Ôn tập Phương pháp tọa độ trong không gian
lượt xem 19
download
Tham khảo tài liệu sau đây để ôn tập Phương pháp tọa độ trong không gian về hệ tọa độ Oxyz, tọa độ vecto và điểm, mặt cầu, phương trình mặt phẳng, phương trình đường thẳng trong không gian.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Ôn tập Phương pháp tọa độ trong không gian
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Hệ trục tọa độ Oxyz 2. Tọa độ vectơ & điểm 3. Mặt cầu Hội đồng bộ môn Toán 4. Phương trình mặt phẳng Tỉnh Đồng Tháp -E4*E5-G4*G5-I4*I5 5. Phương trình đường thẳng trong không gian 6. Một số bài toán Võ Thanh Hùng
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Hệ trục tọa độ Oxyz Mặt phẳng (Oxz) Mặt phẳng (Oyz) 2. Tọa độ vectơ & điểm 3. Mặt cầu 4. Phương trình mặt phẳng -E4*E5-G4*G5-I4*I5 5. Phương trình đường thẳng trong không gian 6. Một số bài toán Mặt phẳng (Oxy)
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Các công thức liên quan đến tọa độ vectơ: 1. Hệ trục tọa độ Oxyz 2. Tọa độ vectơ & điểm 3. Mặt cầu 4. Phương trình mặt phẳng -E4*E5-G4*G5-I4*I5 5. Phương trình đường thẳng trong không gian Các công thức liên quan đến tọa điểm: 6. Một số bài toán
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Phương trình mặt cầu: 1. Hệ trục tọa độ Oxyz 2. Tọa độ vectơ & điểm Điều kiện phương trình mặt cầu: 3. Mặt cầu 4. Phương trình mặt phẳng -E4*E5-G4*G5-I4*I5 5. Phương trình đường thẳng trong không gian Tiếp diện của mặt cầu: Mặt phẳng () là tiếp diện của 6. Một số bài toán mặt cầu S(I; R) khi và chỉ khi d(I,()) = R Tiếp diện của mặt cầu (S) vuông góc với bán kính tại tiếp điểm
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Vectơ pháp tuyến của mặt phẳng: 1. Hệ trục tọa độ Oxyz Vectơ pháp tuyến của mặt phẳng (P) là vectơ khác vectơ - không và có giá vuông góc mặt phẳng (P). 2. Tọa độ vectơ & điểm 3. Mặt cầu 4. Phương trình mặt phẳng -E4*E5-G4*G5-I4*I5 5. Phương trình đường thẳng trong không gian Phương trình mặt phẳng: 6. Một số bài toán
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Hệ trục tọa độ Oxyz Vectơ chỉ phương của đường thẳng: 2. Tọa độ vectơ & điểm Vectơ chỉ phương của đường thẳng là vectơ khác vectơ - 3. Mặt cầu không và có giá song song hoặc trùng với đường thẳng . 4. Phương trình mặt phẳng Phương trình tham số của đường thẳng: -E4*E5-G4*G5-I4*I5 5. Phương trình đường thẳng trong không gian 6. Một số bài toán
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 1. Viết phương trình m ặt cầu 2. Viết phương trình mặt phẳng 3. Viết phương trình đường thẳng -E4*E5-G4*G5-I4*I5
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Mặt cầu (S) có tâm I và đi qua A: 1. Viết phương trình m ặt cầu 2. Viết phương trình mặt phẳng Mặt cầu (S) có đường kính AB: 3. Viết phương trình đường thẳng -E4*E5-G4*G5-I4*I5 Mặt cầu (S) có tâm I và tiếp xúc mp():
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Mặt phẳng () đi qua M và vuông góc đường thẳng : 1. Viết phương trình m ặt cầu a. () đi qua M và vuông góc đường thẳng : 2. Viết phương trình mặt phẳng 3. Viết phương trình đường thẳng b. () đi qua M và vuông góc đường thẳng : -E4*E5-G4*G5-I4*I5 c. () đi qua M và vuông góc đường thẳng AB:
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Mặt phẳng () chứa một đường và vuông góc với một đường: 1. Viết phương trình m ặt cầu d. () chứa đường thẳng d' và song song đường thẳng d: 2. Viết phương trình mặt phẳng 3. Viết phương trình e. () chứa đường thẳng d' và song song đường thẳng d: đường thẳng -E4*E5-G4*G5-I4*I5 Mặt phẳng () chứa hai đường: f. () chứa ba điểm A, B, C:
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN g. () chứa hai đường thẳng cắt nhau d và d': 1. Viết phương trình m ặt cầu 2. Viết phương trình mặt phẳng h. () chứa đường thẳng d và M không thuộc d: 3. Viết phương trình đường thẳng -E4*E5-G4*G5-I4*I5 i. () chứa hai đường thẳng song song d và d':
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Mặt phẳng () chứa đường thẳng và vuông góc mp(P): 1. Viết phương trình m ặt cầu 2. Viết phương trình mặt phẳng 3. Viết phương trình Mặt phẳng () đi qua M và vuông góc hai mp(P), mp(Q): đường thẳng -E4*E5-G4*G5-I4*I5 Mặt phẳng () tiếp xúc mặt cầu (S) tâm I tại M:
- ÔN TẬP PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN Đường thẳng đi qua M và vuông góc mp(): 1. Viết phương trình m ặt cầu 2. Viết phương trình mặt phẳng 3. Viết phương trình Đường thẳng đi qua M và song song với đường thẳng d: đường thẳng -E4*E5-G4*G5-I4*I5 Đường thẳng đi qua hai điểm A, B:
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Bài tập hình học 12 - Phương pháp toạ độ trong không gian
61 p | 1930 | 876
-
Phương pháp toạ độ trong không gian
17 p | 1068 | 466
-
Phương pháp tọa độ trong mặt phẳng
6 p | 1701 | 336
-
Phương pháp tọa độ trong không gian
16 p | 402 | 127
-
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
55 p | 224 | 94
-
PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
5 p | 307 | 79
-
Chuyên đề Ứng dụng phương pháp tọa độ để giải toán hình học không gian Toán 11
71 p | 179 | 20
-
chinh phục kỳ thi thpt môn toán - hình học không gian cổ điển và phương pháp tọa độ không gian: phần 1
184 p | 123 | 16
-
Chương 4: Giải toán bằng phương pháp tọa độ
44 p | 95 | 14
-
phương pháp tọa độ trong không gian oxyz phần 2 - nguyễn quốc thịnh
140 p | 122 | 10
-
Chuyên đề Phương pháp tọa độ không gian - Ngô Nguyên
100 p | 177 | 9
-
Chuyên đề Phương pháp tọa độ trong không gian Oxyz - Ôn thi tốt nghiệp THPT môn Toán
69 p | 55 | 6
-
650 câu trắc nghiệm phương pháp tọa độ trong không gian - phần 1
57 p | 77 | 5
-
650 câu trắc nghiệm phương pháp tọa độ trong không gian - phần 2
57 p | 52 | 4
-
Sáng kiến kinh nghiệm: Hướng dẫn ôn tập phương pháp tọa độ trong không gian cho học sinh trường THPT Thạch Thành 4 thi THPT Quốc gia
22 p | 39 | 3
-
Phương pháp tọa độ trong không gian: Phần 1 - Nguyễn Hoàng Việt
50 p | 18 | 3
-
Phương pháp tọa độ trong không gian: Phần 2 - Nguyễn Hoàng Việt
50 p | 14 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn