intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận văn Thạc sĩ Khoa học: Mô phỏng trận động đất M=4.6 xảy ra tại khu vực đập thủy điện Sông Tranh 2

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:49

23
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Luận văn đã trình bày việc mô phỏng băng ghi gia tốc dao động nền sử dụng 2 phương pháp: Phương hàm Green thực nghiệm và phương pháp ngẫu nhiên trong miền thời gian. So sánh kết quả mô phỏng giữa 2 phương pháp. Mỗi phương pháp có ưu nhược điểm riêng có thể áp dụng trong từng điều kiện cụ thể khác nhau... Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Luận văn Thạc sĩ Khoa học: Mô phỏng trận động đất M=4.6 xảy ra tại khu vực đập thủy điện Sông Tranh 2

  1. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------------------- Vi Văn Vững MÔ PHỎNG TRẬN ĐỘNG ĐẤT M=4.6 XẢY RA TẠI KHU VỰC ĐẬP THỦY ĐIỆN SÔNG TRANH 2 LUẬN VĂN THẠC SĨ KHOA HỌC Hà Nội - 2018
  2. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------------------- Vi Văn Vững MÔ PHỎNG TRẬN ĐỘNG ĐẤT M=4.6 XẢY RA TẠI KHU VỰC ĐẬP THỦY ĐIỆN SÔNG TRANH 2 Chuyên ngành: Vật lý Địa cầu Mã số: 8440130.06 LUẬN VĂN THẠC SĨ KHOA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC Trần Thị Mỹ Thành Hà Nội - 2018
  3. Tôi muốn bày tỏ lòng biết ơn sâu sắc tới Cô hướng dẫn TS. Trần Thị Mỹ Thành, đã giúp đỡ tôi rất nhiều trong quá trình định hướng, tìm hiểu và học hỏi các kiến thức quan trọng, cần thiết để hoàn thành Luận văn Thạc sĩ Khoa học. Đồng thời, tôi xin cảm ơn tất cả các Thầy Cô trong Bộ môn Địa Vật lý, Khoa Vật lý-Trường Đại học Khoa học Tự nhiên đã đào tạo và tận tình giúp đỡ tôi trong suốt quá trình tôi học tập ở trường. Tôi cũng xin cảm ơn các đồng nghiệp trong Phòng Nghiên cứu Địa chấn, Viện Vật lý Địa cầu, Viện Khoa học và Công nghệ Việt Nam đã giúp đỡ, tạo điều kiện và có những ý kiến góp ý quý báu để tôi hoàn thành Luận văn. Học viên Vi Văn Vững
  4. MỤC LỤC DANH MỤC VIẾT TẮT DANH MỤC BẢNG BIỂU DANH MỤC HÌNH ẢNH MỞ ĐẦU ....................................................................................................................1 Chương 1 - TỔNG QUAN VÀ PHƯƠNG PHÁP ..................................................2 1.1. Tổng quan.........................................................................................................2 1.2. Cơ sở lý thuyết phương pháp ngẫu nhiên ........................................................3 1.3. Cơ sở lý thuyết phương pháp hàm Green thực nghiệm ...................................7 Kết luận chương 1 .................................................................................................10 Chương 2 - SỐ LIỆU VÀ CHƯƠNG TRÌNH ......................................................12 2.1. Mô phỏng bằng phương pháp SMSIM ..........................................................12 Số liệu sử dụng trong chương trình SMSIM ...........................................12 Chương trình SMSIM mô phỏng theo phương pháp ngẫu nhiên ...........12 Chạy mô hình thử nghiệm .......................................................................17 2.2. Mô phỏng bằng phương pháp EGFM ............................................................22 Số liệu băng ghi động đất sử dụng trong mô phỏng ...............................22 Chương trình EGFM mô phỏng theo phương pháp hàm Green thực nghiệm ...............................................................................................................26 Kết luận chương 2 .................................................................................................29 Chương 3 - KẾT QUẢ VÀ THẢO LUẬN ............................................................30 3.1. Mô phỏng theo phương pháp hàm ngẫu nhiên...............................................30 3.2. Kết quả Mô phỏng theo phương pháp hàm Green thực nghiệm ....................33
  5. Kết luận chương 3 .................................................................................................36 KẾT LUẬN VÀ KIẾN NGHỊ ................................................................................37 TÀI LIỆU THAM KHẢO
  6. DANH MỤC VIẾT TẮT EGFM: “Empirical Green Function Method”, Phương pháp hàm Green thực nghiệm GM: “Ground motion”, Chuyển động nền, dao động nền M: “Magnitude”, Độ lớn động đất nsim: “Number of simulation”, Số lượng mô phỏng ngẫu nhiên PGA: “Peak Ground Acceleration”, Gia tốc đỉnh PGD: “Peak Ground Displacement”, Dịch chuyển cực đại PGV: “Peak Ground Velocity”, Vận tốc đỉnh PSA: “Pseudo-acceleration spectra”, Phổ đáp ứng gia tốc PSV: “Pseudo-velocity spectra”, Phổ đáp ứng vận tốc RV: “Random vibration”, cách gọi khác mà Boore sử dụng để gọi lý thuyết ngẫu nhiên, mô phỏng bằng phương pháp ngẫu nhiên trong miền tần số SD: “Spectra displacement”, Phổ dịch chuyển SMSIM: “Stochastic Model SIMulation” hoặc “Strong Motion SIMulation”, Mô phỏng sử dụng mô hình ngẫu nhiên, hoặc mô phỏng dao động nền đất TD: “Time domain”, Miền thời gian, mô tả biên độ biến thiên theo thời gian
  7. DANH MỤC BẢNG BIỂU Bảng 1: Danh mục một số trận động đất được lựa chọn trong nghiên cứu ..............24 Bảng 2: Giá trị U 0 và u 0 ; A0 và a 0 ; fc ....................................................................28
  8. DANH MỤC HÌNH ẢNH Hình 1: Tỉ lệ phổ nguồn 2 trận động đất M6.5 và M7.5 với mô hình omega bình phương.........................................................................................................................5 Hình 2: Phổ dịch chuyển và phổ gia tốc của động đất tuân theo quy luật -2 ............9 Hình 3: Sơ đồ khối của chương trình SMSIM ..........................................................13 Hình 4: Tham số đầu vào cho mô hình thử nghiệm của chương trình SMSIM phiên bản 2.3 bởi Boore (2005) ..........................................................................................18 Hình 5: So sánh psv tính bằng lý thuyết ngẫu nhiên và mô phỏng trong miền thời gian của động đất M = 4.0, khoảng cách chấn tâm R = 10km với số lượng mô phỏng nsims = 10, 40, 160, 640......................................................................................................19 Hình 6: So sánh psv tính bằng lý thuyết ngẫu nhiên và mô phỏng trong miền thời gian của động đất M = 7.0, khoảng cách chấn tâm R= 10km với số lượng mô phỏng là nsims = 10, 40, 160, 640. ..........................................................................................20 Hình 7: Băng sóng mô phỏng trong miền thời gian của động đất M = 7.0 khoảng cách chấn tâm R = 200km. ................................................................................................21 Hình 8: Sơ đồ chấn tâm các trận động đất dùng trong nghiên cứu ...........................22 Hình 9: Băng ghi gia tốc trận động đất M = 4.1 ngày 23/09/2012 ghi được tại các trạm khác nhau ..........................................................................................................23 Hình 10: Sơ đồ các bước thực hiện mô phỏng băng gia tốc dao động nền của trận động đất mạnh M = 4.6 từ trận động đất nhỏ hơn M = 3.5 tại trạm ST02 ................26 Hình 11: Phổ dịch chuyển và phổ gia tốc của trận M = 3.5 thành phần Bắc Nam và Đông Tây ...................................................................................................................27 Hình 12: Phổ dịch chuyển và phổ gia tốc của trận M = 4.6 thành phần Bắc Nam và Đông Tây ...................................................................................................................28 Hình 13: Phổ đáp ứng gia tốc(trái) và vận tốc (phải) của động đất M = 4.6 khoảng cách chấn tâm 9 km. ..................................................................................................30
  9. Hình 14: Mô phỏng miền thời gian cho động đất M = 4.6, khoảng cách chấn tâm 9 km, với tham số đầu vào của mô hình thử nghiệm trong Hình 4, so sánh với băng sóng thực tế của động đất M = 4.6 tại sông Tranh được ghi tại trạm ST02 (vai đập) kênh Bắc-Nam ...........................................................................................................31 Hình 15. Kết quả mô phỏng động đất 4.6 từ động đất 3.5. .......................................35
  10. MỞ ĐẦU Giản đồ ghi lại dao động nền đất do động đất mạnh gây ra là tài liệu quan trọng dùng trong thiết kế chống động đất, đặc biệt đối với các công trình xây dựng trọng điểm. Trong thực tế, ít có trường hợp ghi được dao động nền ứng với động đất cực đại tại khu vực xây dựng công trình, ngay cả ở những nơi động đất mạnh thường xuyên xảy ra và phương tiện quan trắc đầy đủ như ở Nhật Bản, Mỹ, Đài Loan... Để khắc phục sự thiếu hụt số liệu quan trắc, các nhà địa chấn trên thế giới có nhiều kết quả nghiên cứu mô phỏng băng ghi dao động động đất mạnh. Đây cũng là hướng nghiên cứu được nhiều nước tiên tiến áp dụng trong đánh giá nguy hiểm động đất tại các công trình xây dựng quan trọng như nhà máy thủy điện, nhà máy nhiệt điện hay điện hạt nhân. Cho tới cuối năm 2010, Việt Nam mới có 24 băng ghi gia tốc dao động nền của 21 trận động đất (chủ yếu ghi tại trạm Tuần Giáo và Điện Biên). Trong số đó, có 17 trận là động đất chính và dư chấn của động đất Điện Biên ngày 19/2/2001, M = 5.3. Thủy điện Sông Tranh 2 xây dựng năm 2010 với động đất thiết kế là 5.5. Trên thực tế, với tập hợp số băng ghi dao động kể trên không đủ để chọn băng gia tốc phục vụ công tác thiết kế kháng chấn cho thủy điện Sông Tranh 2. Do đó, trong luận văn này, học viên đã tìm hiểu, trình bày các phương pháp mô phỏng số băng ghi dao động nền để áp ứng nhu cầu thực tiễn trên. Học viên đã áp dụng phương pháp hàm Green thực nghiệm để mô phỏng lại trận động đất M = 4.6. Băng sóng lý thuyết thu được khá trùng hợp với băng sóng quan trắc. Kết quả này góp phần khẳng định hướng mô phỏng động đất mạnh hoàn toàn có thể áp dụng trong đánh giá nguy hiểm động đất ở Việt Nam. Khu vực Sông Tranh 2 sử dụng băng ghi động đất M = 3.5 mô phỏng thành công trận động đất M = 4.6, tương tự ta cũng có thể dùng băng ghi trận động đất M = 4.6 để mô phỏng trận động đất phục vụ cho thiết kế M = 5.5. Ngoài phương pháp hàm Green thực nghiệm, học viên cũng trình bày thêm một phương pháp mô phỏng dựa trên lý thuyết ngẫu nhiên (“phương pháp ngẫu nhiên”) nhằm so sánh ưu điểm, nhược điểm của 2 phương pháp mô phỏng được sử dụng phổ biến trên thế giới và đánh giá khả năng áp dụng của từng phương pháp trong điều kiện thực tế ở Việt Nam. 1
