Lecture Notes Lecture Notes

Fundamentals of Control Systems Fundamentals of Control Systems

Instructor: Assoc. Prof. Dr. Huynh Thai Hoang Department of Automatic Control Faculty of Electrical & Electronics Engineering Ho Chi Minh City University of Technology Email: hthoang@hcmut.edu.vn

huynhthaihoang@yahoo.com Homepage: www4.hcmut.edu.vn/~hthoang/

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

1

Chapter 2 Chapter 2

Mathematical Models of Mathematical Models of Mathematical Models of Mathematical Models of

Continuous Control Systems Continuous Control Systems

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

2

Content Content

 The concept of mathematical model  The concept of mathematical model  Transfer function  Block diagram algebra  Block diagram algebra  Signal flow diagram  State space equation  State space equation  Linearized models of nonlinear systems

 Nonlinear state equation  Nonlinear state equation  Linearized equation of state

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

3

The concept of mathematical models The concept of mathematical models

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

4

 If you design a control system, what do you need to know  If you design a control system what do you need to know

Question Question

 What are the advantages of mathematical models?

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

5

about the plant or the process to be controlled?

 Practical control systems are diverse and different in nature  Practical control systems are diverse and different in nature.  It is necessary to have a common method for analysis and design of different type of control systems  Mathematics  The relationship between input and output of a LTI system of can be described by linear constant coefficient equations:

Why mathematical model? Why mathematical model?

u(t) y(t)

n

1 

d

a

a

n

tya )( n

0

a 1

1 

)( ty n 1 

)( tdy dt

dt

n )( tyd n dt

m

d

b 0

b 1

b m

tub )( m

1 

1 1  tu )( 1 m 

m tud )( m dt

dt

tdu )( dt

Linear Time- Invariant System

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

6

n: system order, for proper systems: nm. n: system order for proper systems: nm ai, bi: parameter of the system

Example: Car dynamics Example: Car dynamics

M M

tBv )( )( tBv

f f

t )( )( t

 

 

tdv )( dt

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

7

M: mass of the car, B friction coefficient: system parameters M: mass of the car B friction coefficient: system parameters f(t): engine driving force: input v(t): car speed: output v(t): car speed: output

Example: Car suspension Example: Car suspension

M

B

tKy )(

f

t )(

tdy )( dt

2 tyd )( 2 dt

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

8

M: equivalent mass B friction constant, K spring stiffness f(t): external force: input y(t): travel of the car body: output (t) t t b d f th t l

Example: Elevator Example: Elevator

t b l

g

MB MB Counter- balance

ML Cabin & load

M

B

)(

gMtKgM 

L

T

B

2 tyd )( 2 dt dt

tdy )( dt dt

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

9

ML: mass of cabin and load, MB: counterbalance M B friction constant, K gear box constant (t): driving moment of the motor y(t): position of the cabin

Disadvantages of differential equation model Disadvantages of differential equation model

 Difficult to solve differential equation order n (n>2)  Difficult to solve differential equation order n (n>2)

n

1 

d

a

a

0

a 1

n

tya )( n

1 

ty )( n 1 

n tyd )( n dt dt

dt dt

tdy )( dt dt

m

d

b 1

b 0

b m

tub )( m

1 

1  tu )( 1 m 

m tud )( m dt

dt

tdu )( dt

 System analysis based on differential equation model is

 System design based on differential equations is almost

difficult.

 It is necessary to have another mathematical model that makes  It is necessary to have another mathematical model that makes

impossible in general cases.

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

10

the analysis and design of control systems easier:  transfer function  state space equation

Transfer functions T Transfer functions f f T

ti ti

f f

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

11

Definition of Laplace transform Definition of Laplace transform



st

f

sF )(

f

et ( ).

dt

 t )(

The Laplace transform of a function f(t), defined for all real The Laplace transform of a function f(t) defined for all real numbers t ≥ 0, is the function F(s), defined by:

L

0 0

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

12

where:  s : complex variable (Laplace variable)  L : Laplace operator  F(s) Laplace transform of f(t). The Laplace transform exists if the integral of ƒ(t) in the interval [0,+) is convergence. interval [0 +) is convergence

Properties of Laplace transform Properties of Laplace transform

sG sG )( )(

 

    tg )( )( tg

Given the functions f(t) and g(t), and their respective Laplace Given the functions f(t) and g(t) and their respective Laplace transforms F(s) and G(s):

L L

f f

sF sF )( )(

 

 

  t )( )( t

L L

 Linearity

t )(

sFa )( .

sGb . )(

 fa .

 tgb )(.

L

 Time shifting

f

.

sF )(

Tt ( 

Ts e

 )

L

 Differentiation

sF

s )(

f

 )0(

L

tdf )(  )(   dt 

t t

 Integration

f

L

)( sF sF )( s

0

f f

t )( )( t

sF sF

s )( )( s

 Final value theorem  Final value theorem

df        lim lim t 

  )( d    lim lim s 0 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

13

 Unit step function:

Laplace transform of basic functions Laplace transform of basic functions

tf tf

u(t)

tu )(

  )( tu

1

L

1 1 s

tf

0  0  0 

1 1 i i    0 i 

 Dirac function:

t t 0 0

t )(

tf tf tf

0 0 0

 

0 i i i

   

(t)

 1

tL )(



)( dt )( dt

t t

1  1

1

 



6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

14

t t 0 0

Laplace transform of basic functions (cont’) Laplace transform of basic functions (cont’)

 Ramp function: f

)( tr

tu

)( t

tf tf

0 0

 

t i   0 i 

R ti

r(t)r(t)

  )(. tut

1

L

1 2 s

0 0

 

at

 Exponential function

f

t )(

tu )(.

  e

0

f t f t f t i

ate    e i i  0 

t 1 0

f(t)

 e at 

 )(. tu

1

L

1 as 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

15

t t 0 0

 Sinusoidal function id l f

Laplace transform of basic functions (cont’) Laplace transform of basic functions (cont’)

Si ti

tf tf

f

t )(

(sin

tut ). )(

t t  0

0  0  0 

i i tf i

sin sin    

f( ) f(t)

 (sin

 )() tut

t t 0 0

L

2

s

 

2 

 Table of Laplace transform: Appendix A, Feedback control

p

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

16

pp of dynamic systems, Franklin et. al.

Definition of transfer function Definition of transfer function

 Consider a system described by the differential equation:  Consider a system described by the differential equation:

u(t) y(t)

n

1 

d

a a

a a

 

 

 

 

0 0

a a 1 1

n

tya )( )( tya n

1 1 

ty )( 1 1 n 

n tyd )( n dt

dt

tdy )( dt

m

d

b 0 0

)( )( tub m m

b m m

b 1 1

1 1 

1  tu )( 1 m m 1 

dt d

m tud )( m m dt d  Taking the Laplace transform the two sides of

Linear time invariant system invariant system

tdu )( dt d the above equation, using differentiation property and assuming that the g p p initial condition are zeros, we have:

n sYsa )(

a

sY

s )(

0

n 1  sYsa )( 1

s )(

n 1  m sUsb )( 0

sYa )( n 1 m  sUsb )( 1

sUb )( m

sUb 1 m 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

17

q g y ,

Definition of transfer function (cont’) Definition of transfer function (cont’)

 Transfer function:  Transfer function:

m

m

1 

)( sG )(

n n

n n

1 1 

 

sY )( )( sU U )(

 

 

 

sb 0 sa 0

sb 1 sa 1

n

n

bs b  m m 1  asa  1

 Definition: Transfer

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

18

y function of a system is the ratio between the Laplace transform of the output signal and the Laplace transform of the input signal assuming that initial conditions are zeros. conditions are zeros

Transfer function of components Transfer function of components

 Step 1: Establish the differential equation describing the

Procedure to find the transfer function of a component Procedure to find the transfer function of a component

p p

y input-output relationship of the components by: p p  Applying Kirchhoff's law, current-voltage relationship of

 Applying Newton's law, the relationship between friction

resistors, capacitors, inductors,... for the electrical components. components

h i th ti f f t l i l

and velocity, the relationship between force and deformation of springs ... for the mechanical elements. d f  Apply heat transfer law, law of conservation of energy, for

 ...

