Lecture Fundamentals of control systems: Chapter 7 - TS. Huỳnh Thái Hoàng
lượt xem 6
download
Lecture "Fundamentals of control systems - Chapter 7: Mathematical model of discrete time control systems" presentation of content: Introduction to discrete - time system, the Z-transform, transfer function of discrete-time system,... Invite you to reference.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Lecture Fundamentals of control systems: Chapter 7 - TS. Huỳnh Thái Hoàng
- Lecture Notes Fundamentals of Control Systems Instructor: Assoc. Prof. Dr. Huynh Thai Hoang Department of Automatic Control Faculty of Electrical & Electronics Engineering Ho Chi Minh City University of Technology Email: hthoang@hcmut.edu.vn huynhthaihoang@yahoo.com Homepage: www4.hcmut.edu.vn/~hthoang/ 6 December 2013 © H. T. Hoang - www4.hcmut.edu.vn/~hthoang/ 1
- Chapter 7 MATHEMATICAL MODEL OF DISCRETE TIME CONTROL SYSTEMS 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 2
- Content Introduction to discrete-time discrete time system The Z-transform Transfer function of discrete-time system State-space equation of discrete-time system 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 3
- Introduction to discrete- discrete-time systems 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 4
- Digital control systems r(kT) u(kT) (kT) uR(t) y(t) Computer D/A Plant yfb(kT) A/D Sensor “Computer” = computational equipments based on microprocessor technology (microprocessor, (microprocessor microcontroller microcontroller, PC, DSP,…). Advantages of digital control system: Flexibility Easy to implement complex control algorithms Computer can control many plants at the same time. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 5
- Discrete control systems r(kT) Discrete u(kT) uR(t) y(t) Hold Plant processing yfb(kT) Sampling Sensor Discrete control systems are control systems which have signals at several points being discrete signal. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 6
- Sampling Sampling is the reduction of a continuous signal to a discrete signal. x(t) x*(t) Mathematical expression T describing the sampling process: x(t) X * ( s ) x ( kT )e kTs k t k 0 0 x*(t) Shannon’s Theorem: 1 t f 2 fc T 0 If quantization error is negligible, then A/D converters are approximate the ideal samplers. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 7
- Sampled--data hold Sampled Sampled data hold is the reconstruction of discrete signal to Sampled-data a continuous signal. x*(t) xR (t) ZOH Zero-order hold (ZOH): keep x*(t) signal unchanged between two consecutive sampling instants instants. t 0 Transfer function of the ZOH. ZOH xR(t) 1 e Ts GZOH ( s ) t s 0 If quantization error is negligible, then D/A converters are approximate the zero-order hold. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 8
- The Z- Z-transform 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 9
- Definition of the Z- Z-transform Consider x(k), x(k) kk=0 0,1,2,… 12 being a discrete signal signal. The Z- Z transform of x(k) is defined as: X ( z ) Z x (k ) x ( k ) z k k where: z eTs (s is the Laplace variable, T is the sampling period) X(z) : Z-transform of x(k). Z Notation: x ( k ) X ( z ) If x(k) = 0, k < 0 then X ( z ) Z x ( k ) x ( k ) z k k 0 Region Of Convergence (ROC): set of z such that X(z) is finite. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 10
- An interpretation of the Z- Z-transform Suppose x(t) being a continuous signal, sample x(t) at the sampling periode T , we have a discrete signal x(k) = x(kT). The mathematic model of the process of sampling x(t) X * ( s ) x (kT )e kTs (1) k 0 The Z-transform of the sequence x(k) = x(kT). X ( z ) x ( k ) z k (2) k 0 Due to z eTs, the right hand-side of the expression (1) and (2) are identical. So performing Z-transform of a signal is equivalent to discretizing this signal. 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 11
- Properties of the Z- Z-transform Given x(k) and y(k) being two sequences which have the Z- transforms: Z x ( k ) X ( z ) Z y ( k ) Y ( z ) Linearity: Z ax ( k ) by ( k ) aX ( z ) bY ( z ) Ti Time shifting: hifti Z x ( k k0 ) z k0 X ( z) Scale in Z-domain: Z a k x (k ) X (a 1 z ) Z kx ( k ) z Derivative in Z-domain: dX ( z ) dz Initial-value theorem: x (0) lim X ( z ) z Fi l l theorem: Final-value th x ( ) lim(1 z 1 ) X ( z ) z 1 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 12
- The Z- Z-transform of basic discrete signals Dirac impulse: (k) 1 if k 0 (k ) 1 0 if k 0 k Z (k ( k ) 1 0 Step p function: u(k) 1 if k 0 1 u(k ) 0 if k 0 k 0 Z u( k ) z z 1 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 13
- The Z- Z-transform of basic discrete signals (cont’) Ramp function: r(k) kT if k 0 r(k ) 0 if k 0 k 0 Z u( k ) Tz z 12 Exponential p function: x(k) e -akT if k 0 x(k ) 0 if k 0 k 0 Z x ( k ) z z e aT 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 14
- Discrete transfer function 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 15
- Derive transfer function (TF) from difference equation u(k) y(k) Discrete system The input-output input output relation ship of a discrete system can be described by the difference equation: a0 y ( k n ) a1 y ( k n 1) ... an 1 y ( k 1) an y ( k ) b0u( k m) b1u( k m 1) ... bm1u( k 1) bmu( k ) where n>m, n is the order of the system. Taking the Z Z-transform transform the two sides of the above equation: a0 z nY ( z ) a1 z n 1Y ( z ) ... an 1 zY ( z ) anY ( z ) b0 z mU ( z ) b1 z m 1U ( z ) ... bm1 zU ( z ) bmU ( z ) 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 16
- Derive TF from difference equation (con’t (con’t)) Taking the ratio Y(z)/U(z) to obtain the transfer function: Y ( z ) b0 z m b1 z m 1 ... bm 1 z bm G( z) U ( z ) a0 z n a1 z n 1 ... an 1 z an The above transfer function can be transformed into the equivalent form: ( n m ) 1 m 1 m Y ( z) z [b0 b1 z ... bm 1 z bm z ] G( z) U ( z) a0 a1 z 1 ... an 1 z n 1 an z n 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 17
- Derive TF from difference equation _ Example Consider a system described by the difference equation. equation Derive its transfer function: y ( k 3) 2 y ( k 2) 5 y ( k 1) 3 y ( k ) 2u( k 2) u( k ) Solution: Taking g the Z-transform the difference equation: q z 3Y ( z ) 2 z 2Y ( z ) 5zY ( z ) 3Y ( z ) 2 z 2U ( z ) U ( z ) Y ( z) 2z2 1 G( z) 3 U ( z ) z 2 z 2 5z 3 Y ( z) z 1 ( 2 z 2 ) G( z) U ( z ) 1 2 z 1 5z 2 3z 3 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 18
- Calculate transfer function from block diagram R(s) Y(s) + GC(z) ZOH G(s) T H(s) Y ( z) GC ( z )G ( z ) The closed-loop TF: Gk ( z ) R ( z ) 1 GC ( z )GH ( z ) where GC (z ) : TF of the controller, derive from difference equation G ( s ) G ( s ) H ( s ) 1 G ( z ) (1 z )Z 1 GH ( z ) (1 z )Z s s 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 19
- Calculate TF from block diagram – Example 1 Find the closed-loop closed loop transfer function of the system: R(s) Y(s) + ZOH G(s) T 0.5 3 G (s) s2 1 G(s) 1 3 Solution: G ( z ) (1 z )Z (1 z )Z s s ( (ss 2) 20.5 1 3 z (1 e ) (1 z ) 2 ( z 1)( z e 2 20.5 ) 0.948 a z (1 e aT ) G( z) z 0.368 Z aT s ( s a ) ( z 1)( z e ) 6 December 2013 © H. T. Hoàng - www4.hcmut.edu.vn/~hthoang/ 20
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Lecture Fundamentals of control systems: Chapter 1 - TS. Huỳnh Thái Hoàng
93 p | 73 | 11
-
Lecture Fundamentals of control systems: Chapter 2 - TS. Huỳnh Thái Hoàng
120 p | 100 | 8
-
Lecture Fundamentals of control systems: Chapter 3 - TS. Huỳnh Thái Hoàng
54 p | 73 | 7
-
Lecture Fundamentals of control systems: Chapter 4 - TS. Huỳnh Thái Hoàng
72 p | 69 | 7
-
Lecture Fundamentals of control systems: Chapter 8 - TS. Huỳnh Thái Hoàng
60 p | 60 | 7
-
Lecture Fundamentals of control systems: Chapter 9 - TS. Huỳnh Thái Hoàng
65 p | 61 | 7
-
Lecture Fundamentals of control systems: Chapter 6 - TS. Huỳnh Thái Hoàng
103 p | 84 | 6
-
Lecture Fundamentals of control systems: Chapter 5 - TS. Huỳnh Thái Hoàng
0 p | 64 | 5
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn