Ở Ụ Ạ Ỳ Ớ Ể

Ọ S  GIÁO D C VÀ ĐÀO T O GIA LAI K  THI TUY N SINH VÀO L P 10 CHUYÊN NĂM H C 2014 ­ 2015

Ứ Ề ờ ể ờ Đ  CHÍNH TH C Môn thi: Toán (Chuyên) ề  150 phút (không k  th i gian phát đ ) Th i gian:

Câu 1: (2,0 đi m)ể

ể ọ

ố ự ữ ứ ố ố a. Không dùng máy tính, hãy rút g n bi u th c  ứ . b. Cho các s  th c khác không  sao cho và  là nh ng s  nguyên. Ch ng minh  là s  nguyên.

ệ ươ ươ ng trình và h  ph ng trình sau

Câu 2: (2,0 đi m)ể   ả i ph .

Gi a. b.

Câu 3: (2,0 đi m)ể ọ ủ ươ ặ ộ ươ ậ a. G i   là hai nghi m c a ph ng trình . Đ t . Tìm m t ph ng trình b c hai có h  s ệ ố

ậ ệ ệ nguyên nh n  làm nghi m.

ỗ ấ

ỗ ủ ố ố ủ ấ ả ộ ố ỏ ị t c  các s  trong m i nhóm. G i b. Hãy chia các s   4; 6; 12; 15; 30 thành hai nhóm (m i nhóm có ít nh t m t s ), r i l y ồ ấ   ấ ủ   ổ ọ T là t ng c a các tích đó. Tìm giá tr  nh  nh t c a

ng tròn tâm  đ ng kính

ườ ộ ử ộ ng tròn (

AB. G i ọ Ax, By là các tia vuông góc v i ớ AB (Ax, By và  M  ầ ượ ạ E và F. Đ ngườ ộ ử ườ i ạ M c t ắ Ax và By l n l t t

i ạ Q.

i ạ P, đ ứ  giác

tích c a t T. Câu 4: (3,0 đi m)ể ử ườ Cho n a đ ể ờ AB) và M là đi m thu c n a đ ẳ ặ ng tròn cùng thu c m t n a m t ph ng b   ế ủ ử ườ i  ng tròn t ẳ OF c t ắ BM t ườ ng th ng  ữ ậ OPMQ là hình ch  nh t. ẳ ử ườ n a đ ế khác A và B). Ti p tuy n c a n a đ th ng ẳ OE c t ắ AM  t ứ a. Ch ng minh t b. K  ẻ MH vuông góc v i ớ AB t ườ i ạ H. Đ ng th ng ứ i ạ I. Ch ng minh EB c t ắ MH t I là trung

ể ủ ạ đi m c a đo n th ng

ườ ộ ế ứ ẳ MH. c. Cho AB = 2R. G i ọ r là bán kính đ ng tròn n i ti p . Ch ng minh  .

Câu 5: (1,0 đi m)ể

ố ố ữ ỉ là s  h u t . ể Tìm s  nguyên  đ

­­­­­­­­­H tế ­­­­­­­­­

ọ ữ

H  và tên thí sinh:………………………….; SBD……………..; Phòng thi s …………….. Ch  ký c a giám th  1:……………………; Ch  ký c a giám th  2:………………………..