 Step 2: Taking the Laplace transform of the two sides of the differential equation established in step 1, we find the transfer differential equation established in step 1 we find the transfer function of the component.

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

19

the thermal process. p

Transfer function of some type of controllers Transfer function of some type of controllers

R

 First order integrator:

Passive compensators Passive compensators

C C

sG )(sG )(

1 RCs

1

C

 First order differentiator:

R

sG )( )( 

RCs RC

1 1

RCs 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

20

g

Transfer function of some type of controllers (cont’) Transfer function of some type of controllers (cont’)

C

 Phase lead compensator:

R1 R

sG )(

K

C

R2

Ts 1 1Ts   Ts 1 

R R 1

R R 2

1

T

KC

R R 2 

R 1

R 2

 R 2

CRR 12 R R  1 2

R2

 Phase lag compensator :

R1

)( )( sG

K

C C

Ts 1   Ts 1

C

1

T

(

R 1 

) CR 2

1CK

R 1R 1 RR  2

1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

21

ass e co pe sato s Passive compensators

Transfer function of some type of controllers (cont’) Transfer function of some type of controllers (cont’)

 Proportional Controller (P)

sG )( G )(



K P K P

PK K 2R 1R

Active controllers Active controllers

I

sG

K

)(

P  P

K s





K I I

K P P

1 CR CR 1

2R 1R

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

22

)  Proportional Integral controller (PI) g p (

Transfer function of some type of controllers (cont’) Transfer function of some type of controllers (cont’)

 Proportional Derivative controller (PD)

sG

K

)(

P 

sK D

CR CR



K D K

2

K P K

2R 2 R 1

Active controllers Active controllers

I

sG

K

)(

P

sK D

 Proportional Integral Derivative controller (PID) ) K s s

11

2

2



K I



K P

1 CR 1

2

CRCR  CR 21



K D

2CR 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

23

g p (

Transfer function of DC motors Transfer function of DC motors

ia

Ra

La

Ua

Ea a

ML ,B, J ML B J

Equivalent diagram of a DC motor Equivalent diagram of a DC motor

 : motor speed  ML : load inertia ti  B : friction constant

 La : armature induction  Ra : armature resistance t  Ua : armature voltage  Ea : back electromotive force  J : moment of inertia of the

a rotor

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

24

R M l d i i t

 Applying Kirchhoff's law for the armature circuit:

Transfer function of DC motors Transfer function of DC motors

ff f

(

tU )( a

i a

Rt ). a

L a

tE )( a

di t )( a dt dt

(1)

(2) where: t )( K  tE )( a

 Applying Newton’s law for the rotating part of the motor:

)( )( t

K : electromotive force constant K : electromotive force constant  : excitation magnetic flux

)( )(

J J

tMtM )( tMtM )( 

)( )( tB tB  

L

d  dt

(3) (3)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

25

(4) where: tM )( t )( iK a

Transfer function of DC motors Transfer function of DC motors

 Taking the Laplace transform of (1), (2), (3), (4) leads to:

f (1) (2) (3) (4) l d t th L l T ki t f

a

a

(5) I ( s )( sU )( a Rs ). a sIL a sE )( a

(6) s )( K  sE )( a

t

(7) )( Js s )(  sMsM )(  )( sB  

 Denote:

(8) sM )( s )( iK a

T  a a

L a R a

Electromagnetic time constant Electromagnetic time constant

Tc 

J B B

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

26

Mechanical time constant

Transfer function of DC motors Transfer function of DC motors

 From (5) and (7), we have:  From (5) and (7) we have:

I

s )(

a

sU )(  a 1( R R 1( a  

sE )( a sT sT ) ) a

s )( 

)( B B 1( 1(

sMsM )(  L sT sT ) ) c 

 From (5’), (6), (7’) and (8) we can develop the block diagram

(5’)

)(sM L

)(sU a )(a

/1 R/1 R a 1 asT

)(sEa

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

27

of the DC motor as follow: of the DC motor as follow:

Transfer function of a thermal process Transfer function of a thermal process

Temperature of the oven th

Electric power supplying to the oven 100% 100% t

th

y(t) u(t)

y(t) (t) y(t) (t)

Inflection point

“Exact” characteristic of the oven

Approximate characteristic of the oven

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

28

Transfer function of a thermal process (cont’) Transfer function of a thermal process (cont’)

sG  )(

 The approximate transfer function of the thermal  The approximate transfer function of the thermal process can be calculated by using the equation:

sY )(sY )( sU )(

 The input is the unit step signal, then

sU

)( 

1 1 s

y ty )( )(

f f

( (

) )

ate output s  The approximate output is:

e app o

where:

f

t )(

K

1(

The Laplace transform of f (t) is: The Laplace transform of f (t) is:

sF F )( )(

1(

s

)

Applying the time delay theorem: Applying the time delay theorem:

sY sY )( )(

 

s

)

1Tt  1 2/ Tte  ) K 2sT  sT  1Ke 1( 

2sT

sG )( )( G

)( sY )( sU )(

sT 1Ke sT 1 2 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

29

Transfer function of a car Transfer function of a car

M

tBv )(

f

t )(

 Differential equation:

tdv )( dt dt

 Transfer function

)( sG

sG

)( 

)( sV )( )( sF F

1 BM BMs 

K 1Ts T 1

M: car mass B: friction constant f(t): driving force v(t): car speed

K K

T  T 

1 B

M B

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

30

where

Transfer function of an suspension system Transfer function of an suspension system

q

 Differential equation:

tKy )(

f

t )(

M

B

)( tdy dt dt

2 )( tyd 2 dt dt

 Transfer function:  Transfer function:

)( sG sG )(

 

 

2

)( sY )( sF

1 Bs

Ms

K

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

31

M: equivalent car mass B: friction constant K: spring stiffness f(t): external force f(t): external force y(t): travel of car body

Transfer functions of sensors Transfer functions of sensors

y(t) y(t) yfb(t) yfb(t)

y( )

g

 Feedback signal yfb(t) is proportional to y(t), so transfer functions of

yfb( )

p p sensors are usually constant:

sH

)(

fbK

 Ex: Suppose that temperature of a furnace changing in the range y(t) = 05000C, if a sensor converts the temperature to a voltage in the range yfb(t) 05V, then the transfer function of the sensor is: the range y (t) 05V then the transfer function of the sensor is:

0

sH )(

K

(5

V

/)

(500

C

)

(01.0

0 CV /

)

fb

 If the sensor has a delay time, then the transfer function of the

sensor is:

)( sH )( sH 

1

K fb sT fb

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

32

Sensor

Transfer functions Transfer functions

of control systems of control systems

6 December 2013

33

Block diagram Block diagram

 Block diagram is a diagram of a system in which the principal  Block diagram is a diagram of a system, in which the principal parts or functions are represented by blocks connected by lines, that show the relationships of the blocks.

