intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Bài giảng Toán tài chính: Bài 7 - ThS. Trần Phước Huy

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:30

47
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

"Bài giảng Toán tài chính - Bài 7: Thanh toán nợ trái phiếu theo chuỗi niên kim cố định" giúp người học hiểu được phương thức thanh toán nợ trái phiếu thường được dùng bởi những nhà phát hành - thanh toán theo chuỗi niên kim cố định; đánh giá được hiệu của đầu tư trái phiếu cũng như hiệu quả trong việc phát hành trái phiếu của người phát hành.

Chủ đề:
Lưu

Nội dung Text: Bài giảng Toán tài chính: Bài 7 - ThS. Trần Phước Huy

  1. BÀI 7 THANH TOÁN NỢ TRÁI PHIẾU THEO CHUỖI NIÊN KIM CỐ ĐỊNH ThS. Trần Phước Huy Trường Đại học Kinh tế Quốc dân v1.0012110212 1
  2. TÌNH HUỐNG KHỞI ĐỘNG Phát hành trái phiếu mở rộng hoạt động kinh doanh Công ty Cổ phần Phúc Quang có kế hoạch mở rộng sản xuất kinh doanh thông qua nguồn vốn thu được từ đợt phát hành trái phiếu. Khối lượng phát hành dự kiến là 100 triệu trái phiếu, mệnh giá trái phiếu là 10.000 đồng, tương ứng là 1.000 tỷ đồng thu về từ đợt phát hành. Lãi suất coupon hàng năm là 7%. Thời hạn của đợt phát hành là 5 năm. Để tạo điều kiện thuận lợi cho việc chi trả, các trái phiếu sẽ được đa dạng hóa về kỳ đáo hạn từ 1 năm đến 5 năm. Đồng thời, công ty sẽ sử dụng phương thức trả theo chuỗi niên kim cố định để thống nhất số tiền phải trả hàng năm cho đợt phát hành này. 1. Hãy xác định số tiền hàng năm mà Công ty chuẩn bị để trả nợ phát hành trái phiếu. 2. Hãy xác định cơ cấu trái phiếu đáo hạn qua các năm phù hợp với yêu cầu của doanh nghiệp. 3. Xây dựng lịch trả nợ lãi coupon hàng năm và gốc cho trái phiếu đáo hạn hằng năm của Công ty. v1.0015110212 2
  3. MỤC TIÊU Giúp người học hiểu được phương thức thanh toán nợ trái phiếu thường được dùng bởi những nhà phát hành - thanh toán theo chuỗi niên kim cố định. Bên cạnh đó, người học cũng đánh giá được hiệu của đầu tư trái phiếu cũng như hiệu quả trong việc phát hành trái phiếu của người phát hành. v1.0015110212 3
  4. NỘI DUNG Bài toán tổng quát Trường hợp thanh toán R cao hơn mệnh giá C Lãi suất đầu tư trái phiếu Lãi suất giá thành trái phiếu v1.0015110212 4
  5. 1. BÀI TOÁN TỔNG QUÁT 1.1. Bài toán và công thức 1.2. Lập bảng thanh toán nợ trái phiếu v1.0015110212 5
  6. 1.1. BÀI TOÁN VÀ CÔNG THỨC Doanh nghiệp có một đợt phát hành trái phiếu với các kỳ hạn khác nhau: • μ1 trái phiếu có kỳ hạn 1 năm. • μ2 trái phiếu có kỳ hạn 2 năm. •  • μn trái phiếu có kỳ hạn n năm. • Tổng số trái phiếu phát hành là N, mệnh giá trái phiếu là C. Lãi suất coupon là i%/năm. Doanh nghiệp dự định trả nợ theo niên kim cố định. • Vậy theo công thức ở bài 6 đã học, ta có các công thức liên quan đến trái phiếu như sau: N = μ1 + μ2 + … + μn • Số tiền thu được từ đợt phát hành: V = NC • Niên kim là: i a = NC 1 – (1 + i)n v1.0015110212 6
  7. 1.1. BÀI TOÁN VÀ CÔNG THỨC (tiếp) • Số trái phiếu thanh toán lần đầu m1 V i i 1 = =  =N C C (1 + i)n –1 (1 + i)n – 1 • Số trái phiếu thanh toán ở niên kim k mk m1(1 + i)k  1 k = = = 1(1 + i)k – 1 C C v1.0015110212 7
  8. 1.1. BÀI TOÁN VÀ CÔNG THỨC (tiếp) • Tổng số trái phiếu thanh toán sau k niên kim (1 + i)k – 1 (1+i)k – 1 rk = 1+ 2+…+k= 1 =N i (1+i)n – 1 • Số dư trái phiếu còn lại sau k niên kim (1 + i)k – 1 (1 + i)n – (1+i)k dk = N – rk = N – N  =N (1 + i)n –1 (1+i)n – 1 v1.0015110212 8
  9. 1.2. LẬP BẢNG THANH TOÁN NỢ TRÁI PHIẾU Bài toán: Một khoản nợ trái phiếu với số tiền V = 800.000 được chia làm 8.000 trái phiếu, mỗi trái phiếu có mệnh giá 100. Lãi suất i = 0,06. Tổng số nợ trái phiếu được thanh toán trong 4 năm theo niên kim cố định. Bài giải: Số trái phiếu thanh toán qua các năm là: i 0,06 1 = N  = 8.000 = 1.829 (1 + i) – 1 n 1,064 –1 2 = 1(1 + i) = 1.939 3 = 1(1 + i)2 = 2.055 4 = N  1  2  3 = 2.177 Từ đó, ta tính được số dư trái phiếu đầu kỳ: • d0 = 8.000 • d1 = d0  μ1 = 8.000 – 1.829 = 6.171 • d2 = d1  μ2 = 6.171 – 1.939 = 4.232 • d3 = d2  μ3 = 4.232 – 2.055 = 2.177 v1.0015110212 9
  10. 1.2. LẬP BẢNG THANH TOÁN NỢ TRÁI PHIẾU (tiếp) Sau đó, ta tính lãi, gốc và niên kim thanh toán trong kỳ. Và ta có bảng thanh toán nợ trái phiếu sau: Số trái phiếu Lãi Số trái phiếu Gốc thanh Thời kỳ đầu kỳ chưa thanh Niên kim thanh toán toán đáo hạn toán 1 8.000 48.000 1.829 182.900 230.900 2 6.171 37.026 1.939 193.900 230.926 3 4.232 25.392 2.055 205.500 230.892 4 2.177 13.062 2.177 217.700 230.762 v1.0015110212 10
  11. 2. TRƯỜNG HỢP GIÁ THANH TOÁN R CAO HƠN MỆNH GIÁ C 2.1. Niên kim cố định theo mệnh giá 2.2. Niên kim cố định theo giá thanh toán v1.0015110212 11
  12. 2.1. NIÊN KIM CỐ ĐỊNH THEO MỆNH GIÁ • Niên kim k được phân tích như sau: ak = dk  Ci + μk  C + μk(R – C) • Trong đó μk(R – C) được gọi là phần bù thanh toán, còn niên kim cố định vẫn là phần thanh toán gốc và lãi theo mệnh giá dkCi + μkC. Như vậy, định luật về thanh toán không hề thay đổi, số trái phiếu vẫn biến thiên với công bội 1 + i. v1.0015110212 12
  13. 2.1. NIÊN KIM CỐ ĐỊNH THEO MỆNH GIÁ (tiếp) Ta có bảng thanh toán nợ trái phiếu Số trái Số trái Lãi Gốc Phần bù Thời phiếu Niên kim Niên kim phiếu thanh thanh thanh toán kỳ thanh cố định thực tế đầu kỳ toán toán μk(R  C) toán 1 8.000 48.000 1.829 182.900 230.900 36.580 267.480 2 6.171 37.026 1.939 193.900 230.926 38.780 269.706 3 4.232 25.392 2.055 205.500 230.892 41.100 271.992 4 2.177 13.062 2.177 217.700 230.762 43.540 274.266 v1.0015110212 13
