Chöông 2: PHÖÔNG TRÌNH LÖÔÏNG GIAÙC CÔ BAÛN
=+ π
=⇔
+ π
uvk2
sin u sin v uvk2
cos u cos v u v k2=⇔=±+π
π
≠+π
=⇔
=+ π
uk
tgu tgv 2
uvk'
(
)
k,k ' Z
uk
cot gu cot gv uvk'
≠π
=⇔
=+ π
Ñaëc bieät : si
n u 0 u k=⇔=π π
=
⇔=+πco
s u 0 u k
2
(
sin u 1 u k2 k Z
2
π
=⇔= + π
)
cos u 1 u k2
=
⇔= π
()
kZ
sin u 1 u k2
2
π
=− =− + π
cos u 1 u k2
=
−⇔ =π+ π
Chuù yù :
sin u 0 cos u 1≠⇔ ±
cos u 0 sin u 1≠⇔ ±
Baøi 28 : (Ñeà thi tuyeån sinh Ñaïi hoïc khoái D, naêm 2002)
[
]
x0,14 nghieäm ñuùng phöông trình Tìm
(
)
cos 3x 4 cos 2x 3 cos x 4 0 *−+=
Ta coù (*) :
()
(
)
32
4 cos x 3 cos x 4 2 cos x 1 3 cos x 4 0
−−+=
32
4cos x 8cos x 0
=
(
)
2
4cos x cosx 2 0
=
(
)
==cosx 0hay cosx 2 loaïi vìcosx 1
()
xkk
2
π
=+πZ
Ta coù :
[]
x0,14 0 k 1
24
π
∈⇔+π
k14
22
ππ
−≤π 1141
0, 5 k 3, 9
22
−=
π
Maø k neân Z
{
}
k. Do ñoù :
0,1,2,3357
x ,,,
2222
π
πππ
⎩⎭
Baøi 29 : (Ñeà thi tuyeån sinh Ñaïi hoïc khoái D, naêm 2004)
Giaûi phöông trình :
()( )
(
)
2cos x 1 2sin x cos x sin 2x sin x *−+=
Ta coù (*)
()
(
)
(
)
−+=2cos x 1 2sin x cos x sin x 2 cos x 1
()( )
2cos x 1 2sin x cos x sin x 0
+−
⎡⎤
⎣⎦
=
)
()(
2cosx 1 sinx cosx 0
+=
1
cos x sin x cos x
2
=∨ =
cos x cos tgx 1 tg
34
ππ
⎛⎞
=∨==
⎜⎟
⎝⎠
()
ππ
+ π =− + π xk2xk,k
34
Z
Baøi 30 : Giaûi phöông trình
+
++=cos x cos 2x cos 3x cos 4x 0(*)
Ta coù (*)
()
(
)
cos x cos 4x cos 2x cos 3x 0+++=
5x 3x 5x x
2cos .cos 2cos .cos 0
22 22
+=
5x 3x x
2cos cos cos 0
22 2
⎛⎞
+=
⎜⎟
⎝⎠
5x x
4 cos cos x cos 0
22
=
5x x
cos 0 cos x 0 cos 0
22
=
∨= =
ππ π
=+π=+π=+π
5x x
kx k k
22 2 22
()
ππ π
=+ =+π=π+π
2k
xxkx2,
55 2 kZ
Baøi 31: Giaûi phöông trình
(
)
22 2 2
sin x sin 3x cos 2x cos 4x *+=+
Ta coù (*)
()()()()
1111
1 cos 2x 1 cos 6x 1 cos 4x 1 cos 8x
2222
−+=+++
()
cos2x cos6x cos4x cos8x−+ =+
2 cos 4x cos 2x 2 cos 6x cos 2x−=
(
)
2cos2x cos6x cos 4x 0+=
4 cos 2x cos5x cos x 0
=
cos 2x 0 cos5x 0 cos x 0
=
∨==
ππ π
=+π +π=+π
2x k 5x k x k , k
22 2
ππ π π π
=+ = + =+πk
kk
xx x
42 105 2
,k
Baøi 32 : Cho phöông trình
()
π
⎛⎞
−=
⎜⎟
⎝⎠
22
x7
sin x.cos 4x sin 2x 4 sin *
42 2
Tìm caùc nghieäm cuûa phöông trình thoûa:
<x1 3
Ta coù : (*)
()
17
sin x.cos 4x 1 cos4x 2 1 cos x
22
⎡π
⎛⎞
2
−=
⎜⎟
⎢⎥
⎝⎠
⎣⎦
−+ =
11 3
sin x cos 4x cos 4x 2 sin x
22 2
1
sin x cos 4x cos 4x 1 2sin x 0
2
+++=
⎛⎞⎛⎞
++ +=
⎜⎟⎜⎟
⎝⎠⎝⎠
11
cos 4x sin x 2 sin x 0
22
()
1
cos 4x 2 sin x 0
2
⎛⎞
+
+=
⎜⎟
⎝⎠
()
cos 4x 2 loaïi
1
sin x sin
26
=−
π
=− =
⎜⎟
⎝⎠
π
=
−+ π
π
=
xk
6
7
x2
6
2
h
Ta coù :
<x1 3
3x13−< < 2x4
<<
Vaäy : 2k2
6
π
−< + π<4
22k 4
66
ππ
−< π<+ 11 21
k
12 12
−<<+
ππ
Do k neân k = 0. Vaäy Zx6
π
=
π
−< + π<
7
2h2
64
π
π
−− < π< < <
π
π
77172
2h24 h
6612
7
12
h = 0 π
=7
x6.Toùm laïi
ππ
==
7
xhayx
66
Caùch khaùc :
π
=− = + π
k
1
sin x x ( 1) k , k
26
Vaäy : −π
−< +π< < + <
π
π
kk
21
2(1) k 4 (1) k
66
4
k=0 vaø k = 1. Töông öùng vôùi
ππ
==
7
xhayx
66
Baøi 33 : Giaûi phöông trình
(
)
33 3
sin x cos 3x cos x sin 3x sin 4x *+=
Ta coù : (*)
()
(
)
33 3 3 3
sin x 4 cos x 3cos x cos x 3sin x 4 sin x sin 4x−+ =
33 3 3 33 3
4 sin x cos x 3sin x cos x 3sin x cos x 4 sin x cos x sin 4x−+− =
()
22 3
3sin x cos x cos x sin x sin 4x−=
3
3sin 2x cos 2x sin 4x
2=
3
3sin 4x sin 4x
4=
3
3sin 4x 4 sin 4x 0
=
sin12x = 0
12x k
()
k
xk
12 Z
π
=∈
Baøi 34 : (Ñeà thi tuyeån sinh Ñaïi hoïc khoái B, naêm 2002)
Giaûi phöông trình :
(
)
22 22
sin 3x cos 4x sin 5x cos 6a *−=
Ta coù : (*)
()()()()
11 1 1
1 cos 6x 1 cos 8x 1 cos10x 1 cos12x
22 2 2
−−+= +
cos 6x cos 8x cos10x cos12x+= +
2cos7xcosx 2cos11xcosx=
(
)
2cos x cos7x cos11x 0−=
cos x 0 cos7x cos11x=∨ =
π
=+π =± + πxk7x11xk
22
πππ
=+π= =
kk
xkx x,k
229
Baøi 35 : Giaûi phöông trình
()()
sin x sin 3x sin 2x cos x cos 3x cos 2x++=++
2sin 2x cos x sin 2x 2cos 2x cos x cos 2x+= +
()
(
)
+= +sin 2x 2 cos x 1 cos 2x 2 cos x 1
()( )
2 cos x 1 sin 2x cos 2x 0
+
−=
12
cos x cos sin 2x cos 2x
23
π
=− = =
2
xk2tg2x1
34
tg
π
π
+ π = =
()
π
ππ
+ π = +
2
xk2xk,k
382
Z
Baøi 36: Giaûi phöông trình
(
)
++ =+
23
cos10x 2 cos 4x 6 cos 3x.cos x cos x 8 cos x.cos 3x *
Ta coù : (*)
(
)
(
)
3
cos10x 1 cos8x cos x 2cos x 4cos 3x 3cos 3x++ = +
()
cos10x cos 8x 1 cos x 2 cos x.cos 9x++=+
2 cos 9x cos x 1 cos x 2 cos x.cos 9x+= +
cos x 1=
(
)
xk2kZ
Baøi 37 : Giaûi phöông trình
(
)
33 2
4 sin x 3cos x 3sin x sin x cos x 0 *+− =
Ta coù : (*)
()
(
)
22
sin x 4 sin x 3 cos x sin x 3cos x 0
2
−−=
()
(
)
⎡⎤
−− =
⎣⎦
22
sin x 4 sin x 3 cos x sin x 3 1 sin x 0
2
=
=
()
()
2
4sin x 3 sinx cosx 0−−
()( )
2 1 cos 2x 3 sin x cos x 0−−
⎡⎤
⎣⎦
12
cos 2x cos
23
sin x cos x
π
=− =
=
2
2x k2
3
tgx 1
π
+ π
=
xk
3
xk
4
π
=
±+π
π
=
(
)
kZ
Baøi 38 : (Ñeà thi tuyeån sinh Ñaïi hoïc khoái B naêm 2005)
Giaûi phöông trình :
(
)
sin x cos x 1 sin 2x cos2x 0 *+++ + =
Ta coù : (*)
2
sin x cos x 2sin x cos x 2cos x 0++ + =
(
)
sin x cos x 2 cos x sin x cos x 0++ + =
()(
sin x cos x 1 2 cos x 0++
)
=
sin x cos x
12
cos 2x cos
23
=−
π
=− =
tgx 1
2
xk
3
=−
π
+ π
2
xk
4
2
xk2
3
π
=− + π
π
+ π
()
kZ
Baøi 39 : Giaûi phöông trình
()( )
(
)
2
2sinx 1 3cos4x 2sinx 4 4cos x 3 *+++=
Ta coù : (*)
()
(
)
(
)
2
2sinx 1 3cos4x 2sinx 4 4 1 sin x 3 0+++=
()( )
(
)
(
)
2sinx 1 3cos4x 2sinx 4 1 2sinx 1 2sinx 0
+
+−++ =
()
(
)
2sinx 1 3cos4x 2sinx 4 1 2sinx 0
+
+−+
⎡⎤
⎣⎦
=
=
()()
3cos4x 1 2sinx 1 0−+
1
cos 4x 1 sin x sin
26
π
⎛⎞
=∨ = =
⎜⎟
⎝⎠