 A block diagram composes of 3 components:

 Function block  Summing point  Summing point  Pickoff point

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

34

Summing point Function block Pickoff point

Block diagram algebra Block diagram algebra

Un (s)

Yn (s)

( ) U(s)

( ) Y(s)

1 ( ) U1 (s)

1 ( ) Y1 (s)

G1 G

G2 G

Gn G

U2(s)

Y2 (s)

Transfer function of systems in series Transfer function of systems in series

Y (s)

U(s)

n

)( sG s

)( sG i



i 1 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

35

Gs

Block diagram algebra (cont’) Block diagram algebra (cont’)

U1 (s) U (s)

Y1 (s) Y (s)

G1

Y(s) Y(s)

U(s) U(s)

Y2 (s) Y2 (s)

U2(s) U (s)

G2

Transfer function of systems in parallel Transfer function of systems in parallel

Y (s)

U(s)

Yn (s)

Un (s)

Gn

n

)( sG )( p p

)( sG )( i i

 

1 i

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

36

Gp

Block diagram algebra (cont’) Block diagram algebra (cont’)

 Negative feedback

 Unity negative feedback

Y(s)

Y(s)

R(s)

R(s)

E(s)

E(s)

G(s)

G(s)

+ 

+ 

Yfb(s)

Yfb(s)

H(s)

 

 

sGcl sG )( )(

sGcl )( )( sG

1

)( sG sG )( 

sG )( sHsG ( ). )(

1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

37

Transfer function of feedback systems Transfer function of feedback systems

Block diagram algebra (cont’) Block diagram algebra (cont’)

 Positive feedback

 Unity positive feedback

Y(s)

Y(s)

R(s)

R(s)

E(s)

E(s)

G(s)

G(s)

+ +

+ +

Yfb(s) Y (s)

Yfb(s) Y (s)

H(s)

sGcl )(

sGcl )(

1 1

sG )( sG )( )( sG 

1 1

sG )( sHsG )( ( ). )( )( sHsG

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

38

Transfer function of feedback systems Transfer function of feedback systems

Block diagram algebra (cont’) Block diagram algebra (cont’)

 For a complex system consisting of multi feedback loops, we

Transfer function of multi-loop systems Transfer function of multi loop systems

i l f t bl th t k di ti t f l

perform equivalent block diagram transformation so that simple i connecting blocks appears, and then we simplify the block diagram from the inner loops to the outer loops. diagram from the inner loops to the outer loops

g p p

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

39

q  Two block diagrams are equivalent if their input-output relationship are the same.

Block diagram algebra (cont’) Block diagram algebra (cont’)

Moving a pickoff point behind a block

x1 x3 x3 x1

G(s) G(s)

x

x

x  3

x

x

2  3 

1 Gx G 1

2

Gx 1 xGx / G / 3 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

40

x2 x2 1/G(s)

Block diagram algebra (cont’) Block diagram algebra (cont’)

Moving a pickoff point ahead a block ff

x3 x1 x1 x3

G(s) G(s)

x

x

2 2

x  3 3

Gx 1 1

x

2  3 

Gx 1 Gx G 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

41

x2 x2 G(s)

Block diagram algebra (cont’) Block diagram algebra (cont’)

Moving a summing point behide a block

x3 x1 x1 x3

+

+

G(s) G(s)

x

(

x

x

(

x

3

GxGx  1

2

) Gx 2

1

3

) Gx 2

1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

42

x2 x2 G(s)

Block diagram algebra (cont’) Block diagram algebra (cont’)

Moving a summing point ahead a block

x3 x1 x1 x3

+

+

G(s) G(s)

x

(

x

)

/

xGxGGx 

x

3

1

2

1

2

3

xGx 1

2

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

43

x2 x2 1/G(s)

Block diagram algebra (cont’) Block diagram algebra (cont’)

= - +

= + -

x

x

(

)

x

x

)

(

x 4

1

2

x 3

x 4

1

3

x 2

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

44

Interchanging the positions of the two consecutive summing points

Block diagram algebra (cont’) Block diagram algebra (cont’)

= - + = +

x x

x x

x x

x x

( (

) )

x x 4

= - + = + 1

2

x x 3

x x 4

1

2

x x 3

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

45

Splitting a summing point

Block diagram algebra (cont’) Block diagram algebra (cont’)

 Do not

NoteNote

 Do  Do

interchange the positions of a pickoff point and a g p summing point :

not not interchange interchange

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

46

the the positions of two summing points there exists a pickoff point if between them: b t th

Example 1 Block diagram algebra –– Example 1 Block diagram algebra

 Find the equivalent transfer function of the following system:

Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

47

Example 1 (cont’) Block diagram algebra –– Example 1 (cont’) Block diagram algebra

 Interchanging the summing points  and ,

Y(s)

)(

)(

sGsGsGA )( 3

4

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

48

Eliminating GA(s)=[G3(s)//G4(s)]

Example 1 (cont’) Block diagram algebra –– Example 1 (cont’) Block diagram algebra

 GB(s)=[G1(s) // unity block] ,  G (s)=[G (s) // unity block]

Y(s) Y( )

1)( 1)(

 

sGB sG

1 sG sG )( )(

sGC )(

sG )( 2 sGsG sGsG ( )( ). )( )(

).[ ) [

( (

)] )]

1 1

1 1

 

 

A

2

sG )( 2 sGsGsG sGsGsG )( )( ( ( 3

2

4

 Equivalent transfer function of the system:

)(

).

(

sGsGsG )( B

eq

C

(

 

sGeq )( sG )(

 (

)]

1

sGsG 1[ )]. )( 1 2 sGsGsG ).[ )( (  3

4

2

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

49

GC (s)= feedback loop[G2(s),GA(s)]:

Example 2 Block diagram algebra –– Example 2 Block diagram algebra

 Find the equivalent transfer function of the following system:

Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

50

Example 2 (cont’) Block diagram algebra –– Example 2 (cont’) Block diagram algebra

 Interchanging the positions of the summing points  and 

Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

51

Moving the pickoff point  behind the block G2(s)

Example 2 (cont’) Block diagram algebra –– Example 2 (cont’) Block diagram algebra

 GB(s) = feedback loop [G2(s), H2(s)] [GA(s)// unity block] GC(s) GC(s) = [GA(s)// unity block]

Y(s)Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

52

Example 2 (cont’) Block diagram algebra –– Example 2 (cont’) Block diagram algebra

 GD(s) = cascade(GB (s), GC(s), G3(s))  G ( ) d (G ( ) G ( ) G ( ))

Y(s)

 GE(s) = feedback loop(GD(s), H3(s))

Y(s)Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

53

Example 2 (cont’) Block diagram algebra –– Example 2 (cont’) Block diagram algebra

 Detailed calculation:  Detailed calculation:

1

*

GA GA 

H G 2

*

G  GB 

1

G 2 HG 2

2

1

2

1

*

G

1 

1 

G C

A

H H G 2

HG HG   G 2

1

2

1

*

.

G

D

C

B

. GGG 3

1

2 1

3 

HGGG  3 HG 2

2

G 2 HG 2

2

HG  G 2

  

  

  

  G 3 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

54

Example 2 (cont’) algebra –– Example 2 (cont’) Block diagram Block

diagram algebra

1

2 1

3 

3

3

G

*

E

1

1

1

G D HG D D

3 3

HGGG  1 2 HHGHGGHG   3 3

2 2

3 3

3 3

1 1

2 2

2 2

3 3

1 1

H H

 

3

2 1

3 

HGGG HGGG   3 HG 2 2 HGGG  3 HG 2

2

 Equivalent transfer function of the system: f

3

3

.

G G 1

1

2

2

3

2

3

3

1

G

*

eq

3

3

1

E

GG E 1 GG  1

1

.

G 1

1 1

 

HGGG  1 2 HHGHGGHG   3 HGGG  1 2 HHGHGGHG HHGHGGHG     3

2

2

2

3

3

1

3

1

3

1

1

Geq eq

1 1

2 

HGGGGG  3 HGGGGGHHGHGGHG HGGGGGHHGHGGHG  1

3

2

2

3

2

2

3

3

1

3

1

3

1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

55

E i f th t t ti t f l

Example 3 Block diagram algebra –– Example 3 Block diagram algebra

 Find the equivalent transfer function of the following system:

Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

56

Example 3 (cont’) Block diagram algebra –– Example 3 (cont’) Block diagram algebra

 Move the summing point  ahead the block G1(s),

Hint to solve example 3 Hint to solve example 3 Hint to solve example 3 Hint to solve example 3

Y(s)Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

57

then interchange the position of the summing points  and then interchange the position of the summing points  and Move the pickoff point  behind the block G2(s)

Example 3 (cont’) Block diagram algebra –– Example 3 (cont’) Block diagram algebra

 Students calculate the equivalent transfer function themselves

Solution to Example 3 Solution to Example 3 Solution to Example 3 Solution to Example 3

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

58

using the hints in the previous slide. using the hints in the previous slide

Remarks on block diagram algebra Remarks on block diagram algebra

 Block diagram algebra is a relatively simple method to  Block diagram algebra is a relatively simple method to calculate the equivalent transfer function of a control system.  The main disadvantage of block diagram algebra is its lack of systematic diagram transformation; each particular block diagram can be transformed by different heuristic ways. transformed by different heuristic ways.

 When calculating the equivalent

perform the procedure block to

function, transfer it

is necessary to manipulate many calculations on algebraic the fractions. This could be a potential source of error if the fractions This could be a potential source of error if system is complex enough.

 Block diagram algebra is only appropriate for

finding

transfer

function of complex systems, flow graph method (to be discussed later) is more flow graph method (to be discussed later) is more

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

59

equivalent transfer function of simple systems. To find equivalent signal signal effective.

Definition of signal flow graph Definition of signal flow graph

Y(s) Y(s)

Y(s) Y(s)

Block diagram

Signal flow graph

l di

th

h

d

ti

f

t

i

i

 Source node: a node from which there are only out-going

hi h th

d

d

t

f

l

i

 Signal flow graph: a networks consisting of nodes and branches  Signal flow graph: a networks consisting of nodes and branches.  Node: a point representing a signal or a variable in the system.  Branch: a line directly connecting two nodes, each branch has an function arrow showing the signal direction and a transfer ti f representing the relationship between the signal at the two nodes of the branch S branches.

 Sink node: a node to which there are only in-going branches.  Hybrid node: a node which both has in-going branches and out-

going branches.

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

60

Definition of signal flow graph (cont’) Definition of signal flow graph (cont’)

p

p

q

g

 Forward path: is a path consisting of continuous sequence of branches that goes in the same direction from a source node to a sink node without passing any single node more than once. Path gain is the product of all transfer functions of the branches Path gain is the product of all transfer functions of the branches belonged to the path.

 Loop: is a closed path consisting of continuous sequence of branches that goes in the same direction without passing any single branches that goes in the same direction without passing any single node more than once. Loop gain is the product of all transfer functions of the branches belonged to the loop. belonged to the loop

Y(s) Y(s)

Y(s)

Forward path

Loop

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

61

Mason’s formula Mason’s formula

G

kk P

1 1 

  k

 The equivalent transfer function from a source  The equivalent transfer function from a source node to a sink node of a system can be found by using the Mason’s formula:

 Pk: is the gain of kth forward path from the considered source node

to the considered sink node.

1 



LL i

L i

j

LLL mj i

 : is the determinant of the signal flow graph.  : is the determinant of the signal flow graph  

i

, ji nontouchin nontouchin g g

, , mji nontouchin nontouchin g g

iL : is the gain of the ith loop  k: is the cofactor of the kth path .

k is inferred from  by removing all the gain(s) of the loop(s) touching the forward path Pk

 Note: Nontouching loops do not have any common nodes. A loop and  Note: Nontouching loops do not have any common nodes A loop and

a path touch together if they have at least one common node.

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

62

 Find the equivalent transfer function of the system described  Find the equivalent transfer function of the system described

Example 1 Signal flow graph –– Example 1 Signal flow graph

R(s)

Y(s)

 Solution  Solution

1 1

3

2

2

6

6

2

 Forward paths: GGGGGP  GGGGGP  1 2 5 1 4 GGGGP  2 1 5 4 GGGP GGGP  3 3 1 1 7 7

2 2

 Loop: L L  1 1 L  2 L  3 L  4

HG HG 4 4 HGG 7 HGGG 4 5 HGGGG 4

5

2

3

2

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

63

by the following signal flow graph:

Example 1 (cont’) Signal flow graph –– Example 1 (cont’) Signal flow graph

)



 The determinant of the SFG:  The determinant of the SFG: L (1 4

L 2

L 3

L 1

LL 21

 The cofactors of the paths

11  12  3 1 L 1

 The equivalent transfer function of the system:

( (

) )

Geq G

P P   1 2

P P 2

P P 3

1

3

1 

1(

)

1

2

1

4

2

6

1

3

4

 

Geq G

1

GGGGGGGGGGGG 1 7 

HG 4 

5 

5 HGGHGHGGGGHGGGHGGHG  2

1

6

2

4

5

7

2

3

5

2

4

2

1

4

7

4

2

2

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

64

Example 2 Signal flow graph –– Example 2 Signal flow graph

 Find the equivalent transfer function of the system described  Find the equivalent transfer function of the system described

R(s)

Y(s)

 Solution:

R(s)

Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

65

by the following block diagram:

Example 2 (cont’) Signal flow graph –– Example 2 (cont’) Signal flow graph

R(s)

Y(s)

 Forward paths:

2

3

GGGP  1 1 3 GHGP  2 1 3

1

1

3 3

1 1

3 3

 Loop L  1 L L  2 L  3 L L  4 4 L  5

HG 2 2 HGG HGG 3 2 GGG 3 2 HHG HHG HGG 3

1

1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

66

Example 2 (cont’) Signal flow graph –– Example 2 (cont’) Signal flow graph

 The determinant of the SFG: f th SFG

(1

)



L 1

L 2

L 3

L 4

L 5

 The cofactors of the paths

11 1 12 

 The equivalent transfer function of the system: f

Th d t t i

(

)

P  1

P 2

1

2

f th Th t t t l i f

1

1

3

1

Geq

1 1

2  

3  

 

 

 

HGGGGG  HGGHHGGGGHGGHG HGGHHGGGGHGGHG 2

1

2

3

2

3

3

3

3

2

1

3

1

1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

67

ti 1 Geq   

Example 3 Signal flow graph –– Example 3 Signal flow graph

 Find the equivalent transfer function of the system described

q y

Y(s)

 Solution:

Y(s)

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

68

by the following block diagram:

Example 3 (cont’) Signal flow graph –– Example 3 (cont’) Signal flow graph

Y(s)

 Forward path

2

1

GGGP  1 1 3 2 GP  4

1

3 3

    

 Loop L 1 L L 2 L 3 L L 4 4 L 5

HG 1 2 HGG HGG 2 1 GGG 3 2 HGG HGG 3 3 2 2 G 4

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

69

Example 3 (cont’) Signal flow graph –– Example 3 (cont’) Signal flow graph

 Determinant of the SFG:  Determinant of the SFG:

(1

)

(

)



L 1

L 2

L 3

L 4

L 5

LL 41

LL 51

LL 52

LL 54

LLL 541

 The cofactor:

(1

)

(

)

11  

2

L 1

L 2

L 4

LL 41

 The equivalent transer function of the system:  The equivalent transer function of the system:

G

(

)

P  1

P 2

1

2

1 

Num Den

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

70

State space equations State space equations

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

71

State of a system State of a system

 State: The state of a system is a set of variables whose  State: The state of a system is a set of variables whose values, together with the equations described the system dynamics, will provide future state and output of the system. A nth order system has n state variables. The state variables can be physical variables, but not necessary.

