intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Lecture Fundamentals of control systems: Chapter 8 - TS. Huỳnh Thái Hoàng

Chia sẻ: Gió Biển | Ngày: | Loại File: PDF | Số trang:60

61
lượt xem
7
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Lecture "Fundamentals of control systems - Chapter 8: Analysis of discrete control systems" presentation of content: Stability conditions for discrete systems, extension of Routh - Hurwitz criteria, jury criterion, root locus,... Invite you to reference.

Chủ đề:
Lưu

Nội dung Text: Lecture Fundamentals of control systems: Chapter 8 - TS. Huỳnh Thái Hoàng

  1. Lecture Notes Fundamentals of Control Systems Instructor: Assoc. Prof. Dr. Huynh Thai Hoang Department of Automatic Control Faculty of Electrical & Electronics Engineering Ho Chi Minh City University of Technology Email: hthoang@hcmut.edu.vn huynhthaihoang@yahoo.com Homepage: www4.hcmut.edu.vn/~hthoang/ www4 hcmut edu vn/ hthoang/ 6 December 2013 © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1
  2. Chapter 8 ANALYSIS OF DISCRETE CONTROL SYSTEMS 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 2
  3. Content  Stability conditions for discrete systems  Extension of Routh-Hurwitz criteria  Jury J criterion it i  Root locus  Steady St d statet t error  Performance of discrete systems 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 3
  4. Stability conditions for discrete systems 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 4
  5. Stability conditions for discrete systems  A system is defined to be BIBO stable if every bounded input to the system results in a bounded output. I s Im I z Im Stable Re s Stable Re z Res  0 | z | 1 1 z  eTs The region of stability for a The region of stability for a contin o s system continuous s stem is the di discrete t system t i th is the left-half s-plane interior of the unit circle 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 5
  6. Characteristic equation of discrete systems  Discrete systems described by block diagram: R(s) Y(s) + GC(z) ZOH G(s)  T H(s)  Characteristic equation: 1  GC ( z )GH ( z )  0  Discrete systems described by the state equation  x( k  1)  Ad x( k )  Bd r ( k )   y ( k )  Cd x( k )  Characteristic equation: det( zI  Ad )  0 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 6
  7. Methods for analysis the stability of discrete systems  Algebraic stability criteria  The extension of the Routh-Hurwitz criteria  Jury’s J ’ stability t bilit criterion it i  The root locus method 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 7
  8. The extension of the Routh- Routh-Hurwitz criteria 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 8
  9. The extension of the Routh Routh--Hurwitz criteria  Characteristic C a acte st c equat equation o oof d discrete sc ete syste systems: s a0 z n  a1 z n 1    an  0 Im z Im w Region R i off Region of stability Re z stability Re w 1 1 w z 1 w  The extension of the Routh-Hurwitz criteria: transform zw,, and then apply pp y the Routh – Hurwitz criteria to the characteristic equation of the variable w. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 9
  10. The extension of the Routh Routh--Hurwitz criteria – Example  Analyze the stability of the following system: R(s) + Y(s)  ZOH G(s) T  0.5 H(s) 3e  s 1 Gi Given t G( s)  that: th H ( s)  s3 s 1  Solution: Sol tion The characteristic equation of the system: 1  GH ( z )  0 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 10
  11. The extension of the Routh- Routh-Hurwitz criteria – Example (cont’) s  G ( s ) H ( s )  3 e  GH ( z )  (1  z 1 )Z   G ( s)   s  ( s  3) s 1  3e 3 e  1  (1  z )Z   H (s)   s ( s  3)( s  1)  ( s  1) 1  2 z ( Az  B)  3(1  z ) z ( z  1)( z  e 30.5 )( z  e 10.5 ) (1  e 30.5 )  3(1  e 0.5 ) A  0.0673 3(1  3)  1  z ( Az  B) Z    s3(s0.5 a)( s  b)  ( z  1)( z  e aT )( z  e bT ) 3e 30.5 (1  e 0.5 )  e 0.5 (1  e ) aT B b(1  e  0).0346 a(1  e bT ) 3(1  3) A ab(b  a)  0 .202 z  0. 104 aeaT (1  e bT )  be bT (1  e aT ) GH ( z )  2 z ( z  0.223)( zB  0.607) ab(b  a) 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 11
  12. The extension of the Routh- Routh-Hurwitz criteria – Example (cont’)  The characteristic equation: 1  GH ( z )  0 0.202 z  0.104  1 2 0 z ( z  0.223)( z  0.607)  z  0.83z  0.135z  0.202 z  0.104  0 4 3 2 1 w  Perform the transformation: z  1 w 1 w  1 w  1 w  1 w  4 3 2    0.83   0.135   0.202   0.104  0 1 w  1 w  1 w   1 z w 0.202  0.104 GH ( z )  2 G z ( z  0.223)( z  0.607)  1.867 w  5.648w  6.354 w  1.52 w  0.611  0 4 3 2 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 12
  13. The extension of the Routh- Routh-Hurwitz criteria – Example (cont’)  The Routh table  Conclusion: The system is stable because all the terms in the first column of the Routh table are positive positive. 1.867 w  5.648w  6.354 w  1.52 w  0.611  0 4 3 2 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 13
  14. Jury stability criterion 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 14
  15. Jury stability criterion  Analyze the stability of the discrete system which has the characteristic equation: a0 z n  a1 z n 1    an 1 z  an  0  Jury table: consist of (2n+1) rows.  The first row consists of the coefficients of the characteristic polynomial in the increasing index order.  The even row (any) consists of the coefficients of the previous row in the reverse order.  The odd row i = 2k+1 (k1) consists (nk+1) terms, the term at the row i column j defined by: 1 ci 2,1 ci 2,n  j k 3 cij  ci 2,1 ci 1,1 ci 1,n  j k 3 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 15
  16. Jury stability criterion (cont’)  Jury criterion statement: The necessary and sufficient condition for the discrete system to be stable t bl isi that th t allll the th first fi t tterms off th the odd dd rows off th the Jury table are positive. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 16
  17. Jury stability criterion – Example  Analyze the stability of the system which has the characteristic equation: 5 z  2 z  3z  1  0 3 2  Solution: Juryy table Row 1 Row 2 R Row 3 Row 4 Row 5 Row 6 Row 7  Since all the first terms of the odd rows are positive, the system is stable. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 17
  18. The root locus of discrete systems 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 18
  19. The root locus (RL) method  RL is a set of all the roots of the characteristic equation of a system when a real parameter changing from 0  +.  Consider a discrete system which has the characteristic equation: N ((zz ) 1 K 0 D( z ) N ( z) Denote: G0 ( z )  K D( z ) Assume that G0(z) has n poles and m zeros.  The rules for construction of the RL of continuous system y can be applied to discrete systems, except for the step 8. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 19
  20. Rules for construction of the RL of discrete systems  Rule 1: The number of branches of a RL = the order of the characteristic equation = number of poles of G0(z) = n.  Rule 2:  For K = 0: the RL begin at the poles of G0(z). A K goes to  As t + : m branches b h off th the RL endd att m zeros of G0(z), the nm remaining branches goes to  approaching the asymptote defined by the rule 5 and rule 6.  Rule 3: The RL is symmetric with respect to the real axis.  Rule 4: A point on the real axis belongs to the RL if the t t l number total b off poles l and d zeros off G0(z) ( ) to t its it right i ht is i odd. dd 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 20
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2