Luận văn Thạc sĩ Sư phạm Toán: Dạy học mô hình hóa toán học trong chương trình Đại số lớp 7
lượt xem 6
download
Mục đích nghiên cứu của luận văn này là nghiên cứu cơ sở lí luận và thực tiễn từ đó xây dựng, đề xuất hệ thống các biện pháp, trong đó có hệ thống vấn đề nhằm dạy học MHH toán học trong chương trình đại số Toán 7.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Luận văn Thạc sĩ Sư phạm Toán: Dạy học mô hình hóa toán học trong chương trình Đại số lớp 7
- ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC GIÁO DỤC NGUYỄN THÙY LINH DẠY HỌC MÔ HÌNH HÓA TOÁN HỌC TRONG CHƢƠNG TRÌNH ĐẠI SỐ LỚP 7 LUẬN VĂN THẠC SĨ SƢ PHẠM TOÁN HÀ NỘI – 2020
- ĐẠI HỌC QUỐC GIA HÀ NỘI TRƢỜNG ĐẠI HỌC GIÁO DỤC NGUYỄN THÙY LINH DẠY HỌC MÔ HÌNH HOÁ TOÁN HỌC TRONG CHƢƠNG TRÌNH ĐẠI SỐ LỚP 7 LUẬN VĂN THẠC SĨ SƢ PHẠM TOÁN Chuyên ngành: Lý luận và phƣơng pháp dạy học bộ môn Toán Mã số: 8.14.01.11 Ngƣời hƣớng dẫn khoa học: PGS. TS. Nguyễn Chí Thành HÀ NỘI – 2020
- LỜI CẢM ƠN Với tình cảm chân thành và sự biết ơn sâu sắc, tác giả xin đƣợc trân trọng cảm ơn các thầy giáo, cô giáo, Hội đồng khoa học, Ban giám hiệu Trƣờng Đại học Giáo dục – Đại học Quốc gia Hà Nội đã giảng dạy và tạo điều kiện thuận lợi cho tác giả trong suốt quá trình học và, nghiên cứu và hoàn thành khóa học. Đặc biệt, tác giả xin đƣợc bày tỏ lòng kính trọng và biết ơn sâu sắc nhất đến PGS.TS. Nguyễn Chí Thành đã chu đáo, hƣớng dẫn tận tình, giúp đỡ và chỉ bảo tác giả trong suốt quá trình hoàn thành luận văn này. Tác giả xin cảm ơn sự quan tâm, tạo điều kiện của thầy, cô giáo trong Ban giám hiệu, các thầy, cô giáo trong tổ Toán THCS trƣờng THCS & THPT Nguyễn Siêu, Hà Nội đã tạo điều kiện thuận lợi nhất cho tác giả trong suốt quá trình học tập và thực hiện đề tài của mình. Tác giả cũng xin đƣợc dành lời cảm ơn chân thành đến những ngƣời thân và bạn bè, đặc biệt là các học viên lớp cao học QH-2017-S đợt 2 đã luôn quan tâm, cổ vũ, chia sẻ, động viên, giúp đỡ tác giả hoàn thành luận văn một cách tốt nhất. Tuy đã có nhiều cố gắng nhƣng luận văn chắc chắn không tránh khỏi những thiếu sót cần đƣợc góp ý, sửa chữa. Rất mong nhận đƣợc những ý kiến đóng góp của các thầy, cô và đồng nghiệp. Xin trân trọng cảm ơn! Hà Nội, ngày tháng 02 năm 2020 Tác giả Nguyễn Thùy Linh i
- DANH MỤC CÁC CHỮ VIẾT TẮT Viết tắt Viết đầy đủ GV Giáo viên HS Học sinh MHH Mô hình hóa SGK Sách giáo khoa THCS Trung học cơ sở THPT Trung học phổ thông ii
- MỤC LỤC LỜI CẢM ƠN .................................................................................................... i DANH MỤC CÁC CHỮ VIẾT TẮT ............................................................... ii DANH MỤC CÁC BẢNG VÀ BIỂU ĐỒ ...................................................... iii DANH MỤC CÁC HÌNH ................................................................................ iv MỞ ĐẦU ........................................................................................................... 1 MỞ ĐẦU ........................................................................................................... 1 1. Lý do chọn đề tài......................................................................................... 1 2. Mục đích nghiên cứu .................................................................................. 3 3. Nhiệm vụ nghiên cứu .................................................................................. 3 4. Khách thể và đối tƣợng nghiên cứu. ........................................................... 3 5. Phạm vi nghiên cứu .................................................................................... 4 6. Giả thuyết khoa học .................................................................................... 4 7. Phƣơng pháp nghiên cứu ............................................................................ 4 8. Cấu trúc luận văn ........................................................................................ 4 CHƢƠNG 1....................................................................................................... 5 CƠ SỞ LÝ LUẬN CỦA ĐỀ TÀI ..................................................................... 5 1.1. Mô hình hóa trong dạy học toán ................................................................ 5 1.1.1. Các khái niệm về mô hình hóa ................................................................ 5 1.1.1.1. Khái niệm mô hình ............................................................................... 5 1.1.1.2. Khái niệm mô hình hóa toán học ........................................................ 6 1.1.2. Quy trình mô hình hóa toán học.............................................................. 7 1.1.3. Một số tiếp cận mô hình hóa trong giáo dục toán ................................. 13 1.1.4. Dạy học mô hình hóa và dạy học bằng mô hình hóa ............................ 15 1.2. Một số phƣơng pháp dạy học thƣờng sử dụng trong dạy học mô hình hóa....... 16 1.2.1. Dạy học phát hiện và giải quyết vấn đề ................................................ 16 1.2.2. Dạy học dự án ....................................................................................... 18 1.2.3. Dạy học khám phá ................................................................................. 20 1.3. Một số phƣơng tiện dạy học trong môn Toán .......................................... 22 iii
- Kết luận chƣơng 1 ........................................................................................... 23 CHƢƠNG 2..................................................................................................... 25 MỘT PHẦN THỰC TRẠNG DẠY HỌC MÔ HÌNH HÓA.......................... 25 2.1. Phân tích chƣơng trình, sách giáo khoa Toán lớp 7 Việt Nam ................ 25 2.1.1. Phân tích chƣơng trình Đại số lớp 7 hiện hành ..................................... 25 2.1.1.1. Mục tiêu.............................................................................................. 25 2.1.1.2. Nội dung cụ thể và yêu cầu cần đạt ................................................... 26 2.1.2. Phân tích chƣơng trình Toán lớp 7 mới ................................................ 27 2.1.2.1. Mục tiêu.............................................................................................. 27 2.1.2.2. Nội dung cụ thể và yêu cầu cần đạt của chƣơng trình Đại số lớp 7 .. 28 2.1.2.3 Yêu cầu về mô hình hóa toán học các bài toán thực tiễn trong chƣơng trình toán lớp 7 Việt Nam ............................................................................... 30 2.2. Phân tích sách giáo khoa Toán lớp 7 Việt Nam....................................... 31 2.2.1. Phân tích sách giáo khoa lớp 7 đại trà .................................................. 31 2.2.2. Phân tích sách giáo khoa lớp 7 thử nghiệm (VNEN) ........................... 36 2.3. Thực trạng về việc rèn luyện năng lực mô hình hóa của học sinh .......... 42 2.3.1. Mục tiêu................................................................................................. 42 2.3.2. Hình thức điều tra.................................................................................. 42 2.3.3. Nội dung điều tra ................................................................................... 43 2.3.4. Kết quả điều tra thực trạng về việc rèn luyện năng lực MHH cho HS trong chƣơng trình Đại số lớp 7 ...................................................................... 43 2.3.5. Nguyên nhân thực trạng ........................................................................ 52 Kết luận chƣơng 2 ........................................................................................... 52 CHƢƠNG 3..................................................................................................... 54 MỘT SỐ BIỆN PHÁP DẠY HỌC MÔ HÌNH HÓA CHO HỌC SINH TRONG TRƢỜNG TRUNG HỌC CƠ SỞ .................................................... 54 3.1. Định hƣớng biện pháp .............................................................................. 54 3.2. Biện pháp dạy học mô hình hóa cho học sinh ở trƣờng trung học cơ sở. 55 iv