 State vector: n state variables form a column vector called

T

nx

 x 1x

2 x

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

72

the state vector.

State equations State equations

 By using state variables, we can transform the n-order o de differential equation describing the system dynamics into a set of n first order differential equations (called state equations) of the form: equations) of the form:

tu )(

a ab es, y us g s a e a s o e ca e

Ax B

t )( )( t

 

   

x t )( ty )( Cx

  

n

c

where where

A

B

  c 1C

2

nc 

a 11 a a 21 21 

a 12 a a 22 22 

a 1 n a a 2 2 

a

a 1 n

n

2

a nn

      

      

b  1  b b   2 2    nb 

      

 Note: Depending on how we chose the state variables, a y system can be described by many different state equations.

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

73

q y y

Example 1 State equations –– Example 1 State equations

B

M

y tKy )( )(

f f

)( )( t

)( tdy dt

 Differential equation: 2 tyd )( 2 2 dt

tx )( 1

f

t )(



tx )( 2

tx )( 1

tx )( 2

 Denote: ty y )(1 )( )( )( tx  1  tx ty )( )( 2

   

     

1 1 M

f

t )(

tx )( 2 K K M )( tx )( 1 1 tx )( 2

   

   

  )( )( tx  1 1   )( tx  2

B B M     

   .      

    

    

1 B B M

0 1 1 M

ty )(

  01

0 K K M tx )(1 tx )( 1 )( tx 2

    )( )( t

)( )( t

)( )( t

A suspension system A suspension system A suspension system A suspension system

Ax

f f B

      

 01C  

B B

A A

 

x ty )(

t )(

Cx

    

0   1     M

    

    

0 K M

1 B M

   

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

74

Example 2 State equations –– Example 2 State equations

 : motor speed  Mt : load inertia M : load inertia  B : friction constant  J : moment of inertia of the rotor

 La : armature induction  Ra : armature resistance R : armature resistance  Ua : armature voltage  Ea : back electromotive force

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

75

DC motor DC motor

Example 2 (cont’) State equations –– Example 2 (cont’) State equations

 Applying Kirchhoff s law for the armature circuit:  Applying Kirchhoff's law for the armature circuit:

(

)( tU a

i a

). Rt a

L a

tE )( a

)( di t a dt dt

(1)

t )(

K 

tE )( a

(2) where:

 Applying Newton s law for the rotating part of the motor:  Applying Newton’s law for the rotating part of the motor:

K : electromotive force constant  : excitation magnetic flux

(for simplicity, assuming that load torque is zero)

)( tM

J

)( tB  

d )( t d t )(  dt

(3) (3)

tM )( )( tM

t )( )( t

iK iK a 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

76

(4) (4) where: h

t )(

Example 2 (cont’) State equations –– Example 2 (cont’) State equations

 (1) & (2) 

t )(

t )(



i ö

tU )( ö

di ö dt

R ö L ö

K  L ö

1 L ö

t )(

(5)

t )(

t )(

 (3) & (4) 

i ö

d  dt

K  J

B J

t )(

 Denote:

t )( )( t

 

i ö  

tx )(1 tx )( )(2 tx

   



 

tx tx )( )( 1

tx tx )( )( 1

tx )( )( tx 2

tU )( )( tU ö

1 L ö

 (5) & (6) 

 )( )( tx 2 2

)( )( tx 1 1

)( )( tx 2 2

R ö ö L ö K  J

K  L ö B J

       

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

77

(6)

ö

)( tx 1 )( tx 2

  tx )( 1     )( tx 2

   

   

   

    

1    tUL )( tUL )( ö  0 

R ö L ö ö K  J

K  L ö ö B J

      

      

t )(

tx )( )( 1 tx )( 2

    10  

   

Example 2 (cont’) State equations –– Example 2 (cont’) State equations

 x

Ax

B

tU )( u

t )( )( t

t )( )( t

Cx

 

   

where:

A

10C 

B

1   öL    0 0 

     

R ö L ö K  J

K  L ö B J

       

       

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

78

Establishing state equations from differential equations Establishing state equations from differential equations

Case #1: The differential equation Case #1: The differential equation Case #1: The differential equation Case #1: The differential equation does not involve the input derivatives does not involve the input derivatives

 The differential equation describing the system dynamics is:

n

1 

d

a

a

0

a 1

n

)( tya n

)( tub 0

1 

)( ty 1 n 

n )( tyd n dt

dt

)( tdy dt

 Define the state variables as follow:

 The first state is the system output:  The first state is the system output:  The i th state (i=2..n) is chosen to be the first derivative of the (i1)th state :

tx tx )( )(1 1 tx )( 2 )( )( tx 3 3

ty )( )( ty  tx )( 1  )( )( tx 2 2

t )(

tx )( n

n

1

  x

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

79

q g y y

Establishing state equations from differential equations Establishing state equations from differential equations

Case #1 (cont ) Case #1 (cont’) Case #1 (cont ) Case #1 (cont’)

t )(

tu )(

t )(

Ax

B

 State equation:

x ty )( )( ty

t )( )( t

Cx Cx

   

0 0

1 1

0 0

0 0

0  

0  

1  

0  

where:

A A

)( tx 1 )( tx 2  

)( )( t

x

B B

2

1 

)( x t n 1  )(txn )( tx

          

          

0 a n a 0

0 a n  a 0

1 a 1 a 0

          

0  0   0       0  b  0  0a 

          

C

            01

0 a n a 0 00

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

80

Establishing state equations from differential equations Establishing state equations from differential equations

Case #1: Example Case #1: Example Case #1: Example Case #1: Example

 Write the state equations describing the following system:

   )(6)(5)(2 ty ty ty

10

ty )(

tu )(

 Define the state variables as:

  

ty )(  tx )( 1  tx )( 2

     

tr )(

B

 State equation:

tx )( 1 tx )( 2 tx )( 3 x t )( ty )( )(

t )( t )( )(

Ax Cx C

 

    

0

0

where

B B

0 0

 

 

0

1

0

0

1

0

5.0

     

     

0

0

1

A

0 0 b 0 a

0

       

       

3 3

2 2

5 5

3 3

      

      5.2 52 

0 a a

0 a a

1 a 1 1 a

0

0

0

        

        

001C

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

81

Establishing state equations from differential equations Establishing state equations from differential equations

Case #2: The differential equation involve the input derivatives Case #2: The differential equation involve the input derivatives Case #2: The differential equation involve the input derivatives Case #2: The differential equation involve the input derivatives

 Consider a system described by the differential equation:

n

1 

d d

a

a

n

)( )( tya n

0

a 1

1 

)( )( ty ty 1 n 

n )( )( tyd tyd n dt

dt

n

n

d

d

 

 

 

 

b b n

b b 0 0

b b 1 1

2 2

)(1 )( tub tub 1 n 

1  )( tu 1 n 

)( )( tdy tdy dt 2  )( tu 1 n 

dt

dt

)( tdu dt

 Define the state variables as follow:

tu )(

tx )( 1 tx )( 2 2 tx )( 3

ty )(  tx )( 1 1  tx )( 2

tu )(  1 1  2

 The first state is the system output:  The i th state (i=2 n) is equal to the state (i 2..n) is equal to the  The i first derivative of the (i1)th state minus a quantity proportional to the input: th i t

 x

t )(

tx )( n

 n

n

tu )( 1 

1 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

82

Establishing state equations from differential equations Establishing state equations from differential equations