  11. Chương 1 - TỔNG QUAN VÀ PHƯƠNG PHÁP 1.1. Tổng quan Mô phỏng động đất là bài toán thuận trong địa vật lý toán, tức là bài toán cho trước các tham số mô hình và tham số nguồn yêu cầu tìm dữ liệu đầu ra. Trong bài toán mô phỏng động đất, mô hình là các tham số của các yếu tố ảnh hưởng đến quá trình phát sinh và lan truyền sóng địa chấn từ chấn tiêu động đất đến trạm ghi địa chấn, dữ liệu đầu ra của bài toán là băng ghi sóng động đất tại trạm. Đây là một trong những bài toán cơ bản của địa chấn học. Để giải được bài toán này, ta cần biết quá trình phát sinh và lan truyền sóng địa chấn từ chấn tiêu đến trạm. Trên thực tế, quá trình này rất phức tạp. Do vậy, các nhà địa chấn đã đưa ra nhiều phương pháp nhằm đơn giản hóa quá trình này bằng các mô hình thuyết gần đúng, hoặc thay các quá trình phức tạp bằng một tham số ngẫu nhiên. Mỗi phương pháp có những ưu nhược điểm nhất định. Trong luận văn này học viên tiếp cận hai phương pháp. Phương pháp thứ nhất là phương pháp hàm Green thực nghiệm (Emprical Green Funtion Method – EGFM) Irikura (1986) và phương pháp ngẫu nhiên của Boore (1983). Cách tiếp cận bài toán của phương pháp EGFM là các nhà địa chấn đã sử dụng một mô hình nguồn diện (nguồn phát sinh động đất có dạng một mặt phẳng có diện tích nhất định) cùng với băng sóng của một trận động đất nhỏ để mô phỏng một trận động đất lớn hơn xảy ra tại cùng vị trí hoặc cùng khu vực có điều kiện địa chất tương tự với trận động đất nhỏ. Với phương pháp này quá trình phát sinh động đất được đơn giản hóa bằng mô hình nguồn diện và mô hình quá trình lan truyền sóng địa chấn được lấy từ băng sóng của trận động đất nhỏ. Do vậy, các nhà địa chấn đã bỏ qua được sự phức tạp trong quá trình lan truyền sóng từ nguồn đến trạm do các hiện tượng khúc xạ, phản xạ, sự tán hay suy giảm dao động khi sóng truyền qua các cấu trúc địa chất thực tế rất phức tạp. Đây là ưu điểm nổi trội của phương pháp này. Tuy nhiên, nhược điểm của phương pháp EGFM là cần phải có băng sóng của một trận động đất nhỏ đã xảy ra tại khu vực nghiên cứu. 2
  12. Trong phương pháp thứ hai, phương pháp ngẫu nhiên, các nhà địa chấn đã mô hình các hiệu ứng ảnh hưởng tới băng sóng trong quá trình truyền từ nguồn tới trạm bằng các mô hình lý thuyết gần đúng cho từng khu vực nghiên cứu cụ thể, và quá trình phát sinh sóng địa chấn tại nguồn là một quá trình trong thực tế rất phức tạp đã được đơn giản hóa bằng mô hình một điểm dao động ngẫu nhiên. Ưu điểm của phương pháp này là không cần có băng sóng của trận động đất xảy ra tại khu vực nghiên cứu, ta vẫn có thể mô phỏng được, đây cũng là nhược điểm của phương pháp EGFM. Do vậy, ta có thể mô phỏng động đất tại khu vực bất kỳ, cho dù khu vực này chưa từng ghi nhận được băng sóng động đất thực tế nào. Nhược điểm của phương pháp ngẫu nhiên là ta cần thiết lập các tham số mô hình lan truyền sóng từ nguồn tới trạm bằng các mô hình lý thuyết gần đúng cho từng khu vực nghiên cứu cụ thể. Kết quả của phương pháp ngẫu nhiên là một tập hợp các băng sóng, mỗi băng sóng ứng với một dao động ngẫu nhiên của mô hình nguồn phát sinh động đất. Đây cũng là một nhược điểm của phương pháp ngẫu nhiên, thay vì mỗi trận động đất mô phỏng ta có một băng sóng thì phương pháp đưa ra một tập hợp băng sóng, thống kê các thông số thu được từ tập hợp băng sóng này ta mới có được kết quả cuối cùng như PGA, PGD,PGD… của trận động đất mô phỏng. 1.2. Cơ sở lý thuyết phương pháp ngẫu nhiên Năm 1979-1980, Hanks và Mcguire đã xây dựng băng sóng gia tốc từ các mô hình phổ địa chấn với một quan niệm rằng, các chuyển động tần số cao là ngẫu nhiên (Hanks, 1979; Mcguire and Hanks, 1980; Hanks and Mcguire, 1981). Các tác giả đã tính gia tốc đỉnh (PGA) lý thuyết của 16 trận động đất và đưa ra giá trị khá trùng khớp với số liệu thực tế. Boore (1983) đã tổng quát nghiên cứu của Hanks và Mcguire để có thể áp dụng với mô hình phức tạp hơn, và mở rộng các nghiên cứu này cho việc mô phỏng băng sóng, phổ đáp ứng. Phần quan trọng nhất của phương pháp ngẫu nhiên là phổ của dao động nền. Thông thường các đặc tính vật lý của quá trình phát sinh và lan truyền sóng địa chấn được bao hàm trong phổ, và được mô tả bằng một phương trình đơn giản. Hầu hết các nhà địa chấn khi phát triển một mô hình dao động nền đều tập trung vào việc mô tả phổ của nó. Boore chia phổ của dao động tại một điểm Y(M0, R, f ) thành 4 hàm 3
  13. số tương ứng với 4 hiệu ứng ảnh hướng đến phổ dao động. Do đó, hàm phổ dao động Y(M0, R, f ) được viết lại dưới dạng sau: Y(M0, R, f) = E(M0, f )P(R, f )G(f )I(f ), (1) Trong đó: M0 là mô-men địa chấn; R là khoảng cách chấn tâm; f là tần số dao động. Phổ nguồn E(M0,f ), là hàm của độ lớn động đất, được xây dựng trên cơ sở mô hình omega bình phương (ω2) (Aki, 1967). Aki (1967) đã đưa ra giả thuyết về tính tương tự của động đất như sau: M0f3 = hằng số; (2) Trong đó: hằng số liên quan tới độ suy giảm ứng suất (Δσ). Theo Brune (1970), tần số góc được cho bởi phương trình sau: F0 = 4.9 x 106 βs(Δσ/M0)1/3, (3) Trong đó: f0 đơn vị Hz; βs là vận tốc sóng S ở khu vực nguồn, đơn vị km/s; Δσ đơn vị bars; M0 đơn vị dyne.cm. Hình 1 mô tả phổ nguồn của trận động đất có Mw= 6.5 và Mw = 7.5. 4
  14. Hình 1: Tỉ lệ phổ nguồn 2 trận động đất M6.5 và M7.5 với mô hình omega bình phương Hiệu ứng đường truyền (P(R,f), duration) Sóng động đất lan truyền từ nguồn tới vị trí quan sát, đi qua nhiều lớp đất đá khiến năng lượng sóng bị suy giảm. Mục đích của nghiên cứu về hiệu ứng đường truyền là đưa các ảnh hưởng này về một hàm đơn giản, có thể giải thích cho ảnh hưởng của lan truyền hình học (geometrical spreading), sự suy giảm (do môi trường tán xạ và hấp thụ năng lượng), và sự tăng thời gian lan truyền theo khoảng cách do sóng lan truyền và tán xạ. Hiệu ứng đường truyền P(R,f) được mô tả bằng tích của hàm lan truyền hình học Z(R) và hàm Q(f): P(R,f) = Z(R)exp[-πfR/Q(f)cQ] (4) Trong đó: - cQ là vận tốc địa chấn được sử dụng trong xác định Q(f), và hàm lan truyền hình học Z(R) được cho bởi hàm sau: 5
  15. R0 R < R1 R R p1 Z(R1 ) ( 1) R < R1 < R 2 Z(R) = R (5) ⋮ R pn n {Z(R n ) ( ) R Rn < R - R là khoảng cách gần nhất từ trạm tới bề mặt của đứt gãy thay vì khoảng cách chấn tiêu; - Q(f) là hàm suy giảm chấn động, có thể thu được từ các phân tích dữ liệu vi địa chấn. Duration: là hàm thời gian lan truyền phụ thuộc vào khoảng cách, đây là tham số quan trọng, giá trị dao động đỉnh giảm khi thời gian truyền sóng tăng. Boore đã xây dựng hàm thời gian lan truyền như một hàm của đường truyền. Thời gian dao động của băng sóng là tổng của thời gian lan truyền trong đứt gãy và thời gian phụ thuộc vào đường truyền. Hiệu ứng nền đất G(f): sự thay đổi của sóng địa chấn bởi điều kiện nền đất địa phương là một phần của hiệu ứng đường truyền. Để thuận tiện cho việc nghiên cứu, Boore đã tách riêng hiệu ứng nền và hiệu ứng đường truyền. Hàm thiết lập loại dao động được mô phỏng I(f) Tùy vào kết quả mô phỏng là dịch chuyển, vận tốc, gia tốc hay phổ đáp ứng hàm I(f) có biểu thức khác nhau. Với kết quả mô phỏng là dịch chuyển, vận tốc, hoặc gia tốc hàm I(f) có dạng sau: I(f) = (2πfi )n (6) Trong đó: i là đơn vị ảo, i2 = -1; n = 0,1 hoặc 2 đối với đầu ra của mô phỏng là dịch chuyển, vận tốc, hoặc gia tốc tương ứng. Nếu kết quả mô phỏng là phổ đáp ứng của một dao động thì hàm I(f) có công thức sau: -Vf2 I( f ) = (7) (f2 -f2r )-2ffr ζi 6
