![](images/graphics/blank.gif)
Đề tài " Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12, . . . "
44
lượt xem 7
download
lượt xem 7
download
![](https://tailieu.vn/static/b2013az/templates/version1/default/images/down16x21.png)
The uniform spanning forest (USF) in Zd is the weak limit of random, uniformly chosen, spanning trees in [−n, n]d . Pemantle [11] proved that the USF consists a.s. of a single tree if and only if d ≤ 4. We prove that any two components of the USF in Zd are adjacent a.s. if 5 ≤ d ≤ 8, but not if d ≥ 9. More generally, let N (x, y) be the minimum number of edges outside the USF in a path joining x and y in Zd . Then max N (x, y) : x, y ∈ Zd = (d − 1)/4 a.s.
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
![](images/graphics/blank.gif)
CÓ THỂ BẠN MUỐN DOWNLOAD