MODELING AND SIMULATION<br />
OF DYNAMIC SYSTEMS<br />
<br />
MIXED DISCIPLINE SYSTEMS<br />
<br />
PHAM HUY HOANG<br />
HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY<br />
<br />
INTRODUCTION<br />
<br />
MIXED DISCIPLINE SYSTEM:<br />
MIXED DISCIPLINE SYSTEM – COUPLING SYSTEM OF<br />
SINGLE-DISCIPLINE SYSTEMS<br />
<br />
Pham Huy Hoang<br />
<br />
1<br />
<br />
ELECTROMECHANICAL SYSTEMS<br />
ARMATURE-CONTROLLED DC MOTOR<br />
Voltage is electric potential energy per unit charge<br />
(J/C = V) - referred to as "electric potential”.<br />
Electromotive force (emf) voltage (electromotance):<br />
- is that which tends to cause current (actual<br />
electrons and ions) to flow;<br />
- is the external work expended per unit of charge<br />
to produce an electric potential difference across<br />
two open-circuited terminals;<br />
- is generated by a magnetic force (Faraday’s<br />
law).<br />
<br />
Pham Huy Hoang<br />
<br />
ELECTROMECHANICAL SYSTEMS<br />
Faraday's Law<br />
Any change in the<br />
magnetic<br />
environment* of a coil<br />
of wire will cause a<br />
voltage (emf) to be<br />
"induced" in the coil.<br />
* The change of<br />
magnetic field<br />
strength, relative<br />
displacement<br />
between the magnet<br />
field and the coil.<br />
Pham Huy Hoang<br />
<br />
2<br />
<br />
Pham Huy Hoang<br />
<br />
ELECTROMECHANICAL SYSTEMS<br />
The back emf voltage across a DC motor:<br />
&<br />
eb = K eω = K eθ<br />
<br />
The torque developed by the motor:<br />
T = Kt i<br />
<br />
eb : back emf voltage.<br />
θ : angular displacement of the rotor of the motor<br />
& = ω : angular velocity of the rotor<br />
θ<br />
T : torque applied to the rotor<br />
Ke : emf constant (Vs/rad)<br />
Ki : torque constant (Nm/A)<br />
Pham Huy Hoang<br />
<br />
3<br />
<br />
ELECTROMECHANICAL SYSTEMS<br />
ia<br />
<br />
Ra<br />
<br />
La<br />
<br />
&<br />
θ ,θ = ω<br />
Jr<br />
<br />
eb<br />
<br />
Va<br />
<br />
TL<br />
<br />
Jd<br />
Bd<br />
<br />
vRa + vLa + eb − va = 0<br />
di<br />
Raia + La a + eb = va<br />
dt<br />
&<br />
eb = K eω = K eθ<br />
Raia + La<br />
<br />
dia<br />
&<br />
+ K eθ = va<br />
dt<br />
<br />
(1)<br />
Pham Huy Hoang<br />
<br />
ELECTROMECHANICAL SYSTEMS<br />
ia<br />
<br />
Ra<br />
<br />
La<br />
<br />
&<br />
θ ,θ = ω<br />
eb<br />
<br />
Va<br />
<br />
Jr<br />
<br />
TL<br />
<br />
Jd<br />
<br />
Bd<br />
<br />
J = Jr + Jd<br />
&<br />
&<br />
T + TL − Bdθ = Jθ&<br />
T = Kt ia<br />
&<br />
&<br />
Kt ia + TL − Bdθ = Jθ& (2)<br />
Pham Huy Hoang<br />
<br />
4<br />
<br />
ELECTROMECHANICAL SYSTEMS<br />
ia<br />
<br />
Ra<br />
<br />
La<br />
<br />
&<br />
θ ,θ = ω<br />
eb<br />
<br />
Va<br />
<br />
Jr<br />
<br />
TL<br />
<br />
Jd<br />
<br />
Bd<br />
<br />
&<br />
&<br />
Jθ& + Bdθ − Kt ia = TL<br />
di<br />
&<br />
La a + Raia + K eθ = va<br />
dt<br />
&<br />
&<br />
θ&<br />
θ<br />
J 0 Bd 0 0 − Kt θ TL <br />
<br />
<br />
0 0 .. + K L . + 0 R i = v <br />
<br />
i e<br />
a i <br />
a a a <br />
a<br />
a<br />
Pham Huy Hoang<br />
<br />
ELECTROMECHANICAL SYSTEMS<br />
<br />
ia<br />
<br />
Va<br />
<br />
Ra<br />
<br />
La<br />
<br />
&<br />
θ ,θ = ω<br />
eb<br />
<br />
Jr<br />
K, B<br />
<br />
TL<br />
<br />
Jd<br />
Bd<br />
<br />
Pham Huy Hoang<br />
<br />
5<br />
<br />