- 3.2.1. Biện pháp 1. Kết hợp với các phƣơng pháp dạy học tích cực trong quy trình dạy học mô hình hóa ............................................................................... 55 3.2.1.1. Mục đích của biện pháp ..................................................................... 55 3.2.1.2. Nội dung và cách thực hiện................................................................ 55 3.2.1.3. Ví dụ ................................................................................................... 55 3.2.2. Biện pháp 2. Kết hợp các phƣơng tiện dạy học trong dạy học mô hình hóa ................................................................................................................... 60 3.2.2.1. Mục đích của biện pháp ..................................................................... 60 3.2.2.2. Nội dung và cách thực hiện................................................................ 61 3.2.2.3. Ví dụ minh họa ................................................................................... 61 3.2.3. Biện pháp 3. Thiết kế một số nội dung hoạt động theo chủ đề trong dạy học mô hình hóa .............................................................................................. 64 3.2.3.1. Mục đích của biện pháp ..................................................................... 64 3.2.3.2. Nội dung và cách thực hiện................................................................ 64 3.2.3.3. Thiết kế hoạt động MHH một số chủ đề trong chƣơng trình Đại số Toán 7 .............................................................................................................. 65 3.2.3.4. Thiết kế giáo án dạy học thực nghiệm ............................................... 69 Kết luận chƣơng 3 ........................................................................................... 79 CHƢƠNG 4..................................................................................................... 81 THỰC NGHIỆM SƢ PHẠM .......................................................................... 81 4.1. Mục đích thực nghiệm sƣ phạm ............................................................... 81 4.2. Nhiệm vụ thực nghiệm sƣ phạm .............................................................. 81 4.3. Phƣơng pháp thực nghiệm sƣ phạm ......................................................... 82 4.4. Kế hoạch và nội dung thực nghiệm sƣ phạm ........................................... 82 4.4.1. Kế hoạch lớp thực nghiệm .................................................................... 82 4.4.1.1. Kế hoạch lớp thực nghiệm sƣ phạm .................................................. 82 4.4.1.2. Thời gian thực hiện thực nghiệm sƣ phạm ........................................ 82 4.4.2. Nội dung thực nghiệm ........................................................................... 83 4.4.3. Tiến hành thực nghiệm.......................................................................... 83 v
- 4.5. Đánh giá kết quả thực nghiệm sƣ phạm ................................................... 83 4.5.1. Cơ sở đánh giá kết quả thực nghiệm ..................................................... 83 4.5.2. Kết quả thực nghiệm sƣ phạm .............................................................. 84 4.5.2.1. Đánh giá định tính .............................................................................. 85 4.5.2.2. Đánh giá định lƣợng........................................................................... 84 4.5.2.3. Đánh giá chung qua thực nghiệm ...................................................... 89 Kết luận chƣơng 4 ........................................................................................... 89 KẾT LUẬN ..................................................................................................... 91 TÀI LIỆU THAM KHẢO ............................................................................... 92 PHỤ LỤC vi
- DANH MỤC CÁC BẢNG, BIỂU ĐỒ, HÌNH Biểu đồ 1.1. Quy trình MHH theo Swetz và Hartzler....................................... 8 Biểu đồ 1.2. Quy trình MHH (theo Coulange 1998) ........................................ 9 Biểu đồ 1.3. Chu trình MHH 7 giai đoạn của Blum ......................................... 9 Biểu đồ 1.4. Quy trình MHH theo PISA ......................................................... 10 Biểu đồ 1.5. Quy trình MHH mô phỏng theo Stillman và Galbraith.............. 11 Biểu đồ 1.6. Phân loại các tình huống toán học .............................................. 12 Biểu đồ 1.7. Cách để giải quyết vấn đề........................................................... 17 Bảng 2.1. Thống kê số lƣợng bài tập chƣơng I (SGK1) ................................. 