Lecture 6. CONTINUOUS PROBABILITY Lecture 6. CONTINUOUS PROBABILITY

 Continuous Random Variable  Density Function  Parameter  Uniform Distribution  Normal Distribution  Cutoff point

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

1

 [1] Chapter 6. pp. 255 - 294

6.1. Continuous Random Variable 6.1. Continuous Random Variable

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

2

< )  Continuous Random Variable: uncountable values  Available value is one interval: = (, )  Maybe: = −∞; = +∞  Probability that one point: = = 0  Consider Probability at one interval: ( <

6.2. Density Function 6.2. Density Function

 Continuous

 Discrete X

… … (, ) () X Density Prob.

= 1  ∑

= 1

p

f(x)

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

3

Density Function Density Function

= 1  ∫  ≥ 0

f(x)

a b

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

4

 < < = ∫  Cutoff point level denoted by : > =

6.3. Parameter 6.3. Parameter

 Expected Value:

= = ∫

 Variance:

− = ∫

= ∫  Standard Deviation

= ( )

 Cutoff point level , denoted by :

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

5

> =

Example Example

Example 6.1. Waiting time (hour), with density function

 =

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

6

2 ∈ [0,1] ∉ [0,1] 0 (a) Prob. of waiting more than a half of hour? (b) Prob. of waiting from 20 to 40 minutes? (c) The average and variance of waiting time? (d) Cutoff point level 10%?

Example Example

f(x)

2.

.  (a) > 0.5 = ∫

< < 2.  (b) = ∫

/ /

0.5

f(x)

 (c) = ∫ .2.

= ∫ .2.

1/3 2/3

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

7

6.4. Uniform Distribution 6.4. Uniform Distribution

 ~ (, ) if

∈ [, ]

 =

∉ [, ]

0

a c d b

 = ; =

 < < =

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

8

Ex. Temperature is Uniform Distribution in the interval of (20, 30)oC. What is the probability that temperature is between 23 and 28 degree?

6.5. Normal Distribution 6.5. Normal Distribution

0.25

0.25

0.2

0.2

0.15

0.15

0.1

0.1

0.05

0.05

0

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.025

0.025

0.02

0.02

0.015

0.015

0.01

0.01

0.005

0.005

0

0

1 6 111621263136414651566166717681869196

0

20

40

60

80

100

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

9

 , = 0.5 : = 10; 20; 100  Normality

Normal Distribution Normal Distribution

1 σ 2π

f(x)

μ

μ’

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

10

 Density Function: =  Denoted: ~ (, )  =  =  =

Normal Distribution Normal Distribution

0.6

0.5

0.4

0.3

 Carl Friedrich Gauss (1777-1855) in 1809

0.2

0.1

0

0

1

2

3

4

5

6

7

8

9

10

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

11

 ~ 3,1  ~ 6,1  ~ (8,0.5)

Standardized Normal Variable Standardized Normal Variable

0.5

0.4

 ~ ,

0.3

 =

0.2

0.1

0

-4

-3

-2

-1

0

1

2

3

4

 ~ (0,1)

.

.

.

.

.

.

.

.

4 -

3 -

2 -

1 -

5 1 0

5 2 1

5 3 2

5 4 3

5 3 -

5 2 -

5 1 -

5 0 0 -

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

12

 Table 1  < 1 = 0.8413  < 1.25 =  > 2 =  −1 < < 1.3 =

Probability formula Probability formula

 ~ ,

< = < = <

− − −

Ex. ~ 100,16  < 104 =  > 92 =  94 < < 102 =  Probability that X differ from the mean not more than

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

13

standard deviation =

Example Example

Example 6.2. Return ($mil) of project A is normality with mean of 8 and variance of 9. Calculate the probability:

(a) Return of A higher than 10 (b) Loss money (c) Return of A between 5 and 12

 Return of project B is normality with mean of 10 and variance of 25. A and B are independent. Calculate the probability that:

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

14

(c) Both gain positive return (d) Total return of A and B greater than 20

3-sigma Rule 3-sigma Rule

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

15

 − < < + = 68.26%  − 2 < < + 2 = 95.44%  − 3 < < + 3 = 99.75%

Cutoff point Cutoff point

 Cutoff point level , or “critical value”  Denoted:

> =

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

16

 > 1.96 = 0.025  . = 1.96  > 1.64 = 0.0505  . = 1.64  > 1.65 = 0.0495  . = 1.65  Keys: . = .; . = .

6.6. Binomial vs Normal 6.6. Binomial vs Normal

 Binomial: ~ (, ) with ≥ 100   approximate: (, )  With: = ; = (1 − )

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

17

Example 6.3. Probability that visitor buy good in the shopping mall is 0.3. In 400 visitors, what is the probability  (a) There are at least 100 buyers  (b) Number of buyers is from 90 to 150

6.7. Cutoff Point 6.7. Cutoff Point

 Normal Distribution:  Student Distribution:  df: Degree of freedom  Table 2 (p.976)  . = 1.833; . = 2.086  ≈

 Chi-square Distribution:

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

18

= 24.996  Table 3 (p.979)  . = 3.94 ; .

Key Concepts Key Concepts

 Continuous variable  Density function  Normal distribution

Exercise Exercise

PROBABILITY & STATISTICS – Bui Duong Hai – NEU – www.mfe.edu.vn/buiduonghai

19

[1] Chapter 6:  (270) 3, 5  (281) 11, 12, 17, 19, 23, 24, 31  (292) 41, 44, 49