ∞?

L i + v -

Ví dụ về đáp ứng ‘Natural’ mạch RL

t = 0 2 Ω i0

40 Ω 0,1Ω 10Ω 20 A + v0 - 2 H iL

Khóa điện ở trạng thái đóng trong thời gian dài. Tại t = 0 khóa

mở. Tìm: a) iL với t ≥ 0 b) i0 với t > 0 c) v0 với t > 0 d) Năng lượng tổn hao trên điện trở 10 Ω bằng bao nhiêu phần

trăm năng lượng trử ban đầu của cuộn dây?

t = 0 2 Ω i0

20 A 0,1Ω 10Ω 40 Ω

➢ a) Ta có: iL (0+ ) = iL (0- ) = 20A. Điện trở tương đương của mạch nhìn từ 2 đầu cuộn dây: Rtđ = 2 + (10//40) = 10 Ω ➢ Thời hằng : L/Rtđ = 2/10 = 0,2s. Vậy i(t) = 20e-5t (A); t ≥ 0 ➢ b) i0 (t)= - (10 iL )/(10 + 40) = -4e-5t (A); t > 0 .Chú ý biểu thức ➢ i0 (t) chỉ có giá trị với t > 0 vì i0 (0- ) = 0 ➢ c) v0 = 40i0 = -160e-5t (V), t > 0 ➢ d) Năng lượng tổn hao trên điện trở 10 Ω:

+ v0 - 2 H iL

t = 0 2 Ω i0

20 A 0,1Ω 10Ω 40 Ω

➢ Năng lương trử ban đầu trong cuộn dây 2H: ➢ W(0) = Li2 (0)/2 = (2)(20)2 /2 = 400 J ➢ Năng lượng tổn hao trên điện trở so với năng lượng ban đầu

+ v0 - 2 H iL

của cuộn dây:

Ví dụ về đáp ứng ‘Natural’ mạch RL

4 Ω i1 i2 i3

+

L1 (5H) t = 0 15 Ω 10 Ω 40 Ω v(t)

L2(20H)

-

➢ Dòng điện ban đầu t = (0- ) trong các cuộn dây L1 , L2 lần lượt

8A 4A

➢ a) i1 ; i2 ; i3 với t ≥ 0 ➢ b) Năng lượng trử ban đầu trong các cuộn dây ➢ c) Năng lượng trử trong các cuộn dây tại t → ∞ ➢ D) Chứng tỏ rằng năng lượng tổn hao bởi các điện trở trong

là 8A, 4A. Khóa điện mở ra tại t = 0. Tính:

mạch bằng với sự sai biệt kết quả (b) và (c)

i 4 Ω + i2 i3 8Ω 4H

i1 L1 (5H) t = 0 v(t) 40 Ω 15 Ω 10 Ω

L2(20H) 4A - + v(t) - 12A Mach tương đương 8A

a) Hai cuộn dây mắc song song ta có mạch tương đương như

hình ( t ≥ 0) ; điện trở tương đương bằng 8 Ω ; dòng điện ban đầu i(0+) = i(0-) = 12A; thời hằng = 4/8 = 0,5s. Vậy i(t) = 12e-2t (A), t ≥ 0 ; v(t) = 8 x 12e-2t = 96e-2t (V), t > 0. (Do v(0- ) = 0 nên biểu thức v(t) chỉ có giá trị với t > 0).

➢ Biểu thức i3 chỉ có giá trị với t > 0 ➢ b) Năng lượng trử ban đầu trong 2 cuộn dây: ➢ w = (5)(8)2 /2 + (20)(4)2 /2 = 320 J ➢ c) Khi t → ∞, i1 → 1,6 A; i2 → -1,6 A. Năng lượng trử trong 2

➢ d) Năng lượng tổn hao bởi các điện trở trong mạch:

➢ Ta nhận thấy kết quả này chính là sự sai biệt giữa năng lượng

cuộn dây lúc đó là: w = (5)(1,6)2 /2 + (20)(-1,6)2 /2 = 32 J

➢ 288 = (320 - 32)

trử ban đầu và năng lượng tại t → ∞ của 2 cuộn dây :

20 A

Ví dụ về đáp ứng ‘Natural’ mạch RL

3Ω 6Ω t = 0

➢ (A.P.7.1).Khóa điện ở vị trí đóng trong thời gian dài.Tại t = 0

120 V 8 mH 2Ω 30Ω i

➢ a) Dòng điện i(t) với t ≥ 0 ➢ b) Năng lượng trử ban đầu trong cuộn dây ➢ c) Năng lượng tổn hao trên điện trở 2Ω sau khi khóa mở được 5 ms bằng bao nhiêu phần trăm năng lượng trử ban đầu của cuộn dây?

➢ Trả lời: a) -12,5e-250t (A); b) 625 mJ; c) 91,8%

khóa mở ra.Tính:

Ví dụ về đáp ứng ‘Natural’ mạch RL

a

6 Ω t = 0

+

b 10 Ω 0,32 H 4 Ω v0 6,4A

➢ (A.P.7.2). Tại t = 0 khóa điện chuyển vị trí từ a sang b. Tính: ➢ a) v0 với t > 0 ➢ b) Năng lượng tổn hao trên điện trở 4Ω bằng bao nhiêu phần

-

➢ Trả lời: a) -8e-10t (V); b) 80%

trăm năng lượng trử ban đầu của cuộn dây?

Ví dụ về đáp ứng ‘Natural’ mạch RL

50 i1 3 Ω 4,5 Ω

t = 0

100 Ω 200 Ω 54 V 9 Ω

(P.7.15).Tính : * iL (t) với t ≥ 0 ? *v(t) với t > 0 ? *i1 (t) với t > 0 ? •Trả lời: 6e-500t A; -600e-500t V; -4e-500t A

+ v - 200 mH iL i1

3.Đáp ứng ‘step’ mạch RC: Điều kiện đầu t = 0-

t = 0 t = 0 R

i(t )

-

Với t < 0, các khóa điện không thay đổi trong thời gian dài. *Dòng chạy qua tụ tại t = 0- ? *Điện áp 2 đầu tụ tại t = 0- ? *Năng lượng trử trong tụ tại t = 0- ?

Vs V0 + v(t )

3.Đáp ứng ‘step’ mạch RC: Điều kiện đầu t = 0+

t = 0 t = 0 R

i(t )

-

Với t < 0, các khóa điện không thay đổi trong thời gian dài. *Dòng chạy qua tụ tại t = 0+ ? *Điện áp 2 đầu tụ tại t = 0+ ? *Năng lượng trử trong tụ tại t = 0+ ?

Vs V0 + v(t )

3.Đáp ứng ‘step’ mạch RC: Điều kiện cuối t → ∞

t = 0 t = 0 R

i(t )

-

Với t → ∞, các khóa điện không thay đổi trong thời gian dài. *Dòng chạy qua tụ tại t → ∞? *Điện áp 2 đầu tụ tại t → ∞? *Năng lượng trử trong tụ tại t → ∞?

Vs V0 + v(t )

3.Đáp ứng ‘step’ mạch RC: Phương trình vi phân

t = 0 t = 0 R

i(t )

-

Tính v(t). Với t ≤ 0; v(t) = V0 . Với t > 0; ta có:

Vs - v(t) = Ri(t)

Vs V0 + v(t )

3.Đáp ứng ‘step’ mạch RC: Phương trình vi phân

3.Đáp ứng ‘step’ mạch RC: Phương trình vi phân

t = 0 t = 0 R

i(t )

-

Tính v(t). Với t ≤ 0; v(t) = V0 . Với t > 0; ta có:

Vs V0 + v(t )

Đáp ứng ‘Step’:Thành phần tự do và cưỡng bức

v(t) = vf + vn (t) vf = Vs

*Đáp ứng ‘Step ‘ gồm 2 thành phần : Thành phần tự do và thành phần cưỡng bức. *Thành phần cưỡng bức liên quan đến giá trị sau cùng và cũng được gọi là thành phần xác lập *Thành phần tự do thay đổi theo thời gian và cũng được gọi là thành phần quá độ.

Đáp ứng ‘Step’ mạch RC : Đồ thị

V(t) Vs

Forced Natural Total

V0

Time (s)

0 1 2 3 4 5

Ví dụ về đáp ứng ‘Step’ mạch RC 1

20kΩ 40kΩ 8kΩ 2

i0 t = 0

60kΩ

160kΩ

➢ Khóa điện ở vị trí 1 trong thời gian dài. Tại = 0 khóa chuyển

+ v0 - 0,25µF 40V 75V

➢ a) v0 (t) với t ≥ o ➢ b) i0 (t) với t > 0

sang vị trí 2 . Tìm:

20kΩ 1 2 8kΩ 40kΩ

60kΩ i0 160kΩ 40kΩ

➢ a) Ta có: v0 (0+ ) = v0 (0- ) = 40(60/80) = 30 V. Để tính v0 (t) với t ≥ 0 ta tìm mạch tương đương tại 2 đầu của tụ khi hở mạch . vTh = (- 75 V) x 160/(40 + 160) = - 60V

➢ RTh = 8000 + 40000 // 160000 = 40 kΩ ➢ IN = -60/(40 x 103 ) = -1,5 mA ➢ Thời hằng: RC = RThC = (40x103 )x (0,25x10-6 ) =10 ms ➢ Trị giá sau cùng : IN RTh = -1,5 mA x 40 kΩ = - 60 V ➢ v0 = -60 + (30 – (-60))e-100t = - 60 + 90e-100t (V), t ≥ 0 ➢ b) i0 (t) = C(dv0 /dt) = (0,25x10-6 ) (-9000e-100t) = - 2,25e-100t (mA), t > 0 ➢

+ 30V - 0,25µF 40V 75V 1,5mA t = 0 + v0 -

4.Đáp ứng ‘Step’ mạch RL: Điều kiện đầu t = 0-

R

t = 0 t = 0 t = 0

-

L + V I0 Vs

Với t < 0 , các khóa điện không thay đổi vị trí trong

thời gian dài. • Dòng điện chạy qua cuộn dây tại t = 0- ? • Điện áp tại 2 đầu cuộn dây tại t = 0- ? • Năng lượng trử trong cuộn dây tại t = 0- ?

i(t)

4.Đáp ứng ‘Step’ mạch RL: Điều kiện đầu t = 0+

R

t = 0 t = 0 t = 0

-

L + V I0 Vs

Với t < 0 , các khóa điện không thay đổi vị trí trong

thời gian dài. • Dòng điện chạy qua cuộn dây tại t = 0+ ? • Điện áp tại 2 đầu cuộn dây tại t = 0+ ? • Năng lượng trử trong cuộn dây tại t = 0+ ?

i(t)

Đáp ứng ‘Step’ mạch RL: Điều kiện cuối t →∞

R

t = 0 t = 0 t = 0

-

L + V I0 Vs

Với t → ∞ , các khóa điện không thay đổi vị trí

trong thời gian dài. • Dòng điện chạy qua cuộn dây tại t → ∞ ? • Điện áp tại 2 đầu cuộn dây tại t → ∞ ? • Năng lượng trử trong cuộn dây tại t → ∞ ?

i(t)

4.Đáp ứng ‘Step’ mạch RL: Phương trình vi phân

R

t = 0 t = 0 t = 0

-

L + V I0 Vs

i(t)

Tính i(t). Với t ≤ 0; i(t) = I0 . Với t > 0 ta có:

Vs - Ri(t) = v(t)

4.Đáp ứng ‘Step’ mạch RL: Phương trình vi phân

4.Đáp ứng ‘Step’ mạch RL:Tóm tắt

Ví dụ về đáp ứng ‘Step’ mạch RL

b a

2 Ω t = 0

+

200 mH 10 Ω 24 V 8A v i

➢ Khóa điện ở vị trí a trong thời gian dài. Tại t = 0 khóa chuyển

-

➢ a) i(t) với t ≥ 0 ➢ b) Điện áp 2 đầu cuộn dây ban đầu khi khóa vừa chuyển sang

sang vị trí b. Tính:

➢ c) Bao lâu sau khi khóa chuyển sang vị trí b thì điện áp cuộn

vị trí b

dây bằng 24 V

2 Ω

a t = 0

➢ a).Ta có : i(0+ ) = i(0- ) = - 8 A. Khi khóa ở vị trí b, i có giá trị sau cùng là 24/2 = 12 A .Hằng số thời gian: 200x10-3 /2 = 100 ms. Vậy: i(t) = 12 + (- 8 -12)e-t/0,1 = 12 – 20e-10t (A), t ≥ 0 ➢ b) Điện áp 2 đầu cuộn dây: v = L di/dt = 0,2(200e-10t ) ➢ = 40e-10t (V), t > 0. Điện áp ban đầu cuộn dây: v(0+) = 40 V ➢ c) Thời gian để điện áp cuộn dây bằng 24 V sau khi khóa ở vị

10 Ω i 200 mH 24 V 8A b + v -

trí b: 24 = 40e-10t → t = 51,08 ms

Ví dụ về đáp ứng ‘Step’ mạch RL

a b

2 Ω t = 0

+

200 mH 10 Ω 24 V 8A v i

➢ (A.P.7.5).Khóa điện ở vị trí b trong thời gian dài. Tại t = 0 khóa

-

➢ a) i(t) với t ≥ 0 ➢ b) v(t) với t > 0 ➢ Trả lời; a) - 8 + 20e-50t (A); b) -200e-50t (V)

chuyển sang vị trí a. Tính:

5.Nghiệm tổng quát đáp ứng mạch RC và RL Nghiệm tổng quát đáp ứng (điện áp, dòng điện) có dạng:

Gồm các bước sau: 1.Ghép các cuộn dây (tụ điện) trong mạch thành 1 cuộn dây (tụ điện ) tương đương. 2.Phân tích mạch DC để tìm dòng điện (điện áp) chạy qua cuộn

dây(2 đầu tụ điên) tại t = 0- .

3.Phân tích mạch DC để tìm giá trị ban đầu của biến mà ta quan tâm tại t= 0+ 4. Phân tích mạch DC để tìm giá trị xác lập của biến mà ta quan tâm tại t → ∞ 5.Tìm điện trở tương đương của mạch nhìn từ cuộn dây (tụ điện) 6.Tính thời hằng 7.Áp dụng công thức tổng quát ở trên

Ví dụ về nghiệm tổng quát

b a

20Ω t = 0

400kΩ +

90V 60Ω 40V vC

i 0,5µF

➢ Khóa ở vị trí a trong thời gian dài. Tại t = 0 khóa chuyển sang

-

➢ a) vC (t) với t ≥ 0 ➢ b) i(t) với t > 0 ➢ c) Khóa điện ở vị trí b trong bao lâu thì điện áp 2 đầu tụ bằng 0

b. Tìm:

a

b 400kΩ 20Ω

t = 0

90V 60Ω 40V

➢ a) Ta có: vC (0+ ) = vC (0- ) = -40 x (60/(60+20)) = -30 V . ➢ Khi khóa ở vị trí b, trị giá sau cùng của vC: 90 V. Thời hằng:

0,5µF i + vC -

➢ vC = 90 + (-30 – 90)e-5t = 90 – 120e-5t (V), t ≥ 0 ➢ b) i(0+ ) = (90 – vC (0+ ))/(400x103 ) = (90 –(-30))/(400x103 ) = 300 µA . Vậy: i(t) = 0 + (300 – 0)e-5t = 300e-5t (µA), t > 0

➢ c) thời gian khóa ở vị trí b để điện áp 2 đầu tụ bằng 0: ➢ 90 – 120e-5t = 0 → t = 57,54 ms

RC = (400x103 )(0,5x10-6 ) = 0,2s. Vậy:

Ví dụ về nghiệm tổng quát

t = 0 +

i 0,1 µF

v 20 kΩ 7,5 mA 30 kΩ

➢ Khóa điện ở trạng thái mở trong thời gian dài. Tại t = 0 khóa

-

➢ a) i(t) với t > 0 ➢ b) v(t) với t > 0

đóng. Điện tích ban đầu của tụ bằng 0. Tính:

i t = 0

0,1 µF

20 kΩ 7,5 mA 30 kΩ

➢ a) Do điện áp ban đầu tụ bằng 0, nên i(0+) = (7,5 x 20)/(20+30) = 3 mA. Dòng i có giá trị sau cùng bằng 0 vì tụ hở mạch đối với tín hiệu DC. Thời hằng: (20+30)x103 x (0,1)x10-6 = 5 ms.

➢ Vậy i(t) = 0 + (3 – 0) e-1000t/5 = 3e-200t (mA), t > 0 ➢ b) v(t) bằng điện áp 2 đầu tụ vC cộng với điện áp 2 đầu điện trở

+ v -

➢ Ta có: vC (0+ ) = vC (0- ) = 0. Giá trị sau cùng của vC = (7,5)(20) = 150 V. Vậy: vC (t) = 150 + (0 – 150)e-200t = 150 -150e-200t (V) ,t ≥ 0 . Nên: v(t) = 150 – 150e-200t + (30)(3)e-200t

30 kΩ.

= 150 – 60e-200t (V), t > 0. (Biểu thức v(t) chỉ

có giá trị với t > 0 vì v(0- ) = 150 V)

Ví dụ về nghiệm tổng quát t = 0

1 Ω i

3 Ω

80 mH 20 V

➢ Khóa điện ở vị trí mở trong thời gian dài.Tại t= 0 khóa

+ v -

➢ a) v(t) với t > 0 ➢ b) i(t) với t ≥ 0

đóng.Tìm:

t = 0 1 Ω i

3 Ω

80 mH 20 V

➢ a) Ta có: i(0+ ) = i(0- ) = 20/(1 + 3) = 5 A; v(0+ ) = 20 – 1 x i(0+ ) = 15 V. Giá trị sau cùng điện áp cuộn dây bằng 0 . Thời hằng: 80x10-3 /1 = 80 ms.Vậy:v(t) = 0+(15 – 0)e-1000t/80 = 15e-12,5t ,t> 0 ➢ b) i(0+ ) = i(0- ) = 5 A. Giá trị sau cùng dòng điện cuộn dây bằng

+ v -

20/1 = 20 A. Nên : i(t) = 20 + (5 - 20)e-12,5t

➢ Ta có thể tìm v(t) như sau: ➢ v(t) = L(di/dt) = 80 x 10-3 (15(12,5)e-12,5t ) = 15e-12,5t (V), t > 0

= 20 – 15e-12,5t (A), t ≥ 0

Ví dụ về đáp ứng mạch RL

t = 35ms t = 0

1 2 4 Ω 3 Ω iL

12 Ω 6 Ω

150 mH 18Ω

➢ Hai khóa điện ở vị trí đóng trong thời gian dài.Tại t = 0, khóa 1

60V + vL -

➢ a) iL (t) với 0 ≤ t ≤ 35 ms ➢ b) iL (t) với 35 ms ≤ t ➢ c) Năng lượng tổn hao trên điện trở 18 Ω bằng bao nhiêu phần

mở . Sau đó 35 ms khóa 2 mở. Tìm:

trăm năng lượng ban đầu của cuộn dây

t = 0 t = 35ms

1 4 Ω 2 2 3 Ω 1 3 Ω

150 mH

12 Ω 6 Ω 6 Ω iL 150 mH 18Ω

60V + vL -

+ vL 18Ω - iL(0+ )

a) Với t < 0 , ta tính iL(0- ) bằng cách biến đổi nguồn áp 60 V

thành nguồn dòng và biến đổi các điện trở // thành điện trở tương đương ta tính được iL(0- ) = iL(0+ ) = 6 A Với 0 ≤ t ≤ 35 ms khóa 1 mở lúc đó ta có mạch tương đương như hình trên. Điện trở tương đương nhìn từ cuộn dây gồm điện trở 6Ω nối tiếp 3Ω tất cả mắc // với 18Ω nên Rtđ = 6Ω. Thời hằng: (150/6) x 10-3 = 25 ms. Vậy: iL (t) = 6e-40t (A), 0 ≤ t ≤ 35 ms

1 3 Ω 3 Ω

150 mH

150 mH

18Ω 6 Ω 6 Ω

+ vL - iL(0,035)=1,48A 2 + vL - iL

b) Khi t = 35 ms , dòng iL có trị giá: iL = 6e-1,4 = 1,48 A. Lúc này khóa 2 mở, ta có mạch tương đương thu gọn như hình trên. Thời hằng có giá trị mới là: (150/9) x 10-3 = 16,67 ms. Vậy: iL (t) = 1,48e-60(t-0,035) (A), t ≥ 35 ms

c) Điện trở 18 Ω chỉ được nối với cuộn dây trong khoảng 35 ms

đầu tiên sau khi khóa 1 mở. Điện áp 2 đầu của nó:

vL = (0,15) d(6e-40t )/dt = -36e-40t (V), 0 < t < 35 ms Năng lượng tổn hao bởi điện trở 18 Ω:

Năng lượng ban đầu của cuộn dây: wL = (0,15)(6)2 /2 = 2700 mJ (845,27/2700) x 100 = 31% năng lượng ban đầu cuộn dây

Ví dụ về đáp ứng mạch RC

a

100kΩ

b c

50kΩ 400V 0,1µF

➢ Tụ điện ban đầu không chứa điện tích và khóa ở vị trí a Tại t = 0 khóa di chuyển đến b và ở vị trí này trong 15 ms. Sau đó khóa di chuyển đến c và ở vị trí này trong khoảng thời gian dài.

➢ a) Tính điện áp 2 đầu tụ. ➢ b) Khi nào điện áp tụ bằng 200 V? Giải: ➢ a) Khi t = 0 khóa di chuyển đến b, v(0+ ) = v(0- ) = 0 V và nếu

+ v(t) -

khóa ở vị trí này trong thời gian dài thì giá trị sau cùng của v = 400 V, thời hằng = 0,1 µF x 100 kΩ = 10 ms. Vậy:

100kΩ a

b c

400V 50kΩ 0,1µF

➢ v = 400 + (0 – 400)e-100t = 400 – 400e-100t (V), 0 ≤ t ≤ 15 ms ➢ Khóa chỉ ở vị trí b trong 15 ms lúc đó điện áp của tụ: ➢ v(15ms) = 400 – 400e-1,5 = 310,75 V. Khi khóa di chuyển đến c , điện áp ban đầu là 310,75 V , điện áp sau cùng bằng 0, thời hằng: 0,1µFx 50kΩ = 5ms. Vậy: v(t) = 0+(310,75 – 0)e-200(t-0,015)

➢ = 310,75e-200(t-0,015) (V), t ≥ 15 ms ➢ b) Thời gian để điện áp tụ bằng 200 V chính là hai nghiệm

+ v(t) -

➢ 200 = 400 – 400e-100t → t1 = 6,93 ms ➢ 200 = 310,75e-200(t-0,015) → t2 = 17,20 ms

của 2 phương trình:

Ví dụ về đáp ứng của op-amp

+ 5V -

0,1µF

a 100kΩ

--

6V

+ +

b t = 9ms

10V 8V - 6V

➢ Khi khóa tiếp xúc với vị trí a điện áp ban đầu của tụ là 5 V.

+ v0 -

➢ Giải:

➢ Khi khóa ở vị trí a, điện áp ngõ ra v0 :

Khóa ở vị trí a trong 9 ms sau đó di chuyển sang b. Hỏi sau khi khóa ở vị trí b thì bao lâu sau op - amp sẽ bảo hòa?

+ 5V -

0,1µF

a 100kΩ 6V

b

-- + +

t = 9ms

10V 8V - 6V

➢ Khóa ở vị trí a sau 9 ms điện áp tụ sẽ là: - 5 + 9 = 4 V. Khi khóa

+ v0 -

➢ Op – amp bảo hòa khi điện áp v0 bằng -6 V. Khi khóa ở vị trí b thời gian để op – amp bảo hòa là nghiệm của phương trình:

➢ 11,2 – 800t = - 6 → t = 21,5 ms

di chuyển sang vị trí b, điện áp của tụ sẽ là:

(A.P.7.7).Ví dụ về đáp ứng mạch RC

t = 0 t =10ms

2 1 60kΩ +

25kΩ 1µF 10mA 40kΩ vC

100kΩ

➢ Khóa 1 ở trạng thái đóng và khóa 2 ở trạng thái mở trong thời gian dài. Tại t = 0 khóa 1 mở, sau đó 10 ms khóa 2 đóng. Tìm:

➢ a) vC(t) với 0 ≤ t ≤ 0,01 s c) Năng lượng tổn hao bởi 25 kΩ ➢ b) vC(t) với 0,01 s ≤ t d) Năng lượng tổn hao bởi 100 kΩ ➢ Trả lời: a) 80e-40t ; b) 53,63e-50(t-0,01) ; c) 2,91 mJ; d) 0,29 mJ

-

Ví dụ về đáp ứng mạch RL

t = 1

b

t = 1

8A 2Ω 0,8Ω a

9Ω t = 0 i

➢ (A.P.7.8).Khóa a mở và khóa b đóng trong thời gian dài. Tại t = 0 khóa a đóng và sau đó 1s lại mở ra cùng lúc với khóa b mở. Tính:

➢ a) i(t) với 0 ≤ t ≤ 1s ➢ b) i(t) với 1s ≤ t ➢ Trả lời: a) 3 – 3e-0,5t ; b) – 4,8 + 5,98e-1,25(t – 1)

3Ω 2 H 3Ω 6Ω 10V

Ví dụ về đáp ứng của op-amp

40kΩ 10kΩ

5 V - -

160kΩ +

+ + - 5 V

t = 0

v0 2 V 6,8kΩ 0,01µF

➢ Khi khóa đóng tụ điện không tích điện ban đầu. Hỏi bao lâu sau

-

➢ Trả lời: 1,11 ms

khi khóa đóng op – amp sẽ bảo hòa?

(P.7.23).Ví dụ về đáp ứng mạch RC

100 µA 0,4 µF

Trả lời: i1 (t) = 0,2e-500t mA, t ≥0;

20 kΩ 5 kΩ 10 kΩ i2 (t) = -0,2e-500t mA, t >0

i2 (t) i1(t)

1.Tìm i1 (0- ) và i2 (0- ) 5.Tìm i1 (t) 2. Tìm i1 (0+ ) và i2 (0+ ) 6.Tìm i2 (t) 3.Giải thích vì sau i1 (0- ) = i1 (0+ ) 4.Giải thích vì sau i2 (0- ) ≠ i2 (0+ )

10 V 5 kΩ t = 0

(P.7.46).Ví dụ về đáp ứng mạch RL t = 0

10 A 20 A 15 Ω 12 mH 8 mH 48 Ω + v0 -

Tính v0 (t) ; i1 (t) ; i2 (t)?

Trả lời:

-480e-10t V; (4e-10t +4) A; (6e-10t +6) A

i1 i2

Ví dụ về đáp ứng mạch RC và RL

240 kΩ 800 Ω 12 kΩ 4 kΩ

iC t = 0

Tính : vC (t); iC (t); vL (t); iL (t) ? với t > 0

vC vL 33,33 µF 12 kΩ 20 V 200 Ω 500 mH

Ví dụ về đáp ứng mạch RC và RL

5 kΩ 5 kΩ 4 kΩ

t = 0 t = 0

6 kΩ

Với t > 0 ; Tính : vC (t); iC (t); vL (t); iL (t)?

+ vC - 20 mA 10 V + vL - 2 H iL 5 mF iC

5.3.Đáp ứng mạch RLC bậc hai

iL iC iR

R C L i0

➢ 1.Đáp ứng ‘natural’ mạch RLC song song. Điện áp v là nghiệm

+ v0 - + v -

➢ Nghiệm phương trình vi phân phụ thuộc vào nghiệm của

của phương trình vi phân bậc hai:

phương trình đặc tính:

1.Đáp ứng ‘natural’ mạch RLC song song

Nghiệm của phương trình đặc tính:

•Nếu α2 > ω0

2 : s1 , s2 là 2 nghiệm thực riêng biệt , ta nói đáp ứng

α: Tần số Neper; ω0: Tần số góc cộng hưởng

• Nếu α2 < ω0

2 : s1 , s2 là 2 nghiệm phức liên hiệp, ta nói đáp ứng

v có đệm quá mức (overdamped) và có dạng:

•Nếu α2 = ω0

2 : s1 , s2 là 2 nghiệm thực trùng nhau, ta nói đáp ứng

v có đệm yếu (underdamped) và có dạng:

v có đệm tới hạn (critically damped) và v có dạng: •v = D1 te-αt + D2 e-αt

Ví dụ về nghiệm phương trình đặc tính

iL iC iR

R C L i0

➢ a) Tìm nghiệm của phương trình đặc tính của đáp ứng v có mạch như hình? Biết: R = 200Ω; L = 50 mH; C = 0,2 µF ➢ b) Đáp ứng có đệm quá mức, đệm yếu hay đệm tới hạn? ➢ c) Lập lại (a), (b) với R = 312,5 Ω ➢ d) R có trị giá bao nhiêu để có đáp ứng đệm tới hạn?

+ v0 - + v -

Ví dụ về nghiệm phương trình đặc tính

2 b) Ta có đáp ứng đệm quá mức vì α2 > ω0

Ví dụ về nghiệm phương trình đặc tính

S 1 = - 8000 + j6000 (rad/s) S 2 = - 8000 - j6000 (rad/s) 2 Trường hợp này ta có đệm yếu vì α2 < ω0 2 , như vậy:

d) Để có đệm tới hạn: α2 = ω0

Đáp ứng trong trường hợp đệm quá mức

Để tìm đáp ứng v(t) trong trường hợp đệm quá mức ta thực hiện các bước sau: 1.Tìm các nghiệm s1, s2 của phương trình đặc tính 2.Phân tích mạch tìm v(0+) và dv(0+)/dt 3.Giải hệ phương trình (2), (3) tìm A1, A2 4.Thế trị giá s1, s2 , A1, A2 vào (1)

Ví dụ về đáp ứng có đệm quá mức

iR iL iC

200Ω 50mH 0,2µF i0

➢ Tìm đáp ứng v(t) ? Biết v(0+) = 12V; iL (0+) = 30 mA

➢ Giải: ➢ Ta có: iL(0-) = iL(0+) = 30 mA; iR (0+) = v(0+)/R = 12/200 = 60 mA; ➢ iC (0+) = - iL(0+) - iR(0+) = -30 mA – 60 mA = -90 mA

+ v - + v0 -

Ví dụ về đáp ứng có đệm quá mức

➢ Đa thức đặc trưng có 2 nghiệm thực riêng biệt nên đáp ứng

➢ Ta có: 12 = A1 + A2 ; -450 x 103 = -5000A1 - 20000A2 ➢ → A1 = -14 (V); A2 = 26 (V). Vậy:

➢ v(t) = (-14e-5000t + 26e-20000t ) (V) , t ≥ 0

đệm quá mức.

Đáp ứng trong trường hợp đệm yếu

ωd : tần số đệm; α: Hệ số đệm Trong trường hợp này điện áp v dao động với tần số ωd .Nếu không có đệm, α = 0 tần số dao động bằng ω0. Biên độ dao động giảm theo hàm mủ được xác định bởi α. Các hệ số B1, B2 được xác định bởi hệ phương trình: v(0+ ) = V0 = B1 (1)

Ví dụ về đáp ứng có đệm yếu

iR iL iC

20kΩ 8H 0,125µF i0

➢ Tìm đáp ứng v(t) ? Biết v(0+) = 0V; iL (0+) = - 12,25 mA

➢ Giải:

➢ Ta có: iL(0-) = iL(0+) = -12,25 mA; iR (0+) = v(0+)/R = 0; ➢ iC (0+) = - iL(0+) - iR(0+) = -(-12,25) mA – 0 = 12,25 mA

+ v - + v0 -

Ví dụ về đáp ứng có đệm yếu

2 > α2 :Ta có đệm yếu

➢ ω0

➢ Ta có: B1 = v(0+ ) = 0; B2 = 98000/ωd = 100 V. Vậy:

➢ v(t) = (100e-200t sin 979,80t ) (V) , t ≥ 0

Đáp ứng trong trường hợp đệm tới hạn

2 .Đáp ứng có dạng:

Trong trường hợp này: α2 = ω0

V = D1 te-αt + D2 e-αt Các hệ số D1, D2 được xác định bởi hệ phương trình: v(0+ ) = V0 = D2 (1)

Ví dụ về đáp ứng có đệm tới hạn

iL iR iC

0,125µF 8H i0 R

➢ a) Tìm R để có đệm tới hạn? b)Tìm đáp ứng v(t) ?

Biết v(0+) = 0V; iL (0+) = - 12,25 mA

2 = 106 . Để có đệm tới

➢ Giải: ➢ a) Theo ví dụ trước ta có: ω0

hạn:

➢ α = 103 = 1/2RC

+ v0 - + v -

Ví dụ về đáp ứng có đệm tới hạn

iL iR iC

0,125µF 8H i0 R

➢ b) Theo ví dụ trước ta có: v(0+ ) = 0 và:

➢ Vậy: D2 = v(0+ ) = 0 ; → D1 = dv(0+ ) /dt = 98000

➢ Nên; v(t) = 98000te-1000t (V) , t ≥ 0

+ v0 - + v -

2.Đáp ứng ‘step’ mạch RLC song song

iC iR iL +

t = 0 I R 25 mH 25nF v

➢ Đáp ứng ‘step’ có dạng: ➢ i = if + in ; (if : Thành phần cưỡng bức; in: Thành phần tự do) ➢ v = vf + vn ➢ Ví dụ: Năng lượng trử ban đầu trong tụ và cuộn dây bằng 0

-

như hình.Tại t = 0, dòng IDC = 24 mA được nối vào mạch (khóa mở). a)Tính iL với t ≥ 0? b) Tính v(t) với t ≥ 0 ? Biết R = 400 Ω. Giải:

2.Đáp ứng ‘step’ mạch RLC song song a)Năng lượng trử ban đầu bằng không: iL = 0; v(0) = 0 Ta có: v = L(diL /dt) →diL(0+ )/dt = 0

2 : Đệm quá mức. Ta có 2 nghiệm thực riêng biệt:

Vì α2 > ω0

s1 = -5 x 104 + 3 x 104 = - 20000 s2 = -5 x 104 - 3 x 104 = - 80000

Đáp ứng iL có dạng:

iL (0) = If + A1 + A2 = 0 (1); diL(0 )/dt = s1 A1 + s1 A1 = 0 (2); Từ (1) và (2) → A1 = -32 mA; A2 = 8 mA. Vậy:

2.Đáp ứng ‘step’ mạch RLC song song iL(t) = (24 – 32e-20000t + 8e-80000t ) mA b)Tính v(t): *Cách 1: v(t) = L(diL /dt)

v(t) = (16e-20000t -16e-80000t ) V *Cách 2:

v (0+) = A1 + A2 = 0 (1); ic (0+)/C = dv(0+ )/dt = s1 A1 + s1 A1

(1) Và (2) → A1 = 16; A2 = -16 .Vậy: v(t) = (16e-20000t -16e-80000t ) V

3.Đáp ứng ‘natural’ mạch RLC nối tiếp

L R i

I0 C

➢ Đáp ứng ‘natural’ mạch RLC nối tiếp tương tự đáp ứng ‘natural’

+ V0 -

➢ i(t) = D1 te-αt + D2 e-αt (critically damped)

➢ Từ đó ta tính được áp 2 đầu các thành phần của mạch dể dàng

mạch RLC song song:

4.Đáp ứng ‘step’ mạch RLC nối tiếp

L

i

+ vL - R + vR - C

+ vC - V

➢ Đáp ứng ‘step’ mạch RLC nối tiếp tương tự đáp ứng ‘step’

t = 0

➢ vC (t) = vf + D1 te-αt + D2 e-αt (critically damped)

mạch RLC song song:

vf : Trị giá sau cùng của vC (theo hình vf = V)