BQ GIAO
DUC VA DAO TAO Ho vd
t€n thi sinh:
DAIHSCHUE
.bpqd
So
bdo danh:
rci, rnr ruyEN srNH
sAU DAr rrec NAu zorz
@qt
t)
M6n
thi:
Vat
lf ry
tttuy6t
(ddnh
cho: Cao hqc)
Thdi
gian
ldm bdi 180
philt
Ciu 1. Trqng
th6i kich thich thrt nh6t cria
dao ttQng trt didu hda 1 chidu rlugc m6 ti bsi him s6ng:
I^^- -ttt1 \l/4
V\=.,tzLEe'
-,trongo6
C
=[
ygl C
=
^l!9r.
\rit) ' \ h
a. Tinh circ gi6
ta rrung binh G d va nghiQm lai hQ thric b6t dinh giira to.a rIQ vd xung
lugng.
b. Xric
dinh dQng
ndng
trung
binh f vi thi!
nAng rung binh Z; tu d6 suy ra
ndng luqng
Ecua
trpg tluii kfch thich ndy.
. f- +o
ar.. t.4, , f.^2 ' I tr " ' )lt
Cho bi6t: I, = le ^-
x'dx
=;,/+, le-a'x46c
=
-'
^ ^_: Z\a'_r" 0a
Ciu 2' Goi L,,Lr,L,theo thf t.u ld toan tE hinh chi6u m6men xung lugng cria hat vi m6 trdn
ba trpc
tqa d$ DA-c4c
@escartes)
ve I H torin
tu trinh
phuong
m6men xung
lugng, nguoi ta dinh
n
$ia c6c
toan
tu ,* : L, +
iLr:L_ : L, - iLy
.
. , D.Ua
vdo cric h€ thrtc giao horin gitra
circ torin tu hinh chi6u
m6men xung lugng, hdy chung
mmnrang: lr ^ | ^ l^ ^ | ^ l^ ^ |
g'.,1-)=2nt":lL,,i.l=hi.;Li,,L-l=
-nt-
va
t =
i-i. +
f;
+h1,.
Ciu 3. Ttr
phAn
b6 Maxwelt
theo
ciic hinh chi6u
cua v4n tiic, hay
r{rt ra hdm
ptrrin
b6 Maxwell
theo
modul vfn tlic vd
xric dinh
cac v6n
t6c d4c trung
cira
phrin
bi5 ndy.
C6u 4.
Cho
phen
b6 chinh
tic luong
trt cua
hp dang fiCt c6 s6 h4t
kh6ng <t6i Wr
=""p{V ^Erl.
tat
Trong c16 E ld ndng luqrig cua
hQ 6 trang thiik; ry vd d ld c6c th6ng s6
cua
ph6n
b6.
a. Tim bitiu thric cua
t6ng
mng ttlii Z th6a mdn h6 thric V = -ehz .
b. Ttd6 suy raphuong
trinh
Gibbs-Helmh
olv. E =y -e!^, voi Eh nrng luqngtrung
binh
'40
---;-
lugng
tu cria
h6; vi hg thfrc
nhiQt aO"g
!={:V, tong d6 V duqcggi
ld trung
binh
oa oa
lugng trl cria
luc suy rQng theo
th6ng
s6 ngodi a cua h0.
c. N€u f nghia vft lf cria
c6c thdng
st5
y vd d mA
kh6ng can
gia rhich.
, C6u 5. Tim n5ng lugng cira m6t dao ttQng
tu didu hda tuytin tinh luqng tu mOt
chiAu.
Sri dgng
c6ng
thric Planck
hdy rut ra dinh lu6t chuy6n
d&i Wien.
Ghi chrt: Cdn b0 coi thi kh6ng gidi thich gi thAm.