’<br />
Tap ch´ Tin hoc v` Diˆu khiˆn hoc, T.24, S.1 (2008), 20–31<br />
ı<br />
a `<br />
e<br />
e<br />
.<br />
.<br />
.<br />
<br />
.<br />
. ’ . ˜. ˆ<br />
ˆ<br />
ˆ<br />
`.<br />
PHU THUOC DO N DIEU TRONG CO SO DU LIEU MO<br />
.<br />
.<br />
.<br />
.<br />
´<br />
’<br />
´<br />
’.<br />
ˆ<br />
´<br />
ˆ<br />
ˆ<br />
˜.<br />
ˆ<br />
THEO CACH TIEP CAN NGU NGH˜ LAN CAN CUA DAI SO GIA TU<br />
IA ˆ<br />
.<br />
.<br />
.<br />
˜<br />
`<br />
˜<br />
ˆ<br />
´<br />
ˆ<br />
ˆ<br />
ˆ<br />
`<br />
NGUYEN CAT HO1 , NGUYEN CONG HAO2<br />
1 Viˆn<br />
e<br />
<br />
.<br />
<br />
Cˆng nghˆ thˆng tin, Viˆn Khoa hoc v` Cˆng nghˆ Viˆt Nam<br />
o<br />
e o<br />
e<br />
e e<br />
.<br />
.<br />
. a o<br />
.<br />
.<br />
2 Dai hoc khoa hoc Huˆ<br />
´<br />
e<br />
. .<br />
.<br />
<br />
Abstract. Fuzzy databases with linguistic data based on hedge algebras were introduced in [1, 6, 15],<br />
where the evaluation of queries containing linguistic data was transformed into that of traditional<br />
queries. On this new viewpoint, in this paper a notion of linear functional dependencies in these<br />
databases will be defined reasonably. The problems related to increasingly and decreasingly linear<br />
functional dependencies will be considered.<br />
´<br />
´ .<br />
´<br />
’ u e<br />
’ a<br />
T´m t˘t. Co. so. d˜. liˆu m`. v´.i ng˜. ngh˜ du.a trˆn c´ch tiˆp cˆn dai sˆ gia tu. d˜ du.o.c nghiˆn c´.u<br />
o<br />
a<br />
o o<br />
u<br />
ıa .<br />
e a<br />
e a<br />
e u<br />
.<br />
. o<br />
.<br />
.o.ng gi´ c´c truy vˆn liˆn quan dˆn thˆng tin ngˆn ng˜. du.o.c du.a<br />
´<br />
´<br />
o a<br />
e<br />
e<br />
o<br />
o<br />
u<br />
trong [1, 6, 15], trong d´ c´c viˆc lu .<br />
a a<br />
a e<br />
.<br />
.<br />
’<br />
` e<br />
’ o<br />
vˆ viˆc thao t´c lu.o.ng gi´ kinh diˆn. Trˆn co. so. d´, trong b`i b´o n`y kh´i niˆm phu thuˆc h`m<br />
e .<br />
a<br />
a<br />
e<br />
e<br />
a a a<br />
a<br />
e<br />
o a<br />
.<br />
.<br />
.<br />
.<br />
´ e<br />
´<br />
’ u e<br />
do.n diˆu trong co. so. d˜. liˆu m`. s˜ du.o.c dinh ngh˜ v` nghiˆn c´.u. C´c vˆn dˆ liˆn quan dˆn phu<br />
e<br />
o e<br />
ıa a<br />
e u<br />
a a ` e<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
thuˆc h`m do.n diˆu t˘ng v` phu thuˆc h`m do.n diˆu giam c˜ ng du.o.c xem x´t.<br />
o a<br />
e a<br />
a<br />