31 Bảng 2.2. Thống kê số lƣợng bài tập chƣơng II (SGK1) ................................ 33 Bảng 2.3. Thống kê số lƣợng bài tập chƣơng III (SGK1) .............................. 34 Bảng 2.4. Thống kê số lƣợng bài tập chƣơng IV (SGK1) .............................. 35 Bảng 2.5. Thống kê số lƣợng bài tập chƣơng I (SGK2) ................................. 37 Bảng 2.6. Thống kê số lƣợng bài tập chƣơng II (SGK2) ................................ 38 Bảng 2.7. Thống kê số lƣợng bài tập chƣơng III (SGK2) .............................. 39 Bảng 2.8. Thống kê số lƣợng bài tập chƣơng IV (SGK2) .............................. 41 Biểu đồ 2.1. Mong muốn biết thêm các ứng dụng thực tế của những kiến thức Toán học của HS ......................................................................... 43 Biểu đồ 2.2. Mức độ thƣờng xuyên tự tìm hiểu những ứng dụng trong thực tiễn Toán học của HS .................................................................. 44 Biểu đồ 2.3. Mức độ thƣờng xuyên giảng giải mối liên hệ toán học với thực tiễn của GV. ................................................................................ 44 Biểu đồ 2.4. Đánh giá của HS về mối liên hệ giữa Toán học và các môn học khác. ............................................................................................ 45 Biểu đồ 2.5. Ý kiến của HS về tầm quan trọng của môn Toán trong việc học ở trƣờng .......................................................................................... 45 Biểu đồ 2.6. Ý kiến của HS về tầm quan trọng của môn Toán cuộc sống hàng ngày ............................................................................................. 45 vii
- Biểu đồ 2.7. Ý kiến của HS về mức độ khô khan của môn Toán ................... 46 Bảng 2.8.. Kết quả khảo sát của GV ............................................................... 47 Bảng 3.1. Mẫu phiếu thống kê ........................................................................ 57 Bảng 3.2. Phân bố tần số về chỉ số BMI theo giới tính .................................. 57 Biểu đồ 3.1. Mức độ tăng trƣởng dành cho trẻ từ 2 đến 20 tuổi ..................... 58 Bảng 3.3. Thống kê về tình trạng dinh dƣỡng của HS lớp 7 .......................... 58 Biểu đồ 3.2. Thống kê lƣợng mƣa theo từng tháng ở Bangkok, Thái Lan ..... 61 Bảng 3.4. Chỉ số BMI và nhận xét tƣơng ứng ................................................ 63 Bảng 4.1. Kết quả học tập môn Toán năm học 2018 – 2019 .......................... 83 Hình 4.1. Phiếu khảo sát của HS ..................................................................... 87 Hình 4.2. Sản phẩm học tập của nhóm HS ..................................................... 88 Bảng 4.2. Kết quả thực nghiệm....................................................................... 84 viii
- MỞ ĐẦU 1. Lý do chọn đề tài Nghị quyết Hội nghị lần thứ tám Ban chấp hành Trung ƣơng khóa XI, số 29-NQ/TW ngày 04/11/2013 về đổi mới căn bản, toàn diện giáo dục và đào tạo, đáp ứng yêu cầu công nghiệp hóa, hiện đại hóa trong điều kiện kinh tế thị trƣờng định hƣớng xã hội chủ nghĩa và hội nhập quốc tế đã nêu rõ quan điểm chỉ đạo của Đảng về giáo dục: “Chuyển mạnh quá trình giáo dục từ chủ yếu trang bị kiến thức sang phát triển toàn diện và năng lực và phẩm chất ngƣời học. Học đi đôi với hành; lý luận gắn với thực tiễn; giáo dục nhà trƣờng kết hợp với giáo dục gia đình và giáo dục xã hội”. Bên cạnh đó Bộ Giáo dục và Đào tạo đã đƣa dự thảo “Chƣơng trình phổ thông tổng thể năm 2018” nêu lên 5 phẩm chất cần có ở HS là: yêu nƣớc, nhân ái, chăm chỉ, trung thực, tiết kiệm và 10 năng lực cốt lõi trong đó có 3 năng lực chung và 7 năng lực chuyên môn. Trong đó năng lực toán học bao gồm các thành tố cốt lõi sau: năng lực tƣ duy và lập luận toán học; năng lực giao tiếp toán học; năng lực MHH toán học, năng lực giải quyết vấn đề toán học; năng lực sử dụng công cụ, phƣơng tiện toán học, góp phần hình thành và phát triển năng lực cốt lõi. Nhƣ vậy để theo kịp sự bùng nổ của công nghệ thông tin, sự phát triển mạnh mẽ của khoa học, chúng ta cần phải đào tạo những con ngƣời lao động có năng lực vận dụng những tri thức của toán học trong điều kiện cụ thể nhằm mang lại những kết quả thiết thực. Toán học có mối liên hệ mật thiết với thực tiễn và có ứng dụng rộng rãi trong rất nhiều ngành khoa học, công nghệ cũng nhƣ trong sản xuất và đời sống hàng ngày. Thực tiễn vừa là nguồn gốc, động lực, vừa là nơi kiểm nghiệm tính chân lý của khoa học nói chung và toán học nói riêng. Bởi vậy, trong sự phát triển mạnh mẽ của khoa học và công nghệ việc rèn luyện cho học năng lực vận dụng kiến thức Toán học vào thực tiễn là điều cần thiết và phù hợp với mục tiêu của giáo dục theo định hƣớng phát triển năng lực. Để thực hiện đƣợc thì GV phải có năng lực vận dụng những khái niệm toán học ở 1