Case #2 (cont ) Case #2 (cont’) Case #2 (cont ) Case #2 (cont’)

t )(

tu )(

t )(

Ax

B

 State equation:

x ty )( )( ty

t )( )( t

Cx Cx

   

0 0

1 1

0 0

0 0

0  

0  

1  

0  

tx )( 1 tx )( 2  

t )(

where:

x

A

B

2

1 

x t )( 1 n  t )(txn )(

         

         

  1    2      1  n   n  

         

0 a n a 0

0 a n a 0

0 a n  a 0

1 a 1 a 0

           

           

C C

  01

00 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

83

Establishing state equations from differential equations Establishing state equations from differential equations

Case #2 (cont ) Case #2 (cont’) Case #2 (cont ) Case #2 (cont’)

 1

b b 0 a 0 b b 1 1

 2

a

b 2 2

  12 12

   3

a a    11 11 a 0 a   21 21 a 0

2

b n

a  1 n

a n

1 

1 

 11 

 n

a  2 n a 0

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

84

The coefficients  in the vector B are calculated as follow:

Establishing state equations from differential equations Establishing state equations from differential equations

Case #2: Example Case #2: Example Case #2: Example Case #2: Example

 Write the state equations describing the following system:    )(6)(5)(2 ty ty ty

 tu )(

tu )(

ty )(

10

10

20

 Define the state variables:

tu )(

)( tx 1 )( tx 2 tx )( 3

)( ty  )( tx 1  tx )( 2

)( tu  1  2

     

)( )( tu

Ax

B

 The state equation:  The state equation:

x )( )( t ty )(

)( )( t t )(

Cx

 

   

0 0

0 0

1 1

0 0

1 1

0 0

A

0

0

1

     

3 3

2 2

5 5

3 3

5.2 52

      

      

  1   B    2    3 

001C

0 a a

0 a a

1 a 1 1 a

0

0

0

        

        

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

85

Establishing state equations from differential equations Establishing state equations from differential equations

 The elements of vector B are calculated as follow:

0

10 10

b 0 a 0 b b 1

5

a

20

0655

b 2 2

05 05   2   2 2 1 1



 2

5 2

0 2 a a    11 a 0 a    1 1 2 2 a

0

    1      2       3 

0

Case #2: Example (cont )) Case #2: Example (cont’)) Case #2: Example (cont )) Case #2: Example (cont’))

B

5 5 5 2

       

       

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

86

 Consider a system described by the differential equation:  Consider a system described by the differential equation:

n

1 

d

a

a

0

a 1

n

tya )( n

1 

)( ty n 1 

n )( tyd n dt dt

dt dt

)( tdy dt dt m d

b 0

b 1

b m

tub )( m

1 

1  tu )( 1 m 

m tud )( m dt

dt

tdu )( dt

space equations in controllable canonical form StateState--space equations in controllable canonical form

m

m

1 

sG )( )( G

n

n

1 

 

...  ... 

 

sb 0 0 sa 0

sb 1 1 sa 1

n

n

bsb 1 1 m m m m  asa 1 

 The controllable canonical state equations of the system is  Th t t

or equivalently by the transfer function:

f th ti t i t i

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

87

l ll bl presented in the next slide.

space equations in controllable canonical form (cont’) StateState--space equations in controllable canonical form (cont’)

tr )( )( t

Ax A

B B

 State equations:

 t )( )( t x ty )(

t )( )( t t )(

Cx

 

   

1

0

0

0

0 

0 

0 

1 

Where:

B

A

t )(

x

2

1 

tx )( )(t 1 )( tx 2   )(txn

       

       

0      0          0     1

0 a n a 0 0

0 a n a 0 0

0 a n  a 0 0

1 a 1 a 0 0

           

           

1 

0 0

0 0

C C

b m a 0

b m a 0

b 0 a 0

   

   

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

88

space equations in controllable canonical form (cont’) StateState--space equations in controllable canonical form (cont’)

 )(2 ty

 Write the controllable canonical state equations of the following  Write the controllable canonical state equations of the following   ty ty )(4)(5)( ty 

 tu )(3)( tu 

tr )(

system:

Ax

B

 Solution:

t )( x ty )(

t )( )( t

Cx

 

  

0

1

0

0

1

0

A

0

0

1

B

2

5.2

5.0

      

      

0     0     1   

0 a 3 a 0

0 a 2 a 0

1 a 1 a 0

         

where:          

C C

 

5.005.1   50051

b 2 a 0

b 1 a 0

b 0 a 0

   

   

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

89

Establishing state equations from block diagrams Establishing state equations from block diagrams

 Establish the state equations describing the system below:

R(s)

Y(s)

Example Example Example Example

10 )(1

ss (

s

)3

 Define the state variables as in the block diagram:

( ) R(s)

Y(s) Y(s)

2(s) X2(s)

X3(s) X3(s)

X1(s) X1(s)

+

(

)1

(

)3

1 1 s

10 10 s

1 1 s

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

90

+

Establishing state equations from block diagrams Establishing state equations from block diagrams

 From the block diagram, we have:

sX

10

3)( s 

sX )( 1

sX )( 2

1

sX )( 1

sX )( 2

10 10 s 3 

Example (cont ) Example (cont’) Example (cont ) Example (cont’)

10



  tx )( 1

tx )(3 1

tx )( 2

sX

)( )( s

)( )( sX 2 2

)( )( sX 3 3

2 2

)( )( sX 2 2

)( )( sX 3 3

1 1

1 s 

(1)

 



tx )( 2

tx )( 2

tx )( 3

sR )(

sY

)(

sX

s )(

sR )(

sX )(3

3

sX )( 1

1 s

tr )( )(



(2)

 

)( tx )( 3

tx )( )( 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

91

(3) (3)

Establishing state equations from block diagrams Establishing state equations from block diagrams

Example (cont ) Example (cont’) Example (cont ) Example (cont’)

 Combining (1), (2), and (3) leads to the state equations:

0

3

10

0

11  0 0

     

   0    1 

          

    )(0 tr       1   B

x

 tx )( tx )(   1 1    tx )( tx )(     2 2    tx tx )( )(   3 3     x

)( )( t

)( )( t

A

 Output equation:

ty )(

tx )( 1

tx )(tx )( 1 tx )( 2 )(3 tx )( t

     001     C C 

      

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

92

State equation to transfer function State equation to transfer function

 Given a system described by the state equations:

tu )(

ib d b th t t Gi d ti t

B

x t )( ty )( )( t

t )( t )( )( t

Ax Cx C

 

    

 Then the transfer function of the system is:

1 

)( sG

 BAIC 

 s

)( sY )( sU

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

93

 Calculate the transfer function of the system described by the  Calculate the transfer function of the system described by the

Example State equation to transfer function –– Example State equation to transfer function

tu )(

state equation:

Ax

B

x t )( ty )(

t )( t )(

Cx

 

   

0

1

where

B

01C 

A

2

3      1  

  

  3 

 Solution: The transfer function of the system is:

1 

)( sG

 BAIC 

 s

)( sY )( sU

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

94

Calculate transfer functions from state equations Calculate transfer functions from state equations

0

1

s

1

s

s

Example (cont ) Example (cont’) Example (cont ) Example (cont’)

AI 

10 10

2 2

2 2

 s s

 

01    

   

   

  3 3  

   

  3 3  

1 

  1AI  s 

s 2

 s 

( ss

)1.(2)3

1 

   

1    3 

13 s        2 s   

13

1 

 

 

AIC s s AIC 

 

  01 01

  s s

13 13

2

2

s

1 s 3

s

2

1 s 3

s

2

s       2  

   

1 

s s

 

 

BAIC BAIC  

 

  s s

2

1 s 3

s

2

(3 2 s

1)3 s   s 3 2  

3     13 13     1  

sG sG )( )(

s

2

s 3 10 2 s 3  

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

95

Solution to state equations Solution to state equations

tu

t )(

t )(

Ax

B

 x

 Solution to the state equation ?)(

t

)( t t )(

( t t (

u u

x x

 )0()( )0()( t t x x

 

) )  B  B

d )( )( d  

   

0

1

[ [

( (

s s

)] )]

t )( )( t  

 

where where transient matrix transient matrix

L L

(

1) 

s )( 

 System response?