  14. 2.2. NIÊN KIM CỐ ĐỊNH THEO GIÁ THANH TOÁN • Coi niên kim cố định là: ak = dk  1Ci + μkR • Vậy giờ ta đi tìm quy luật biến động của μk. Thật vậy, ta cho hai niên kim liên tiếp ak và ak+1 bằng nhau để tìm ra mối quan hệ: ak = dk  1Ci + μkR ak+1 = dkCi + μk+1R • Vì hai niên kim này bằng nhau nên: dk  1Ci + μkR = dkCi + μk+1R μk+1R = dk  1Ci – dkCi + μkR = (dk  1 – dk)Ci + μkR = μkCi + μkR = μk(Ci + R) Vậy: μk+1 = μk(1 + iC/R) Vậy μk biến thiên theo cấp số nhân, công bội là (1+i’) với i’ = iC/R v1.0015110212 14
  15. 2.2. NIÊN KIM CỐ ĐỊNH THEO GIÁ THANH TOÁN (tiếp theo) Bài toán: Lập bảng thanh toán nợ trái phiếu cho bài toán phần 2.1. Ta có: i’ = 1 + i  C/R = 1 + 0,06  100/120 = 0,05 i’ 0,06 1 = N  = 8.000 = 1.856 (1 + i’)n –1 1,054 – 1 2 = 1(1 + i’) = 1.949 3 = 1(1 + i’)2 = 2.046 4 = N  1  2  3 = 2.149 v1.0015110212 15
  16. 2.2. NIÊN KIM CỐ ĐỊNH THEO GIÁ THANH TOÁN (tiếp theo) Vậy ta có bảng thanh toán nợ trái phiếu Số trái phiếu Thời Lãi thanh Số trái phiếu Gốc thanh Niên kim đầu kỳ chưa kỳ toán thanh toán toán theo R dkCi + μkR đáo hạn 1 8.000 48.000 1.856 222.720 270.720 2 6.144 36.864 1.949 233.880 270.744 3 4.195 25.170 2.046 245.520 270.690 4 2.149 12.894 2.149 257.880 270.774 v1.0015110212 16
  17. 3. LÃI SUẤT ĐẦU TƯ TRÁI PHIẾU • Người mua trái phiếu bỏ ra số vốn E cho mỗi trái phiếu, được thanh toán lãi tính trên mệnh giá và được thanh toán trái phiếu theo mệnh giá C. • Số vốn người mua bỏ ra tại thời điểm hiện tại là NE. • Thu nhập của người mua là niên kim hàng năm. i a = NC 1 – (1 + i) n v1.0015110212 17
  18. 3. LÃI SUẤT ĐẦU TƯ TRÁI PHIẾU (tiếp) • Lãi suất đầu tư trái phiếu t là mức lãi suất chiết khấu làm cân bằng dòng tiền thu nhập từ trái phiếu và chi phí mà người mua trái phiếu đã bỏ ra, do vậy ta có: 1 – (1 + t)n i 1 – (1 + t)n NE = a = NC  t 1 – (1 + i)n t 1 – (1 + t)n E 1 – (1 + i)n =  t C i • Để tìm được lãi suất đầu tư trái phiếu t, ta có thể dùng phương pháp nội suy hoặc dùng các loại máy tính Casio fx để đoán nghiệm. v1.0015110212 18
  19. 3. LÃI SUẤT ĐẦU TƯ TRÁI PHIẾU Bài toán: Một công ty phát hành trái phiếu với mệnh giá là 500, lãi suất 3% và sẽ thanh toán theo mệnh giá trong 50 năm. Hãy xác định lãi suất đầu tư trái phiếu t biết rằng giá phát hành là 350. Giải: 1 – (1 + t)n E 1 – (1 + i)n 350 1 – 1,0350 =  =  = 18, 01 t C i 500 0,03 Đặt 1 – (1 + t)n f(t) = t v1.0015110212 19
  20. 3. LÃI SUẤT ĐẦU TƯ TRÁI PHIẾU (tiếp) • f(0,05) = 18,26 • f(0,06) = 15,76 • Do đó, theo phương pháp nội suy: f(t) – f(b) t–b = f(a) – f(b) a–b • Với a = 0,06, b = 0,05 • Do vậy ta có: f(t) – f(b) t=b+ (a – b) = 5,09% f(a) – f(b) v1.0015110212 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2