o a<br />
e<br />
u<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
’. A<br />
ˆ<br />
1. MO D` U<br />
´ e<br />
` a<br />
’ u e<br />
’<br />
Co. so. d˜. liˆu (CSDL) m`. v` c´c vˆ n dˆ liˆn quan d˜ du.o.c nhiˆu t´c gia trong v` ngo`i<br />
o a a a ` e<br />
a<br />
e<br />
a<br />
a<br />
.<br />
.<br />
.´.c quan tˆm nghiˆn c´.u v` d˜ c´ nh˜.ng kˆt qua d´ng kˆ [1, 6 − 9, 11 − 15]. C´ nhiˆu c´ch<br />
´<br />
` a<br />
’ a<br />
nu o<br />
a<br />
e u a a o u<br />
e<br />
e’<br />
o<br />
e<br />
´ .<br />
´ .<br />
´ .<br />
´<br />
’ a<br />
tiˆp cˆn kh´c nhau nhu. c´ch tiˆp cˆn theo l´ thuyˆt tˆp m`. [9, 13], theo l´ thuyˆt kha n˘ng<br />
e a<br />
a<br />
a<br />
e a<br />
y<br />
e a<br />
o<br />
y<br />
e<br />
.o.ng tu. [8, 12, 14]... Tˆ t ca c´c c´ch tiˆp cˆn trˆn nh˘ m muc d´ n˘m b˘t v` xu. l´ mˆt<br />
`<br />
´<br />
´ a ’ y o<br />
´<br />
´ .<br />
a ’ a a<br />
e a<br />
e<br />
a<br />
a<br />
[7], tu<br />
.<br />
. ıch a<br />
.<br />
´<br />
´<br />
’<br />
o<br />
o<br />
c´ch thoa d´ng c´c thˆng tin khˆng ch´ x´c, khˆng ch˘c ch˘n hay nh˜.ng thˆng tin khˆng<br />
a<br />
a<br />
a<br />
o<br />
o<br />
ınh a<br />
o<br />
a<br />
a<br />
u<br />
’<br />
´<br />
´<br />
´ e a<br />
`<br />
’<br />
dˆy du. V´.i su. xuˆ t hiˆn c´c thˆng tin m`., khˆng ch˘c ch˘n trong CSDL s˜ l`m thay dˆ i<br />
a<br />
o .<br />
a<br />
o<br />
o<br />
o<br />
a<br />
a<br />
e a<br />
o<br />
.<br />
. liˆu ca trong pham vi c´ ph´p v` ng˜. ngh˜<br />
’<br />
c˘n ban viˆc thao t´c d˜ e ’<br />
a<br />
e<br />
a u .<br />
u a a u<br />
ıa.<br />
.<br />
.<br />
. nh˜.ng u.u diˆ m cua cˆ u tr´c dai sˆ gia tu. (DSGT) [2 − 5], t´c gia trong [1, 6, 15]<br />
’<br />
´<br />
´<br />
’ a<br />
’<br />
’<br />
Nh`<br />
o<br />
u<br />
e<br />
u<br />
a<br />
. o<br />
.a ra v` nghiˆn c´.u CSDL m`. du.a trˆn c´ch tiˆp cˆn cua dai sˆ gia tu., trong d´ ng˜.<br />
´ a<br />
´<br />
’<br />
’<br />
d˜ du<br />
a<br />
a<br />
e u<br />
o .<br />
e a<br />
e<br />
o u<br />
.<br />
. o<br />
. du.o.c lu.o.ng h´a b˘ ng c´c ´nh xa dinh lu.o.ng cua DSGT. Theo c´ch tiˆp cˆn<br />
´ .<br />
’<br />
a<br />
e a<br />
ngh˜ ngˆn ng˜<br />
ıa o<br />
u<br />
o `<br />
a<br />
a a<br />
.<br />
.<br />
. .<br />
.<br />
’<br />
’<br />
cua DSGT, ng˜. ngh˜ ngˆn ng˜. c´ thˆ biˆ u thi b˘ ng mˆt lˆn cˆn c´c khoang du.o.c x´c dinh<br />
u<br />
ıa o<br />
u o e’ e’<br />
a<br />
o a a a<br />
. `<br />
.<br />
.<br />
. a .<br />
´<br />
’.i dˆ do t´ m`. cua c´c gi´ tri ngˆn ng˜. cua mˆt thuˆc t´ v´.i vai tr` l` biˆn ngˆn ng˜..<br />
’ a<br />
’<br />
bo o<br />
ınh o<br />
a . o<br />
u<br />
o<br />
o ınh o<br />
o a e<br />
o<br />
u<br />
.<br />
.<br />
.<br />
Trong b`i b´o n`y ch´ng tˆi s˜ nghiˆn c´.u c´c phu thuˆc h`m do.n diˆu t˘ng v` giam trong<br />
a a a<br />
u<br />
o e<br />
e u a<br />
o a<br />
e a<br />
a ’<br />
.<br />
.<br />
.<br />
´<br />
CSDL m`. v` mˆi quan hˆ gi˜.a ch´ng.<br />
o a o<br />
e u<br />
u<br />
.<br />
´<br />
’.<br />
ˆ<br />
2. DAI SO GIA TU<br />
.<br />
´<br />
’<br />
X<br />
Cho mˆt DSGT tuyˆn t´ dˆy du AX = (X , G, H, Σ, φ, ≤), trong d´ Dom(X ) = X l`<br />
o<br />
e ınh `<br />
a<br />
o<br />
a<br />
.<br />
<br />
.<br />
. ’ . ˜. ˆ<br />
ˆ<br />
ˆ<br />
`.<br />
PHU THUO C DO N DIEU TRONG CO SO DU LIEU MO<br />
.<br />
.<br />
.<br />
.<br />
<br />
21<br />
<br />
`<br />
`<br />
’<br />
miˆn c´c gi´ tri ngˆn ng˜. cua thuˆc t´ ngˆn ng˜. X du.o.c sinh tu. do t`. tˆp c´c phˆn thu.<br />
e a<br />
a . o<br />
u ’<br />
o ınh o<br />
u<br />
u a a<br />
a<br />
.<br />
.<br />
.<br />
.<br />
+, W , c−, 0 } b˘ ng viˆc t´c dˆng tu. do c´c ph´p to´n mˆt ngˆi trong tˆp H, Σ<br />
`<br />
1<br />
sinh G = {1, c<br />
a<br />
e a o<br />
a<br />
e<br />
a<br />
o<br />
o<br />
a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.i ng˜. ngh˜ l` cˆn trˆn d´ng v` cˆn du.´.i d´ng cua tˆp H(x), t´.c<br />
’ a<br />
a a<br />
u<br />
v` Φ l` hai ph´p t´ v´<br />
a<br />
a<br />
e ınh o<br />
u<br />
ıa a a<br />
e u<br />
o u<br />
.<br />
.<br />
.<br />
` n t`. sinh<br />
l` Σx = supremumH(x) and Φ x = inf imumH(x), trong d´ H(x) l` tˆp c´c phˆ u<br />
a<br />
o<br />
a a a<br />
a<br />
.<br />
´<br />
´<br />
’<br />
ra t`. x, c`n quan hˆ ≤ l` quan hˆ s˘p th´. tu. tuyˆn t´ trˆn X cam sinh t`. ng˜. ngh˜ cua<br />
u<br />
o<br />
e<br />
a<br />
e a<br />
u .<br />
e ınh e<br />
u u<br />
ıa ’<br />
.<br />
.<br />
.. V´ du, nˆu ta c´ thuˆc t´ Thunhap l` “Tˆ ng thu nhˆp cua cˆng nhˆn trong<br />
’<br />
´<br />
’ o<br />
ngˆn ng˜<br />
o<br />
u<br />
ı . e<br />
o<br />
o ınh<br />
a<br />
o<br />
a<br />
a<br />
.<br />
.<br />
´ a<br />
´<br />
´p, rˆ t cao, ho.n cao, kha n˘ng cao, rˆ t thˆ p,<br />
´<br />
’ a<br />
a<br />
mˆt th´ng”, th` Dom(T hunhap) = { cao, thˆ<br />
o<br />
a<br />
ı<br />
a<br />
a<br />
.<br />
.n, kha n˘ng, ´ } v` ≤ mˆt<br />
´<br />
´<br />
´<br />
´<br />
’ a<br />
’ a<br />
1<br />
kha n˘ng thˆ p, ´ thˆ p,...}, G = {1, cao, W , thˆ p, 0}, H = {rˆ t, ho<br />
a ıt a<br />
a<br />
a<br />
ıt a<br />
o<br />
.<br />
. tu. cam sinh t`. ng˜. ngh˜ cua c´c t`. trong Dom(T hunhap), ch˘ng han ta c´ rˆ t<br />
’<br />
´<br />
quan hˆ th´ . ’<br />
e u<br />
u u<br />
ıa ’ a u<br />
a<br />
o a<br />
.<br />
.<br />
’ a<br />
cao > cao, ho.n cao > cao, kha n˘ng cao < cao, ´ cao < cao.<br />
ıt<br />
’<br />
Cho tˆp c´c gia tu. H = H − ∪ H + , trong d´ H + = {h1, ..., hp} v` H − = {h−1 , ..., h−q},<br />
a a<br />
o<br />
a<br />
.<br />
.i h < ... < h v` h < ... < h , trong d´ p, q > 1. K´ hiˆu f m : X → [0, 1] l` dˆ do<br />
v´ 1<br />
o<br />
o<br />
y e<br />
a o<br />
p a −1<br />
−q<br />
.<br />
.<br />
. cua DSGT AX . Khi d´ ta c´ mˆnh dˆ sau.<br />
`<br />
t´ m` ’<br />
ınh o<br />
o<br />
o e<br />
e<br />
.<br />
`<br />
’<br />
Mˆnh dˆ 2.1. Dˆ do t´ m`. f m v` dˆ do t´ m`. cua gia tu. µ(h), ∀h ∈ H, c´ c´c t´<br />
e<br />
e<br />
o<br />
ınh o<br />
a o<br />
ınh o ’<br />
o a ınh<br />
.<br />
.<br />
.<br />
´<br />
chˆ t sau:<br />
a<br />
(1) f m(hx) = µ(h)f m(x), ∀x ∈ X.<br />
(2) f m(c−) + f m(c+ ) = 1.<br />
(3)<br />
f m(hi c) = f m(c), trong d´ c ∈ {c− , c+}.<br />
o<br />
−q≤i≤p, i=0<br />
<br />
(4)<br />
<br />
f m(hi x) = f m(x), x ∈ X .<br />
−q≤i≤p, i=0<br />
<br />
(5)<br />
{µ(hi ) : −q ≤ i ≤ −1} = α v` {µ(hi ) : 1 ≤ i ≤ p} = β, trong d´ α, β > 0 v`<br />
a<br />
o<br />
a<br />
α + β = 1.<br />
`<br />
´<br />
’ ’<br />
’<br />
X<br />
Dinh ngh˜ 2.1. Gia su. AX = (X , G, H, Σ, Φ, ≤) l` mˆt DSGT dˆy du, tuyˆn t´ v` tu.<br />
ıa<br />
a o<br />
a<br />
e ınh a .<br />
.<br />
.<br />
.o.ng u.ng l` c´c dˆ do t´ m`. cua ngˆn ng˜. v` cua gia tu. h thoa m˜n<br />
’<br />
’<br />
´<br />
a a o<br />
o<br />
u a ’<br />
a<br />
do, f m(x) v` µ(h) tu<br />
a<br />
ınh o ’<br />
.<br />
´<br />
`<br />
’<br />
’ o<br />
c´c t´ chˆ t trong Mˆnh dˆ 2.1. Khi d´, ta n´i v l` ´nh xa cam sinh bo.i dˆ do t´ m`. f m<br />
a ınh a<br />
e<br />
e<br />
o<br />
o<br />
aa<br />
ınh o<br />
.<br />
.<br />
.<br />
´<br />
’<br />
a .<br />
cua ngˆn ng˜. nˆu n´ du.o.c x´c dinh nhu. sau:<br />
o<br />
u e o<br />
.<br />
W<br />
(1) v(W ) = κ = f m(c−), v(c− ) = (κ − αf m(c− ) = βf m(c− ), v(c+) = κ + αf m(c+ ),<br />
(2) v(hj x) = v(x) + Sgn(hj x){ j<br />
o<br />
i=Sign(j) µ(hi )f m(x) − ω(hj x)µ(hj )f m(x)}, trong d´<br />
1<br />
ω(hj x) = [1 + Sgn(hj x)Sgn(hphj x)(β − α)] ∈ {α, β},<br />
2<br />
v´.i moi j, −q ≤ j ≤ p v` j = 0.<br />
o<br />
a<br />
.<br />
−<br />
−<br />
Φ<br />
Φ<br />
(3) v(Φ c ) = 0, v(Σc ) = κ = v(Φc+ ), v(Σc+ ) = 1, v` v´.i moi j, −q ≤ j ≤ p v` j = 0,<br />
a o<br />
a<br />
.<br />
ta c´:<br />
o<br />
j−1<br />
v(Φhj x) = v(x) + Sgn(hj x){ i=sign(j) µ(hi )f m(x)} v`<br />
a<br />
v(Σhj x) = v(x) + Sgn(hj x){<br />
<br />
j−1<br />
i=sign(j)<br />
<br />
µ(hi )f m(x)}.<br />
<br />
. ’ . ˜. ˆ<br />
`.<br />
3. CO SO DU LIEU MO<br />
.<br />
X´t mˆt CSDL {U ; Const}, trong d´ U = {A1 , A2, ..., An} l` tˆp v˜ tru c´c thuˆc t´<br />
e<br />
o<br />
o<br />
a a u . a<br />
o ınh,<br />
.<br />
.<br />
.<br />
. liˆu cua CSDL. Mˆi thuˆc t´ A du.o.c g˘n v´.i mˆt miˆn<br />
˜<br />
´<br />
`<br />
Const l` mˆt tˆp c´c r`ng buˆc d˜ e ’<br />
a o a a a<br />
o u .<br />
o<br />
o ınh<br />
a o o<br />
e<br />
. .<br />
.<br />
.<br />
.<br />
.<br />
´ thuˆc t´ cho ph´p nhˆn c´c gi´ tri<br />
gi´ tri thuˆc t´<br />
a .<br />
o ınh, k´ hiˆu l` Dom(A), trong d´ mˆt sˆ<br />
y e a<br />
o o o<br />
o ınh<br />
e<br />
a a<br />
a .<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
m`. lu.u tr˜. trong CSDL hay trong c´c cˆu truy vˆn v` du.o.c goi l` thuˆc t´ m`.. Nh˜.ng<br />
o<br />
u<br />
a a<br />
a a<br />
a<br />
o ınh o<br />
u<br />
.<br />
.<br />
.<br />
<br />
22<br />
<br />
˜<br />
`<br />
˜<br />
ˆ<br />
´<br />
ˆ<br />
ˆ<br />
ˆ<br />
`<br />
NGUYEN CAT HO, NGUYEN CONG HAO<br />
<br />
´<br />
e’<br />
o ınh<br />
e’<br />
thuˆc t´ c`n lai du.o.c goi l` thuˆc t´ kinh diˆ n. Thuˆc t´ kinh diˆ n A du.o.c g˘n v´.i<br />
o ınh o .<br />
o ınh<br />
.<br />
.<br />
.<br />
. a<br />
.<br />
. a o<br />
. A m` miˆn tri cua n´ tˆ n tai th´.<br />
`<br />
`<br />
mˆt miˆn gi´ tri kinh diˆ n, k´ hiˆu l` DA . Thuˆc t´ m`<br />
o<br />
e<br />
a .<br />
e’<br />
y e a<br />
o ınh o<br />
a `<br />
e<br />
u<br />
.<br />
.<br />
.<br />
. ’ o o .<br />
. tuyˆn t´ s˜ du.o.c g˘n mˆt miˆn gi´ tri kinh diˆ n D v` mˆt miˆn gi´ tri ngˆn ng˜. LD<br />
´<br />
`<br />
´<br />
`<br />
e’<br />
o<br />
e<br />
a . o<br />
u<br />
tu<br />
e ınh e<br />
o<br />
e<br />
a .<br />
A a<br />
A<br />
.<br />
.<br />
. a<br />
.<br />
’ ’<br />
` n tu. cua mˆt DSGT. Dˆ bao dam t´ nhˆ t qu´n trong xu. l´ ng˜. ngh˜ d˜.<br />
´<br />
’ ’<br />
’<br />
’ y u<br />
hay l` tˆp c´c phˆ<br />
a a a<br />
a<br />
o<br />
e<br />
ınh a<br />
a<br />
ıa u<br />
.<br />
.<br />
˜<br />
´<br />
´<br />
´ e’ u e<br />
’ o<br />
’<br />
liˆu trˆn co. so. thˆng nhˆ t kiˆ u d˜. liˆu cua thuˆc t´ m`., mˆi thuˆc t´ m`. s˜ du.o.c g˘n<br />
e<br />
e<br />
a<br />
o ınh o<br />
o<br />
o ınh o e<br />
.<br />
.<br />
.<br />
.<br />
. a<br />
.i mˆt ´nh xa dinh lu.o.ng v : LD → D du.o.c x´c dinh bo.i mˆt bˆ tham sˆ dinh lu.o.ng<br />
´<br />
’<br />
v´<br />
o<br />
o a<br />
o o<br />
o .<br />
A<br />
A<br />
A<br />
.<br />
. .<br />
.<br />
. a .<br />
. .<br />
.<br />
. vˆy, mˆi gi´ tri m`. x cua A s˜ du.o.c g´n mˆt nh˜n gi´ tri thu.c vA (x) ∈ DA du.o.c<br />
˜ a . o<br />
’<br />
’<br />
o<br />
e<br />
o<br />
a<br />
a . .<br />
cua A. Nhu a<br />
.<br />
. a<br />
.<br />
.<br />
’<br />
’<br />
xem nhu. gi´ tri dai diˆn cua x. Viˆc d´nh gi´ dˆ tu.o.ng tu. gi˜.a c´c d˜. liˆu cua mˆt thuˆc<br />
e<br />
e a<br />
a o<br />
a . .<br />
u a u e<br />
o<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
’<br />
t´ A du.o.c du.a trˆn kh´i niˆm lˆn cˆn m´.c k cua mˆt gi´ tri m`., v´.i k l` sˆ nguyˆn du.o.ng.<br />
ınh<br />
e<br />
a e a a<br />
u<br />
o a . o o<br />
a o<br />
e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
3.1. Khoang m`. cua kh´i niˆm m`.<br />
o ’<br />
a<br />
e<br />
o<br />
.<br />
’<br />
´<br />
’ ’<br />
’<br />
Gia su. thuˆc t´ X c´ miˆn tham chiˆu thu.c l` khoang [a, b]. Dˆ chuˆ n h´a, nh`.<br />
o ınh<br />
o `<br />
e<br />
e<br />
e’<br />
a<br />
o<br />
o<br />
.<br />
. a<br />
. vˆy dˆu l` khoang [0, 1]. Khi<br />
’i tuyˆn t´<br />
´ o<br />
´<br />
´<br />
`<br />
’<br />
’<br />
mˆt ph´p biˆn dˆ<br />
o<br />
e<br />
e<br />
e ınh, ta gia thiˆt moi miˆn nhu a ` a<br />
e<br />
e<br />
e<br />
.<br />
.<br />
.<br />
´t (2) trong Mˆnh dˆ 2.1 cho ph´p ta xˆy du.ng hai khoang m`. cua hai kh´i<br />
`<br />
’<br />
o ’<br />
a<br />
d´, t´ chˆ<br />
o ınh a<br />
e<br />
e<br />
e<br />
a<br />
.<br />
.<br />
−<br />
+<br />
−<br />
+<br />
.i dˆ d`i tu.o.ng u.ng l` f m(c−)<br />
’<br />
niˆm nguyˆn thuy c v` c , k´ hiˆu l` I(c ) v` I(c ) v´ o a<br />