- trƣờng phổ thông để thiết kế và xây dựng các mô hình toán học trong cuộc sống. Liên hệ thực tiễn giúp HS học tập một cách tích cực và chủ động, rèn luyện cho HS kỹ năng và giáo dục họ ý thức sẵn sàng ứng dụng Toán học một cách có hiệu quả trong các lĩnh vực kinh tế và sản xuất. Việc đƣa MHH toán học vào dạy và học toán đã đƣợc nhấn mạnh trong những năm gần đây vì những lí do sau: MHH là một phƣơng tiện góp phần phát triển các kĩ năng, năng lực toán học và thái độ của HS, cụ thể là khả năng giải quyết vấn đề, tính tò mò, sáng tạo, suy luận toán học và giao tiếp. MHH toán học kết nối toán học trong nhà trƣờng với môi trƣờng xung quanh, với đời sống xã hội. HS khi thấy đƣợc mối liên hệ giữa toán học và thực tiễn sẽ thấy việc học tập trong đó có học toán trở nên ý nghĩa hơn. MHH hỗ trợ việc học các khái niệm và quá trình toán học của HS nhƣ tạo động cơ, giúp HS hình thành, hiểu và củng cố khái niệm toán học. MHH còn giúp trang bị cho HS các năng lực để có thể sử dụng toán giải quyết những tình huống trong thực tiễn. Vì nhiều lý do khác nhau mà những ứng dụng của Toán học vào thực tiễn trong chƣơng trình và SGK, cũng nhƣ trong thực tế dạy học Toán ở nƣớc ta chƣa đƣợc quan tâm một cách đúng mức. Trong SGK môn Toán và những tài liệu tham khảo về Toán thƣờng chỉ tập trung chú ý những vấn đề, những bài toán trong nội bộ Toán học; trong khi đó số lƣợng các ví dụ, bài tập Toán có nội dung liên môn hay thực tiễn để HS học và rèn luyện chƣa nhiều. Không chỉ vậy trong thực tế dạy Toán ở trƣờng trung học, các GV tuy đã quan tâm nhƣng chƣa thƣờng xuyên rèn luyện cho HS thực hiện những ứng dụng của Toán học vào tế đời sống. ). Ở Việt Nam, chƣa có nhiều nghiên cứu dạy học MHH trong dạy học toán. Chƣơng trình Đại số lớp 7 bao gồm 4 chƣơng: Số hữu tỉ - Số thực, Hàm số và đồ thị, Thống kê, Biểu thức đại số. Các chƣơng tƣơng ứng với các chủ đề có gắn bó mật thiết với thực tiễn, đời sống. Đặc biệt là chủ đề hàm số, thống kê có nhiều tiềm năng có thể khai thác để dạy học MHH. Từ những lí do trên, tác giả chọn đề tài: “Dạy học mô hình hóa toán 2
- học trong chƣơng trình Đại số lớp 7”. 2. Mục đích nghiên cứu Nghiên cứu cơ sở lí luận và thực tiễn từ đó xây dựng, đề xuất hệ thống các biện pháp, trong đó có hệ thống vấn đề nhằm dạy học MHH toán học trong chƣơng trình đại số Toán 7. 3. Nhiệm vụ nghiên cứu Để thực hiện mục đích trên, nhiệm vụ nghiên cứu đƣợc đề ra nhƣ sau: - Nghiên cứu cơ sở lý luận và cơ sở thực tiễn của đề tài: MHH trong dạy học toán, một số phƣơng pháp dạy học thông dụng, vai trò của toán học trong thực tiễn,… - Nghiên cứu nội dung, cấu trúc chƣơng trình phổ thông hiện hành và chƣơng trình phổ thông tổng thể mới, SGK hiện hành và SGK VNEN để tìm các nội dung liên quan đến thực tiễn. - Phân tích thực trạng việc rèn luyện khả năng MHH toán học cho HS trong dạy học đại số Toán lớp 7 ở một số trƣờng Trung học cơ sở trong đó có trƣờng Nguyễn Siêu. - Xây dựng một số chủ đề toán học gắn liền với thực tiễn. - Nghiên cứu đề xuất một số biện pháp (trong đó có phƣơng pháp dạy học phù hợp với chủ đề đã xây dựng) nhằm dạy học MHH toán học cho HS. - Tiến hành thực nghiệm sƣ phạm tại trƣờng Trung học cơ sở Nguyễn Siêu để đánh giá tính hiệu quả của các biện pháp dạy học MHH cho HS lớp 7. 4. Khách thể và đối tƣợng nghiên cứu. 4.1. Khách thể nghiên cứu Quá trình dạy học môn Toán ở trƣờng Trung học cơ sở và quá trình sử dụng các kiến thức toán học MHH các tình huống thực tiễn. 4.2. Đối tượng nghiên cứu Dạy học toán gắn liền với thực tiễn nhằm phát triển năng lực giải quyết vấn đề cho HS lớp 7. Phƣơng pháp MHH trong dạy học môn Toán, hệ thống bài tập MHH, năng lực MHH của HS. 3