  16. Trong đó: - hệ dao động có tần số tự nhiên là fr; - hệ số tắt dần là ζ; - độ khuếch đại là V (trường hợp phổ đáp ứng V= 1). Sau khi xây dựng được mô hình phổ cho trận động đất được mô phỏng ở phương trình (1), có 2 phương pháp để thu được giá trị dao động cực đại (gia tốc cực đại -PGA, vận tốc cực đại - PGV, dịch chuyển cực đại - PGD) và phổ đáp ứng là phương pháp mô phỏng băng sóng trong miền thời gian (TD, “Time Domain”) và phương pháp sử dụng lý thuyết ngẫu nhiên (RV, “Random Vibration”). Boore đã khẳng định rằng, 2 phương pháp này đưa ra kết quả khá trùng khớp. Do vậy, trong khuôn khổ luận văn này, học viên trình bày một phương pháp là phương pháp mô phỏng băng sóng trong miền thời gian. Phương pháp mô phỏng băng sóng trong miền thời gian thực hiện mô phỏng băng ghi dao động bằng cách kết hợp phổ phương trình (1) với phổ của một dao động ngẫu nhiên, sau đó biến đổi phổ kết hợp về miền thời gian để thu được băng sóng trong miền thời gian. Phổ phương trình (1) là cố định, trong khi phổ dao động ngẫu nhiên sẽ biến đổi sau mỗi lần mô phỏng, kết quả là ứng với mỗi một phổ ngẫu nhiên sẽ tương ứng một băng sóng trong miền thời gian. 1.3. Cơ sở lý thuyết phương pháp hàm Green thực nghiệm Dịch chuyển nền đất trong động đất có thể được mô phỏng bằng 3 phương pháp khác nhau, đó là lý thuyết, bán thực nghiệm và thực nghiệm. Trong thực tế cấu trúc địa chất từ nguồn tới điểm quan sát thường phức tạp hơn rất nhiều so với mô hình lý thuyết. Các phương pháp bán thực nghiệm như phương pháp hàm Green thực nghiệm, giúp chúng ta giải quyết vấn đề này. Hartzell (1978) lần đầu tiên đưa ra phương pháp mô phỏng băng dao động của động đất mạnh bằng hàm Green thực nghiệm. Sau này, phương pháp này được Kanamori (1975), Irikura (1983, 1986), Miyake, H (2006),… và nhiều người khác ứng dụng và phát triển. Phương pháp hàm Green thực nghiệm của Irikura (1986) cho phép mô phỏng băng gia tốc lý thuyết của trận động đất mạnh từ các băng ghi gia tốc 7
  17. của trận động đất nhỏ hơn gần kề. Về cơ bản, phương pháp được xây dựng dựa trên cơ sở tương quan tham số đứt gãy của hai trận động đất (Kanamori and Anderson, 1975), động đất tuân theo mô hình ω-2 (Brune, 1970, 1971). Khi đó, dao động nền của động đất được biểu diễn (Aki, 1967, 1980): N N r U (t )   F (t ) * (C  u (t )) (8) i 1 r j 1 ij 1 ( N 1) n (k  1)T ' F (t )   (t  tij )  ' [ {t  tij  }] (9) n k 1 ( N  1)n, rij  r0  ij tij   (10) Vs Vr Trong đó: - U(t) là băng sóng lý thuyết của động đất mạnh thu được nhờ mô phỏng; - u(t) là băng sóng quan trắc của động đất nhỏ; - N và C là các hệ số tương quan giữa kích thước đứt gãy và độ suy giảm ứng suất của 2 trận động đất lớn và nhỏ; - F(t) là hàm lọc dùng để điều chỉnh sự khác biệt của hàm vận tốc trượt của 2 trận động đất lớn và nhỏ; - Vs và Vr là vận tốc sóng ngang xung quanh vùng nguồn và vận tốc phá hủy mặt đứt gãy; - T là khoảng thời gian dịch trượt tại nguồn của động đất lớn; - tij là thời gian dịch trượt tại nguồn của động đất nhỏ; - rij là khoảng cách từ trạm quan trắc đến mặt đứt gãy con; - r0 là khoảng cách từ trạm quan trắc đến điểm phát sinh động đất trong mặt đứt gãy của trận động đất lớn; - ξij là khoảng cách từ mặt đứt gãy con đến điểm phát sinh động đất trong mặt đứt gãy của trận động đất lớn. Irikura và nnk. (1997) đã biến đổi phương trình (9) dưới dạng sau: 8