)( ty

)( t

AIs 

Cx

 Example:

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

96

Relationship between the mathematical models Relationship between the mathematical models

Diff. equation

Define x

L

L -1

1 

sG )(

s

 BAIC 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

97

Transfer function State equation

Linearized models of nonlinear systems Linearized models of nonlinear systems

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

98

Nonlinear systems Nonlinear systems

 Nonlinear systems do not satisfy the superposition

principle and cannot be described by a linear differential

equation.

 Most of the practical systems are nonlinear:  Most of the practical systems are nonlinear:

 Fluid system (Ex: liquid tank,…)

 Thermal system (Ex: furnace,…)  Thermal system (Ex: furnace )

 Mechanical system (Ex: robot arm,….)

 Electro-magnetic system (TD: motor,…)  Electro magnetic system (TD: motor )

 Hybrid system ,…

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

99

nonlinear systems Mathematical model of nonlinear systems Mathematical model of

 Input – output relationship of a continuous nonlinear system  Input output relationship of a continuous nonlinear system can be expressed in the form of a nonlinear differential equations.

n

1 

d

,

,

,

),

,

,

tu )(,

g

( ty

)( ty n n 1 1 

)( tdy dt dt

)( tdu dt dt

n )( tyd n n dt dt

dt dt

m )( tud m m dt dt

    

    

where: u(t): input signal, where: u(t): input signal,

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

100

y(t): output signal, g(.): nonlinear function

Example 1 Nonlinear system –– Example 1 Nonlinear system

qin

t

u(t)

a: cross area of the dischage valve a: cross area of the dischage valve A: cross area of the tank g: gravity acceleration k: constant t k CD: discharge constant

 Balance equation:

 tyA )(

t )(

tq )( in

q out

y(t) (t) qout

tku )( )( tku

 

t )(

aC

2

tgy )(

tqin tq )( )( q out

D

 ty )( )( ty

aC aC

2 2

tgy tgy

 

where: where:

  tku )( )( tku

)( )(

D D

1 A

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

101

(first order nonlinear system ) ) li t

Example 2 Nonlinear system –– Example 2 Nonlinear system

l

m m

u

J: moment inertia of the robot arm J: moment inertia of the robot arm M: mass of the robot arm m: object mass l: length of robot arm l: length of robot arm lC : distance from center of gravity to rotary axis B: friction constant g: gravitational acceleration g: gravitational acceleration u(t): input torque (t): robot arm angle

J

(

(

ml

)

cos

tu )(

 )() t 

 According to Newton’s Law  2 tB ml )(  

gMl C

t )(

g

cos

tu )(

 )( t 



 

2

2

)

(

J

ml ( ( J

Ml ) C 2 ml )

)

(

J

B ml 

 

1 ml 

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

102

(second order nonlinear system)

Example 3 Nonlinear system –– Example 3 Nonlinear system

Moving direction

(t)

: steering angle : ship angle k: constant i: constant

(t) ( )

 The differential equation describing the steering dynamic of a

g y g q

t )( )( t

t )( )( t

t )( )( t

t )( )( t

 



 

 

 

)( )( t t  

ship:

  3 3  

 

   t )( )( t     3

k  21

1 1    2

1

1  21

   

     

   

   

   

   

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

103

(third order nonlinear system) (third order nonlinear system)

 A continuous nonlinear system can be described by the state  A continuous nonlinear system can be described by the state

Describing nonlinear systems by state equations Describing nonlinear systems by state equations

equation:

x )( )( t ty )(

f xf (( (( x (( h

), ), ( ( )) )) tut tut ), ( ))

 

    

where: u(t): input,

y(t): output,

x(t): state vector,

x(t) = [x1(t), x2(t),…,xn(t)]T

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

104

f(.), h(.): nonlinear functions

StateState--space model of nonlinear system Example 1 space model of nonlinear system –– Example 1

 ty )(

aC

2

tgy

qin

 Differential equation:  Differential equation:  tku )(

u(t)

)(

D

1 A A

ty )( )(

 Define the state variable: tx )(1 )(

 State equation:

y(t) (t) qout

St t ti

x x t )( t )( ty )(

xf (( xf (( h x ((

tut ), ( )) tut ), ( )) ), tut ( ))

 

    

aC

)( t

gx 1

D

where

xf

tu )(

),( u



k A

h

x ((

tut ), (

))

2 A 1 tx )(

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

105

StateState--space model of nonlinear system Example 2 space model of nonlinear system –– Example 2

t )(

g

cos

tu )(

 )( t 



 

2

2

l

J

(

)

Ml ) C 2 ) ml

)

(

J

1 ml 

 Differential equation:  Differential equation: B ml (  ml ( J  

m

 Define the state variable:

t )( )( t

 

t )(    

tx )( 1 tx )( )(2 tx 2

   

t )(

u u

xf ((

tut ), (

))

 State equation:

q

x ty )( )(

h h

x )(( tut ), (( ( (

)) ))

    

where

xf

u ),(

tu )(

cos

tx )( 1

tx )( 2

2

2

J

)

(

J

)(2 tx ml ( J (

gMl C 2 ml

) )

)

(

 

B ml 

1 ml 

    

    

h

x ((

tut ), (

))

1 tx )(

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

106

Equilibrium points of a nonlinear system Equilibrium points of a nonlinear system

 Consider a nonlinear system described by the diff. equation:  Consider a nonlinear system described by the diff. equation:

x t )( ty )( )( ty

xf (( x (( h h (( x

tut ), ( )) tut ), ), ( ( )) )) tut

 

   

x

 The state is called the equilibrium point of the nonlinear

x

x

u

,( ux ( ux

) )

 If  If

system if the system is at the state system if the system is at the state and the control signal is and the control signal is fixed at then the system will stay at state forever.

is equilibrium point of the nonlinear system then: is equilibrium point of the nonlinear system then:

xf ((

tut ), (

))

0

uu ,



xx 

 The equilibrium point is also called the stationary point of the

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

107

nonlinear system.

 )( tx 1  )( )( tx 2 2

 Consider a nonlinear system described by the state equation:  Consider a nonlinear system described by the state equation:    

   

   

    1

tu )(

( ). )( txtx u  2 1 )( )(2)( )( tx tx  2 1 1 2  u Find the equilibrium point when

 Solution:

tut ( ),

Example 1 Equilibrium point of nonlinear system –– Example 1 Equilibrium point of nonlinear system

xf ((

))

0

The equilibrium point(s) are the solution to the equation: 

uuxx xx , , uu 

01

0

xx .  1 2 x x 2  1 1 2 2

2



1x





2x

2x

      1x     

     

2 2 2

2 2

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

108

or

 Consider a nonlinear system described by the state equation: d

Example 2 Equilibrium point of nonlinear system –– Example 2 Equilibrium point of nonlinear system

)

1 x

3

3

 x 1 1  x 2  x

3

2 2 x x u    2 3 2 3 sin( x x   1 2 x u  3

     

     

     y 

     1x

ib d b th t t id C ti li t

tu )( )( tu

0 0

u  u

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

109

Find the equilibrium point when Find the equilibrium point when

Linearized model of a nonlinear system around an equilibrium point Linearized model of a nonlinear system around an equilibrium point