- 5. Phạm vi nghiên cứu Nghiên cứu chƣơng trình Đại số lớp 7 của Việt Nam bao gồm chƣơng trình hiện hành và chƣơng trình VNEN, tập trung nghiên cứu các chủ đề có tiềm năng để dạy học MHH cho HS. 6. Giả thuyết khoa học Nếu xây dựng đƣợc hệ thống các bài tập có nội dung thực tiễn và dạy học MHH cho HS thì sẽ rèn luyện đƣợc khả năng MHH toán học cho HS, góp phần đổi mới phƣơng pháp dạy học môn Toán theo định hƣớng phát triển năng lực cho HS. 7. Phƣơng pháp nghiên cứu Phƣơng pháp nghiên cứu lý luận: Tập hợp, đọc, nghiên cứu, phân tích, tổng hợp hệ thống các nguồn tài liệu, các đề tài nghiên cứu, các giáo trình tham khảo liên quan đến đề tài của luận văn; nội dung kiến thức trong chƣơng trình SGK lớp 7 chƣơng trình hiện hành và chƣơng trình VNEN. Phƣơng pháp nghiên cứu thực tiễn: - Dự giờ, điều tra, trao đổi với một số GV dạy môn Toán Trung học cơ sở về thực trạng việc rèn luyện khả năng MHH toán học cho HS lớp 7 ở trƣờng Trung học cơ sở. - Quan sát quá trình học tập của HS trong các giờ học mà GV dạy thực nghiệm. 8. Cấu trúc luận văn Ngoài phần mở đầu, kết luận, khuyến nghị, tài liệu tham khảo, phụ lục, nội dung chính của luận văn đƣợc trình bày trong 4 chƣơng: Chƣơng 1. Cơ sở lý luận của đề tài Chƣơng 2. Một phần thực trạng dạy học mô hình hóa Chƣơng 3. Một số biện pháp dạy học mô hình hóa cho học sinh trung học cơ sở Chƣơng 4. Thực nghiệm sƣ phạm 4
- CHƢƠNG 1 CƠ SỞ LÝ LUẬN CỦA ĐỀ TÀI Trong chƣơng này tác giả sẽ phân tích cơ sở lý luận của đề tài bao gồm các khái niệm về MHH, quy trình MHH toán học, một số phƣơng pháp dạy học tích cực có thể đƣợc sử dụng kết hợp với dạy học MHH, một số phƣơng tiện dạy học trong môn toán và một số tiếp cận MHH trong giáo dục Toán. 1.1. Mô hình hóa trong dạy học toán 1.1.1. Các khái niệm về mô hình hóa 1.1.1.1. Khái niệm mô hình Trong các nghiên cứu của Mason & Davis (1991) thì mô hình đƣợc hiểu là một vật dùng thay thế cho vật thể thực tế nhƣng vẫn giữ các đặc điểm đặc trƣng của vật đó. Vì vậy không cần đến vật thực tế mà ta vẫn có thể nghiên cứu, khám phá các thuộc tính của đối tƣợng qua mô hình. Cho đến các nghiên cứu của Swetz & Hartzler (1991) và Verschaffel (2002) cho rằng việc xây dựng, lựa chọn mô hình nào cho vật thật còn phụ thuộc vào ý đồ của ngƣời thiết kế, sử dụng và hoàn cảnh áp dụng của nó. Các hình vẽ, hàm số, bảng, phƣơng trình, đồ thị, biểu đồ hay các mô hình ảo trên máy tính cũng đƣợc hiểu là một mô hình. Khi đó việc sử dụng ngôn ngữ toán học để mô tả về một hệ thống nào đó sẽ tạo thành mô hình toán học. Tuy có nhiều định nghĩa khác nhau về mô hình nhƣng trong luận văn này tác giả sử dụng định nghĩa mô hình là một vật trung gian dùng để nghiên cứu một hiện tƣợng, sự vật, sự việc nào đó đƣợc gọi chung là đối tƣợng ban đầu nhằm đạt đƣợc mục đích nhất định. Nhƣ vậy, mô hình sẽ có một số đặc trƣng sau đây: - Bảo toàn đƣợc các mối quan hệ cơ bản của đối tƣợng ban đầu. Tính chất này cho thấy con ngƣời có thể xây dựng những mô hình đơn giản hơn vật gốc hoặc phức tạp hơn vật gốc, đồng thời có thể dự báo đƣợc những hiện tƣợng có thể xảy ra trong thực tiễn. - Mô hình không thể thay thế hoàn toàn vật gốc mà chỉ phản ánh đến một mức độ nào đó, một vài mặt nào đó của vật gốc. 5
- - Mô hình ra đời nhờ quá trình trừu tƣợng hóa, lí tƣởng hóa đối tƣợng nghiên cứu. - Mô hình không bất biến mà có thể phát triển từ mức độ thấp sang mức độ cao hơn và góp phần giúp dự đoán tình huống thực tiễn. 1.1.1.2. Khái niệm mô hình hóa toán học MHH toán học trong giáo dục chính thức xuất hiện đầu tiên tại hội nghị của Freudenthal năm 1968. Hiện nay, có rất nhiều định nghĩa và mô tả về khái niệm MHH toán học đƣợc chia sẻ trong lĩnh vực giáo dục toán tùy thuộc vào quan điểm lý thuyết mà mỗi tác giả lựa chọn. Theo Từ điển bách khoa toàn thƣ, MHH toán học là sự giải thích toán học cho một hệ thống toán học hay ngoài toán nhằm trả lời cho những câu hỏi mà ngƣời ta đặt ra trên hệ thống này. [15] Theo Eykhoff (1974) định nghĩa một mô hình toán học là “một biểu diễn cho các phần quan trọng của một hệ thống có sẵn (hoặc sắp đƣợc xây dựng) với mục đích biểu diễn tri thức về hệ thống đó dƣới một dạng có thể dùng đƣợc”. [15] Theo Lê Thị Hoài Châu (2014) thì mô hình toán học là sự giải thích bằng toán học cho một hệ thống ngoài toán học với những câu hỏi xác định mà ngƣời ta đặt ra trên hệ thống này. Quá trình MHH toán học là quá trình thiết lập một mô hình toán học cho vấn đề ngoài toán học, giải quyết vấn đề trong mô hình đó, rồi thể hiện và đánh giá lời giải trong ngữ cảnh thực tế, cải tiến mô hình nếu cách giải quyết không thể chấp nhận. [9] Để xây dựng các biện pháp dạy học MHH cho HS phù hợp với chƣơng trình đại số lớp 7 nên trong luận văn này, tác giả sử dụng định nghĩa MHH toán học của Edwards và Hamson (2001) nhƣ sau: MHH toán học là quy trình chuyển đổi một vấn đề thực tế sang một vấn đề toán học bằng cách thiết lập và giải quyết các mô hình toán học, thể hiện và đánh giá lời giải trong ngữ cảnh thực tế, cải tiến mô hình nếu cách giải quyết không thể chấp nhận. [1] Để nêu lại một cách cụ thể hơn thì MHH toán học bao gồm toàn bộ quá 6
- trình chuyển đổi từ một vấn đề thực tiễn sang vấn đề toán và ngƣợc lại từ giai đoạn xây dựng lại tình huống thực tế, lựa chọn một mô hình toán phù hợp, giải quyết trong môi trƣờng toán, giải thích, đánh giá kết quả liên quan đến tình huống ban đầu và đôi khi đến giai đoạn điều chỉnh các mô hình, lặp lại quy trình nhiều lần cho tới khi nhận đƣợc một kết quả hợp lý. Vậy việc sử dụng công cụ toán học để giải quyết những vấn đề thực tế gọi là MHH toán học. Dựa vào định nghĩa trên, tác giả thấy rằng MHH toán học là một hoạt động phức tạp, bao gồm sự chuyển đổi giữa toán học và thực tế theo cả hai chiều, vì vậy đòi hỏi HS phải có nhiều năng lực khác nhau trong các lĩnh vực toán học khác nhau cũng nhƣ có kiến thức liên quan đến các tình huống thực tế đƣợc xem xét. 1.1.2. Quy trình mô hình hóa toán học Mối quan hệ giữa các vấn đề trong SGK toán phổ thông và các tình huống thực tế, đời sống sẽ đƣợc thể hiện qua quy trình mô hình hóa mà ở đó HS cần vận dụng các thao tác tƣ duy toán học nhƣ phân tích, tổng hợp, so sánh, khái quát hóa, trừu tƣợng hóa. Theo cách tiếp cận này thì HS sẽ thấy đƣợc việc học Toán trở nên cấp thiết, có ý nghĩa hơn, hứng thú hơn. Nhiều sơ đồ đã đƣợc sử dụng để mô tả quá trình MHH nhƣ của Pollak, Blum, Kaiser hay Stillman và Galbraith, đó là một quá trình lặp gồm nhiều bƣớc, bắt đầu với một tình huống thực tế và kết thúc là một phƣơng án giải quyết thành công hay quyết định thực hiện lại quá trình để đạt đƣợc kết quả tốt hơn. Những sơ đồ cũng là hƣớng dẫn để thiết kế các nhiệm vụ MHH và thực hiện MHH trong dạy học.[1] a) Sơ đồ theo Swetz và Hartzler (1991) Bƣớc 1: Quan sát hiện tƣợng thực tế, phác thảo tình huống và phát hiện ra những yếu tố có tác động đến vấn đề đó. Bƣớc 2: Sử dụng ngôn ngữ toán học để lập giả thuyết về mối quan hệ giữa các yếu tố tác động đến vấn đề và phác thảo mô hình toán học tƣơng ứng. Bƣớc 3: Sử dụng các phƣơng pháp và công cụ toán học phù hợp để MHH bài toán và phân tích mô hình. 7
- Bƣớc 4: Đƣa ra kết quả, đối chiếu mô hình đã xây dựng với thực tiễn và đƣa ra kết luận. Vậy theo quy trình này thì mô hình toán học đƣợc xây dựng để mô tả các tình huống nảy sinh từ thực tiễn và kết quả khi làm việc với mô hình toán học lại đƣợc dùng để giải thích và cải thiện các vấn đề thực tiễn. Quy trình trên đƣợc minh họa bằng sơ đồ dƣới đây: Biểu đồ 1.1. Quy trình MHH theo Swetz và Hartzler b) Sơ đồ của Coulange (1998) Sơ đồ này chia quy trình MHH thành 4 giai đoạn: - Giai đoạn 1: Từ một hệ thống ngoài toán học đƣợc chuyển qua mô hình trung gian. Trong đó các mô hình trung gian sẽ giữ những mối liên hệ ngữ nghĩa với mô hình mà toán học cần xây dựng từ những câu hỏi ban đầu và tiến triển qua việc MHH. - Giai đoạn 2: Xây dựng mô hình toán học từ mô hình trung gian. - Giai đoạn 3: Áp dụng các phƣơng tiện, công cụ toán học giải quyết bài toán đƣợc hình thành ở bƣớc hai. - Giai đoạn 4: Chuyển câu trả lời của bài toán toán học thành câu trả lời của những câu hỏi ban đầu và đối chiếu chúng với thực tiễn. 8
- Biểu đồ 1.2. Quy trình MHH (theo Coulange 1998) [18] c) Sơ đồ của Blum (2005) Sơ đồ này đƣợc xem nhƣ là cơ sở cho tất cả các hoạt động MHH và những thay đổi của các quy trình MHH ngày nay. Biểu đồ 1.3. Quy trình MHH 7 giai đoạn của Blum [1] Giai đoạn 1: Hiểu tình huống thực tế đặt ra và xây dựng mô hình cho tình huống này; Giai đoạn 2: Đơn giản hóa tình huống ban đầu và đƣa các biến thích hợp vào 9
- để đƣợc mô hình thực của tình huống; Giai đoạn 3: Chuyển từ mô hình thực tế sang mô hình toán học; Giai đoạn 4: Làm việc trong môi trƣờng toán học để từ mô hình toán ra đƣợc kết quả toán; Giai đoạn 5: Chuyển đổi kết quả toán sang kết quả thực theo ngữ cảnh thực tế; Giai đoạn 6: Xem xét, đối chiếu tính phù hợp của kết quả hay phải thực hiện chu trình lần 2; Giai đoạn 7: Trình bày cách giải quyết vấn đề thực tiễn đƣa ra từ ban đầu. d) Sơ đồ theo PISA (2006) Giai đoạn 1: Bắt đầu từ một vấn đề thực tế; Giai đoạn 2: Nhận ra các kiến thức toán phù hợp với vấn đề, tổ chức lại vấn đề theo các khái niệm toán học; Giai đoạn 3: Cắt tỉa các yếu tố thực tế để chuyển vấn đề thực tế thành một bài toán mà thể hiện trung thực cho tình huống ban đầu; Giai đoạn 4: Đƣa ra lời giải toán học cho bài toán; Giai đoạn 5: Đối chiếu lời giải của bài toán với tình huống thực tế, xác định những hạn chế của lời giải.[1] Biểu đồ 1.4. Quy trình MHH theo PISA [1] e) Sơ đồ của Stillman và Galbraith (2006) Để giải quyết một nhiệm vụ MHH, HS lần lƣợt thực hiện các giai đoạn chính sau: 10
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Luận văn Thạc sĩ Sư phạm Ngữ văn: Các biện pháp tạo hứng thú trong dạy học tác phẩm Văn tế nghĩa sĩ Cần Ruộc của Nguyễn Đình Chiểu (Chương trình Ngữ văn 11)
40 p | 82 | 11
-
Luận văn Thạc sĩ Sư phạm Ngữ văn: Ứng dụng lý thuyết tự sự học trong dạy học truyện ngắn Việt Nam hiện đại (chương trình Ngữ văn 11 ban cơ bản )
109 p | 53 | 8
-
Luận văn Thạc sĩ Sư phạm Toán: Rèn luyện tư duy sáng tạo cho học sinh thông qua dạy học chủ đề ứng dụng lượng giác vào đại số
148 p | 55 | 8
-
Luận văn Thạc sĩ Sư phạm Hoá học: Dạy học trải nghiệm chương Oxi – Lưu huỳnh lớp 10 phát triển năng lực vận dụng kiến thức hóa học vào thực tiễn
150 p | 46 | 7
-
Luận văn Thạc sĩ Sư phạm kỹ thuật: Sư phạm tương tác và ứng dụng trong dạy học môn kỹ thuật điện tại trường Cao đẳng Việt – Hung
95 p | 21 | 7
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Toán: Dạy học chủ đề Tổ hợp – Xác suất lớp 11 theo hướng khám phá toán
13 p | 121 | 7
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Ngữ văn: Lồng ghép trò chơi trong dạy học Ngữ văn ở trung học phổ thông
47 p | 52 | 5
-
Luận văn Thạc sĩ Sư phạm Ngữ văn: Dạy học tác phẩm của Nam Cao trong nhà trường trung học cơ sở theo hướng tiếp cận văn hóa
131 p | 46 | 5
-
Luận văn Thạc sĩ Sư phạm Hóa học: Sử dụng hệ thống bài tập hóa học lớp 9 nhằm phát triển năng lực tự học cho học sinh
140 p | 33 | 5
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Ngữ văn: Các biện pháp tạo hứng thú trong dạy học tác phẩm Văn tế nghĩa sĩ Cần Giuộc của Nguyễn Đình Chiểu (Chương trình Ngữ văn 11)
40 p | 70 | 4
-
Luận văn Thạc sĩ Sư phạm Vật lí: Soạn thảo bài tập chương “Động lực học chất điểm”, Vật lí 10 và sử dụng trong đánh giá năng lực giải quyết vấn đề của học sinh
128 p | 29 | 4
-
Luận văn Thạc sĩ Sư phạm Vật Lý: Xây dựng và sử dụng hệ thống bài tập Các định luật bảo toàn nhằm phát triển năng lực vận dụng kiến thức vào thực tiễn cho học sinh giỏi Vật lí
91 p | 48 | 4
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Toán: Rèn luyện kĩ năng giải phương trình, bất phương trình mũ và lôgarit cho học sinh lớp 12 Ban nâng cao
12 p | 66 | 4
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Toán: Rèn luyện kỹ năng tự học cho học sinh qua dạy học chương Số phức lớp 12 – Ban nâng cao
12 p | 44 | 3
-
Luận văn Thạc sĩ Sư phạm Hóa học: Phát triển năng lực tư duy sáng tạo cho học sinh chuyên Hoá - Trường THPT Chuyên Thái Bình qua dạy học bài tập phần Hoá học đại cương
126 p | 46 | 3
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Toán: Dạy học hệ phương trình vô tỉ ở trung học phổ thông
12 p | 41 | 2
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Vật lí: Tổ chức hoạt động học tích cực, tự lực và sáng tạo của học sinh trung học phổ thông trong dạy học chuyên đề Các định luật Chất khí
13 p | 30 | 2
-
Tóm tắt Luận văn Thạc sĩ Sư phạm Vật lí: Xây dựng hệ thống bài tập và hướng dẫn hoạt động giải bài tập chương Động lực học chất điểm –Vật lí 10 nhằm bồi dưỡng học sinh giỏi Vật lí trung học phổ thông
12 p | 30 | 2
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn