B0 GIAO DUC VA DAO TAO Hp vd ftn thf sinh:
EAI HOC I{t'E SA
bao
danh:
l'\ -- ';\ e '
Ki' THI TUYEN SINH
SAU
DAI HQC NAM 2OO7 -\J
€- (:'-oC
MOn thi:
V$
tly r! thuy6t
(ddnh
cho Cao
hpc)
Thbi gran
ldm bai: 180
phrit
CAU
I
Hdm song d thbi di6m
ddu
ctra
mOt
hat
co ktrdi
lugng
m chuy0n dOng
t'u do
frong
mi6n 0
<
x
<
a c'ianO
tn6 w6ng g6c,
1
chiOu,
s6u
vO han,
c6
dang:
v(x,o)
=
^E [,
*
ro,
[=)l ri"
[e)
Y)4 1 \a/) \a)
1. X6c
dinh
hdm s6ng
V(x,t) twthbri di0m t >
o Uat
lcy.
2. Tinh nang
luwg trung
binh 0 thdi diOm dAu
vd thdi diOm
I >
0.
3. X6c
dinh
xdcsu6ttimthAyhatdnuaf6i
ctanO
tn6
(mi6n
0<r <alz)tarthdi
di6m r > o.
CAU
IITrang
th6i co bdn cria
diQn tu tong nguy€n tu Hydro dugc m6 ta boi hdm
. (r)t" ( r\
s6ng
4o =
zl- | expl
-- l, trong
c16 a ld ban
kinh quy
clao
Bohr thr?
nhat.
Hdy xitc
\a) \ a) .
dinh
bdn
kinh r rmg vdi x5c su6t
tim th6y
diOn tu cuc dai.
Cdu
III
X6c clinh
phucrng
binh trang thdi cta he
khi l)? tucmg
dm nguy€n
tu g6m
N
nguy6n
tu khi; bi6t ring, ndng
luqmg
vd xung
luqng cria
c6c
phdn
tti khi li6n h0
vdi
nhau
bdi he
thric
1
t =
cp
(c: const).
+co
Cho biOt
f (a)
= t *"-"-*dx, l(n + 1)
: nl,
0
Cdu
IV
Kh6o
sit hO
N hat
kh6ng
tucrng t6c
mi ndng
luqrg cria
m6i hat khi o ffong
tu
ffumg co th6
nhan mQt
trong
ba gpd
tri 0, e t pll . Xdc dinh nang lucr,ng E vd friet
dung Cv cua
hQ.
CAU
V,
1. Tim x6c
suAt
cria chc
gi6
tr1 L, L<fii hat
d trong
hang th6i dugc md ti boi hdm
s6ng frong tqa
d0 cAu:
V(D= ^E sur|,
vfi 0
<
O
32n
.
\77
2. Tim ndng lucmg trung
binh vd nhiOt
dung cua
h0 .^/
hat
kh6ng tuongtitc, biet
rang
nn6i hat co the
O
frong
hai
tangthdi luqng
tu kh6ng
suy
bi6n vdi c6c
gle
tr|
ndng luqng ld eo vd e,.
Ghi chrt:
Cdn
b0
coi thi
kh1ng
gidi
thfch
gi th€m.