  18. ( N 1) n ' 1 1 (k  1)T F (t )   (t  tij )  1  [ ( k 1)  {t  tij  }] ( N  1)n' (11) n' (1  ) k 1 e ( N 1) n ' e Theo Irikura (1986), có thể xác định hai tham số N và C dựa trên đường mức của phổ dịch chuyển và phổ gia tốc của hai trận động đất lớn và nhỏ (Hình 2). U0 A0 Phổ f CN3 Phổ dịch uo cm gia a0 chuyển tốc fcm CN fca fca Tần số Tần số Hình 2: Phổ dịch chuyển và phổ gia tốc của động đất tuân theo quy luật -2 U0 và u0; A0 và a0 là giới hạn trên (đường mức) của phổ dịch chuyển và phổ gia tốc của trận động đất lớn và dư chấn. Uo  CN 3 (12) uo Ao  CN (13) ao Từ (12) và (13) ta có: 1 1 U  2  a0  2 N   0    (14)  u0   A0  9
  19. 1 3 u  2  A0  2 C   0    (15)  Uo   a0  Như vậy, với hai biểu thức (14) và (15), chúng ta có thể tính được băng gia tốc của trận động đất mạnh. Kết luận chương 1 Chương này học viên đã trình bày cơ sở lý thuyết mô phỏng băng ghi dao động nền với 2 cách tiếp cận, nhằm giải quyết bài toán sự phức tạp của môi trường truyền sóng và quá trình phát sinh động đất, đó là phương pháp hàm Green thực nghiệm (EGFM) và phương pháp ngẫu nhiên (SMSIM). Mỗi cách tiếp cận có cơ sở lý thuyết và điều kiện áp dụng khác nhau, cụ thể như sau: - Phương pháp SMSIM, các tác giả của phương pháp này đã giải quyết vấn đề phức tạp của quá trình phát sinh và lan truyền sóng trong môi trường thực tế khá phức tạp như sau: o Môi trường truyền sóng: được mô hình hóa bằng các đường cong (mô hình) gần đúng, dựa trên các giá trị đo đạc thực tế tại khu vực nghiên cứu. o Nguồn phát sinh động đất: được mô tả bằng sự kết hợp giữa mô hình của phổ nguồn và phổ nhiễu trắng Gaussian. - Phương pháp EGFM, các nhà địa chấn đã sử dụng một băng sóng quan sát thực tế có độ lớn nhỏ xảy ra tại khu vực cần mô phỏng để làm dữ liệu đầu vào cho chương trình mô phỏng. Chương trình EGFM sẽ hiệu chỉnh sự khác biệt giữa độ lớn và kích thước đứt gãy của trận động đất lớn và động đất nhỏ để đưa ra được băng sóng của động đất lớn cần mô phỏng. Với cách thức này, các nhà địa chấn đã loại bỏ được sự phức tạp của quá trình phát sinh và lan truyền sóng trong môi trường thực tế. Vì các hiệu ứng này đã được chứa trong băng sóng của trận động đất nhỏ. Ta nhận thấy rằng, với cách tiếp cận của phương pháp SMSIM, các nhà địa chấn đã sử dụng rất nhiều các mô hình gần đúng. Do vậy, độ sai số của phương pháp này là sự chồng chập sai số của các mô hình gần đúng, dẫn đến độ chính xác của phương 10
  20. pháp SMSIM không cao. Còn với phương pháp EGFM, sự phức tạp của quá trình phát sinh và lan truyền sóng trong môi trường thực tế đã được giải quyết bằng việc sử dụng băng sóng của trận động đất nhỏ xảy ra tại khu vực nghiên cứu. Tuy nhiên, phạm vi áp dụng của phương pháp này bị giới hạn, do yêu cầu của phương pháp này là cần có một băng sóng của 1 trận động đất đã xảy ra tại khu vực cần nghiên cứu. Vì trong thực tế, nhiều khu vực nghiên cứu chưa từng xảy ra động đất, hoặc đã xảy ra nhưng tại thời điểm xảy ra động đất chưa có máy ghi động đất. Nên ta không có được băng sóng quan trắc thực tế để sử dụng cho phương pháp EGFM. 11
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2