 Consider a nonlinear system described by the diff. equation:  Consider a nonlinear system described by the diff equation:

(1)

x t )( ty )( )( ty

xf tut (( ), ( )) x )(( h h tut ( (( ), ( )) )) x tut

  

   

 Expanding Taylor series for f(x,u) and h(x,u) around the

,( ux

)

y g ) ( )

( equilibrium point , we can approximate the nonlinear system (1) by the following linearized state equation:

(2)

)(~ x t )(~ ty

)(~ xA t )(~ xC t

)(~ B tu )(~ D tu

 

 

  

x

x

t )(

where:

)(~ x t )(~ )( tu )(~ ty

)( )( tu ty )(

 u y

 

 

(

y

h

x ,(

u

))

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

110

Linearized model of a nonlinear system around an equilibrium point Linearized model of a nonlinear system around an equilibrium point

 The matrix of the linearized state equation are calculated as

i d t t f th li l t d t i ti l

Th follow:

B

A

f   1  u   f f   2 2   u     f f     n  u  

)

         ,x  ( u

f  1 x  1 f f   2 x  1  f  n x  1

f f   1 1 x x   2 n f f f f     2 2 x nx   2  f f   n n x x   2 n

          

          

(

,x u

)

C

D

h  u 

  

h  x  1 1

h  x  2 2

h  nx  n

) )

  ( u,x ( u x

   

  ,x  ( ( u

) )

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

111

Linearized state--space model Linearized state Example 1 space model –– Example 1

2

2

a

cm 1

,

A

100

cm

The parameter of the tank: The parameter of the tank:

3 3

qin

k k

150 150

cm

/ /

sec

CV CV . ,

8.0 80

D

u(t) u(t)

2

g

981

cm

/

sec

t )(

y(t) qout

xf ((

tut ), (

))

 Nonlinear state equation:

x ty )( )( ty

h h

x )(( tut tut (( ), ( ( x

)) ))

 

   

)( )( t

aCD D

tu )( )(

3544 3544

.0 0

9465 9465

tu )( )(

where

xf f u ),( ) (



.0 0 

tx )( )( 1

g gx 2 1 1 A

k k A

h

(( (( x

), ), ( ( tut

)) ))

)( )( 1 tx 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

112

Linearized state--space model Linearized state Example 1 (cont’) space model –– Example 1 (cont’)

 The equilibrium point:

2020

9465

.0u

1 x uxf ,(

)

.0

3544

u 5.1

0



x 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

113

Linearize the system around y = 20cm: Linearize the system around y = 20cm:

 The matrix of the linearized state-space model:  The matrix of the linearized state space model:

g

Linearized state--space model Linearized state Example 1 (cont’) space model –– Example 1 (cont’)

A

.0

0396





C C

1

aC 2

2 D xA 1

f  1 x (1

,x u

)

h  x (1

,x u

)

(

,x u

)

D

0

B

5.1

h  u 

k A

f  1 u 

(

,x u

)

(

,x u

)

(

,x u

)

 The linearized state equation describing the system around

)( t

gx 1

tu )(

0396

2 A

k A

h

the equilibrium point y 20cm is: the equilibrium point y=20cm is:

)(~ x t .0  )(~)(~ )(~)(~ x ty t 

aC D ),( u xf  )(~5.1)(~ x t tu  (( tut ), 1 tx ( )) )( x

    

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

114

Linearized state--space model Linearized state Example 2 space model –– Example 2

The parameters of the robot: The parameters of the robot:

l

,2.0

mm

1.0

kg

lm ,5.0 C

l

2

M M

kg kg ,5.0 50

J J

02.0 020

. mkg mkg

m

2

B

.0

,005

g

81.9

m

/

sec

t )(

u u

xf ((

tut ), (

))

 Nonlinear state equation :

x ty )( )( ty

h h

x )(( tut tut (( ), ( ( x

)) ))

   

where:

xf

),( u

cos

tu )(

tx )( 1

)( tx 2

2

2

)(2 tx ( ml J (

gMl C 2 ml

) )

)

(

J

)

(

J

 

B ml 

1 ml 

    

    

h

x ((

tut ), (

))

1 tx )(

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

115

Linearize the system around the equilibrium point y = /6 (rad): Linearize the system around the equilibrium point y = /6 (rad):

 Calculating the equilibrium point:

6/x 6/ 1 x

x 2 (

u

0

Linearized state--space model Linearized state Example 2 (cont’) space model –– Example 2 (cont’)

f xf ( (

, ,

) )

cos cos

u u

 

x x 1

x x 2

2

2

ml J (

gMl C C 2 ml

) )

)

(

J

)

(

J

1 ml 

 

B ml 

    

    

 0

 2744

2x      .1u 

Then the equilibrium point is: Th ilib i i t i th

x

x x 1 x 2

6/ 6/     0 

   

   

   

2744 2744

.1u 1

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

116

 The system matrix around the equilibrium point:  The system matrix around the equilibrium point:

Linearized state--space model Linearized state Example 2 (cont’) space model –– Example 2 (cont’)

A

a a 11 12 a 21 a a a 22

   

   

1

0

a 12

a 11

f  1 x x  (2 (2

,x u

) )

f  1 x x (1  1

)

u ,x

a

sin

21 21

)( )( tx 1 1

ml ( J (

) Ml C 2 2 ml )

 

(

,x u

)

,x u

f  2 x   (1

)



a a 22

2

)

(

,x u

)

,x u

f  2 2 x  (2

)

xf ( u u ),( xf )

 

cos

tu )(

tx )( 1

tx )( 2

2

2

gMl gMl C C 2 ml

J

) ) )

)

(

)

(

J

1 1 ml 

  

B B ml 

B J ml (  )( tx  2   ml ( ( ml  J ( 

    

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

117

 The input matrix around the equilibrium point:  The input matrix around the equilibrium point:

Linearized state--space model Linearized state Example 2 (cont’) space model –– Example 2 (cont’)

B

b   1    2b b 

    

0 0

b b 1

f 1f 1 u 

(

,x u

)

b 2

2

f f  2 u 

J

1 1 ml 

(

)

,x u

xf ( u u ),( xf )

cos

tu )( )(

tx )( )( 1

tx )( )( 2

2

2

gMl gMl C C 2 ml

)

(

J

)

(

tx )( 2 ml ( ( ml J (

) ) )

J

1 1 ml 

  

B B ml 

    

    

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

118

 The output matrix around the equilibrium point:  The output matrix around the equilibrium point:

0

c 2

1

c 1

 cC 1

2 c

h  x  (2 (2

u,x

) )

h  x x (1  1

Linearized state--space model Linearized state Example 2 (cont’) space model –– Example 2 (cont’)

,x u

)

0

d 1

1dD

h  u ,x u (  ( u

) )

 Then the linearized state equation is:

)(~ x t )(~ ty )( t

)(~ xA t )(~ xC xC t )( t

)(~ B tu )(~ tu )( t

D D

 

   

0D 0D

A A

 

B B

 

01C 01C  

0 1 a 21 a

22

   

   

0    2b 

   

h

x ),( u

1 tx )(

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

119

Regulating nonlinear system around equilibrium point Regulating nonlinear system around equilibrium point

 Drive the nonlinear system to the neighbor of the equilibrium  Drive the nonlinear system to the neighbor of the equilibrium

 Around the equilibrium point, use a linear controller to maintain  Around the equilibrium point, use a linear controller to maintain

point (the simplest way is to use an ON-OFF controller)

the system around the equilibrium point.

Linear Linear control r(t) e(t) u(t) y(t)

Nonlinear system system + 

ON-OFF

6 December 2013

© H. T. Hoang - www4.hcmut.edu.vn/~hthoang/

120

Mode select