intTypePromotion=3
Array
(
    [0] => Array
        (
            [banner_id] => 140
            [banner_name] => KM1 - nhân đôi thời gian
            [banner_picture] => 964_1568020473.jpg
            [banner_picture2] => 839_1568020473.jpg
            [banner_picture3] => 620_1568020473.jpg
            [banner_picture4] => 994_1568779877.jpg
            [banner_picture5] => 
            [banner_type] => 8
            [banner_link] => https://tailieu.vn/nang-cap-tai-khoan-vip.html
            [banner_status] => 1
            [banner_priority] => 0
            [banner_lastmodify] => 2019-09-18 11:11:47
            [banner_startdate] => 2019-09-11 00:00:00
            [banner_enddate] => 2019-09-11 23:59:59
            [banner_isauto_active] => 0
            [banner_timeautoactive] => 
            [user_username] => sonpham
        )

)

Hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2

Chia sẻ: Chac Van00 | Ngày: | Loại File: PDF | Số trang:7

0
38
lượt xem
0
download

Hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2

Mô tả tài liệu
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tài liệu tóm tắt lý thuyết công thức nghiệm thu gọn và hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2 là tài liệu hữu ích giúp các em học sinh nắm được các kiến thức trong bài học một cách vững vàng và nâng cao kỹ năng giải bài tập hiệu quả. Mời các em cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2

Dưới đây là đoạn trích “Hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2: Công thức nghiệm thu gọn” sẽ giúp các em hình dung nội dung tài liệu chi tiết hơn. Ngoài ra, các em có thể xem lại bài tập "Hướng dẫn giải bài 15,16 trang 45 Đại số 9 tập 2"

Hướng dẫn và giải bài tập trang 49,50 SGK Toán 9 tập 2: Công thức nghiệm thu gọn

Bài 17 trang 49 SGK Toán 9 tập 2

Xác định a, b’, c rồi dùng công thức nghiệm thu gọn giải các phương trình:

a) 4x2 + 4x + 1 = 0; b) 13852x2 – 14x + 1 = 0;

c) 5x2 – 6x + 1 = 0; d) -3x2 + 4√6x + 4 = 0.

Đáp án và hướng dẫn giải bài 17:

a) 4x2 + 4x + 1 = 0 có a = 4, b = 4, b’ = 2, c = 1

∆’ = 22 – 4 . 1 = 0: Phương trình có nghiệm kép

x1 = x2 = -2/4 = -1/2

b) 13852x2 – 14x + 1 = 0 có a = 13852, b = -14, b’ = -7, c = 1

∆’ = (-7)2 – 13852 . 1 = 49 – 13852 < 0

Phương trình vô nghiệm.

c) 5x2 – 6x + 1 = 0 có a = 5, b = -6, b’ = -3, c = 1

∆’ = (-3)2 – 5 . 1 = 4, √∆’ = 2

2016-03-22_163115

d) -3x2 + 4√6x + 4 = 0 có a = -3, b = 4√6, b’ = 2√6, c = 4.

∆’ = (2√6)2 – (-3) . 4 = 24 + 12 = 36, √∆’ = 6

2016-03-22_163128


Bài 18 trang 49 SGK Toán 9 tập 2

Đưa các phương trình sau về dạng ax2 + 2b’x + c = 0 và giải chúng. Sau đó, dùng bảng số hoặc máy tính để viết gần đúng nghiệm tìm được (làm tròn kết quả đến chữ số thập phân thứ hai):

a) 3x2 – 2x = x2 + 3; b) (2x – √2)2 – 1 = (x + 1)(x – 1);

c) 3x2 + 3 = 2(x + 1); d) 0,5x(x + 1) = (x – 1)2

Đáp án và hướng dẫn giải bài 19:

a) 3x2 – 2x = x2 + 3 ⇔ 2x2 – 2x – 3 = 0.

b’ = -1, ∆’ = (-1)2 – 2 . (-3) = 7

2016-03-22_163335

b) (2x – √2)2 – 1 = (x + 1)(x – 1) ⇔ 3x2 – 4√2 . x + 2 = 0

b’ = -2√2

∆’ = (-2√2)2 – 3 . 2 = 2

2016-03-22_163411

c) 3x2 + 3 = 2(x + 1) ⇔ 3x2 – 2x + 1 = 0.

b’ = -1; ∆’ = (-1)2 – 3 . 1 = -2 < 0

Phương trình vô nghiệm.

d) 0,5x(x + 1) = (x – 1)2 ⇔ 0,5x2 – 2,5x + 1 = 0

⇔ x2 – 5x + 2 = 0, b’ = -2,5; ∆’ = (-2,5)2 – 1 . 2 = 4,25

x1 = 2,5 + √4,25 ≈ 4,56, x2 = 2,5 – √4,25 ≈ 0,44

(Rõ ràng trong trường hợp này dùng công thức nghiệm thu gọn cũng không đơn giản hơn)


Bài 19 trang 49 SGK Toán 9 tập 2

Đố em biết vì sao khi a > 0 và phương trình ax2 + bx + c = 0 vô nghiệm thì ax2 + bx + c > 0 với mọi giá trị của x ?

Đáp án và hướng dẫn giải bài 19:

Khi a > 0 và phương trình vô nghiệm thì b2 – 4ac < 0.

2016-03-22_163629


Bài 20 trang 49 SGK Toán 9 tập 2

Giải các phương trình:

a) 25x2 – 16 = 0; b) 2x2 + 3 = 0;

c) 4,2x2 + 5,46x = 0; d)4x2 – 2√3x = 1 – √3.

Đáp án và hướng dẫn giải bài 20:

a) 25x2 – 16 = 0 ⇔ 25x2 = 16 ⇔ x2 = 16/25

2016-03-22_164236

b) 2x2 + 3 = 0: Phương trình vô nghiệm vì vế trái là 2x2 + 3 ≥ 3 còn vế phải bằng 0.

c) 4,2x2 + 5,46x = 0 ⇔ 2x(2,1x + 2,73) = 0

=> x = 0

Hoặc 2,1x + 2,73 = 0 => x = -1,3

d) 4x2 – 2√3x = 1 – √3 ⇔ 4x2 – 2√3x – 1 + √3 = 0

Có a = 4, b = -2√3, b’ = -√3, c = -1 + √3

∆’ = (-√3)2 – 4 . (-1 + √3) = 3 + 4 – 4√3 = (2 – √3)2, √∆’ = 2 – √3

2016-03-22_164415


Bài 21 trang 49 SGK Toán 9 tập 2

Giải vài phương trình của An Khô-va-ri-zmi (Xem Toán 7, Tập 2, tr.26):

a) x2 = 12x + 288;

2016-03-22_164604

Đáp án và hướng dẫn giải bài 21:

a) x2 = 12x + 288 ⇔ x2 – 12x + 288 = 0

∆’ = (-6)2 – 1 . (-288) = 36 + 288 = 324

√∆’ = 18

x1 = 6 + 18 = 24, x2 = 6 – 18 = -12

2016-03-22_164707


Bài 22 trang 49 SGK Toán 9 tập 2

Không giải phương trình, hãy cho biết mỗi phương trình sau có bao nhiêu nghiệm:

a) 15x2 + 4x – 2005 = 0; b) -19/5 x2 – √7x + 1890 = 0.

Đáp án và hướng dẫn giải bài 22:

Khi phương trình ax2 + bx + c = 0 có a và c trái dấu thì ac < 0, suy ra –ac > 0; hơn nữa b2 ≥ 0. Do đó ∆ = b2 – 4ac > 0. Vậy phương trình có hai nghiệm phân biệt.

Áp dụng:

a) Phương trình 15x2 + 4x – 2005 = 0 có a = 15, c = -2005 trái dấu nhau nên phương trình có hai nghiệm phân biệt.

b) Phương trình -19/5 x2 – √7x + 1890 = 0

có a = -19/5
và c = 1890 trái dấu nhau nên phương trình có hai nghiệm phân biệt.


Bài 23 trang 50 SGK Toán 9 tập 2

Rađa của một máy bay trực thăng theo dõi chuyển động của một ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô thay đổi phụ thuộc vào thời gian bởi công thức:

v = 3t2 – 30t + 135,

(t tính bằng phút, v tính bằng km/h).

a) Tính vận tốc của ôtô khi t = 5 phút.

b) Tính giá trị của t khi vận tốc ôtô bằng 120 km/h (làm tròn kết quả đến chữ số thập phân thứ hai).

Đáp án và hướng dẫn giải bài 23:

a) Khi t = 5 (phút) thì v = 3 . 52 – 30 . 5 + 135 = 60 (km/h)

b) Khi v = 120 (km/h), để tìm t ta giải phương trình 120 = 3t2 – 30t + 135

Hay t2 – 10t + 5 = 0. Có a = 1, b = -10, b’ = -5, c = 5.

∆’ = 52 – 5 = 25 – 5 = 20, √∆’ = 2√5

t1 = 5 + 2√5 ≈ 9,47, t2 = 5 – 2√5 ≈ 0,53

Vì rađa chỉ theo dõi trong 10 phút nên 0 < t < 10 nên cả hai giá trị của t đều thích hợp. Vậy t1 ≈ 9,47 (phút), t2 ≈ 0,53 (phút).


Bài 24 trang 50 SGK Toán 9 tập 2

Cho phương trình (ẩn x) x2 – 2(m – 1)x + m2 = 0.

a) Tính ∆’.

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt ? Có nghiệm kép ? Vô nghiệm ?

Đáp án và hướng dẫn giải bài 24:

a) x2 – 2(m – 1)x + m2 = 0 có a = 1, b = -2(m – 1), b’ = -(m – 1), c = m2

∆’ = [-(m – 1)]2 – m2 = m2 – 2m + 1 – m2 = 1 – 2m

b) Ta có ∆’ = 1 – 2m

Phương trình có hai nghiệm phân biệt khi 1 – 2m > 0 hay khi

m < 1/2

Phương trình vô nghiệm khi m > 1/2

Phương trình có nghiệm kép khi m = 1/2.

Các em vui lòng đăng nhập website tailieu.vn để download “Hướng dẫn giải bài 17,18,19,20,21,22,23,24 trang 49,50 Đại số 9 tập 2: Công thức nghiệm thu gọn” về máy tham khảo nội dung một cách đầy đủ hơn. Bên cạnh đó, các em có thể xem cách giải bài tập tiếp theo "Hướng dẫn giải bài 25,26,27,28,29,30,31,32,33 trang 52,53,54 Đại số 9 tập 2"

CÓ THỂ BẠN MUỐN DOWNLOAD

AMBIENT
Đồng bộ tài khoản