e<br />
e<br />
a<br />
y e a<br />
a<br />
o .<br />
´<br />
a<br />
.<br />
.<br />
`<br />
´<br />
’<br />
v` f m(c+ ) sao cho ch´ng tao th`nh mˆt phˆn hoach cua miˆn tham chiˆu [0, 1] v` I(c−)<br />
a<br />
u<br />
a<br />
o<br />
a<br />
e<br />
e<br />
a<br />
.<br />
.<br />
.<br />
+<br />
`ng biˆn v´.i c− v` c+ , t´.c l` c− ≤ c+ k´o theo I(c− ) ≤ I(c+). Mˆt c´ch<br />
´ o<br />
a<br />
u a<br />
e<br />
o a<br />
v` I(c ) l` dˆ<br />
a<br />
a o<br />
e<br />
.<br />
’ ’ `<br />
a a<br />
quy nap, gia su. r˘ ng ∀x ∈ X k−1 = {x ∈ X : x c´ dˆ d`i |x| = k − 1}, ta d˜ xˆy du.ng<br />
a<br />
o o a<br />
.<br />
.<br />
.<br />
`<br />
´<br />
’<br />
e a<br />
o<br />
a<br />
u<br />
a o<br />
du.o.c hˆ c´c khoang m`. {I(x) : x ∈ X k−1 v` |I(x)| = f m(x)} sao ch´ng l` dˆ ng biˆn<br />
e<br />
.<br />
.<br />
˜<br />
’<br />
’ a doan [0, 1]. Khi d´, trˆn mˆi khoang m`. I(x), dˆ d`i<br />
v` tao th`nh mˆt phˆn hoach cu<br />
a .<br />
a<br />
o<br />
a<br />
o e<br />
o<br />
o<br />
o a<br />
.<br />
.<br />
.<br />
.<br />
´<br />
`<br />
’<br />
f m(x), cua x ∈ X k−1 , nh`. t´ chˆ t (4) trong Mˆnh dˆ 2.1, ta c´ thˆ xˆy du.ng du.o.c ho<br />
o ınh a<br />
e<br />
e<br />
o e’ a<br />
.<br />
.<br />
.<br />
.<br />
’<br />
{I(hix) : q ≤ i ≤ p, i = 0, |I(hix)| = f m(hi x)} sao cho ch´ng l` mˆt phˆn hoach cua<br />
u<br />
a o<br />
a<br />
.<br />
.<br />
´<br />
’<br />
khoang m`. I(x). C´ thˆ thˆ y ho {I(hix) : q ≤ i ≤ p, i = 0, |I(hix)| = f m(hi x) v`<br />
o<br />
o e’ a<br />
a<br />
.<br />
’<br />
’<br />
x ∈ X k−1 } = {I(y) : y ∈ X k v` |I(y)| = f m(y)} l` mˆt phˆn hoach cua [0, 1]. C´c khoang<br />
a<br />
a o<br />
a<br />
a<br />
.<br />
.<br />
’<br />
n`y goi l` c´c khoang m`. m´.c k.<br />
a . a a<br />
o u<br />
o<br />
u<br />
3.2. Dˆ tu.o.ng tu. m´.c k<br />
.<br />
.<br />
´<br />
` ’ o a<br />
`<br />
’<br />
Ch´ng ta c´ thˆ lˆ y c´c khoang m`. cua c´c phˆn tu. dˆ d`i k l`m dˆ tu.o.ng tu. gi˜.a c´c phˆn<br />
u<br />
o e’ a a<br />
o ’ a<br />
a<br />
a<br />
o<br />
a<br />
.<br />
.<br />
. u a<br />
., ngh˜ l` c´c phˆn tu. m` c´c gi´ tri dai diˆn cua ch´ng thuˆc c`ng mˆt khoang m`. m´.c k l`<br />
` ’ a a a . . e ’<br />
’<br />
’<br />
ıa a a<br />
a<br />
a<br />
tu<br />
u<br />
o u<br />
o<br />
o u<br />
.<br />
.<br />
.<br />
’<br />
tu.o.ng tu. m´.c k. Tuy nhiˆn, theo c´ch xˆy du.ng c´c khoang m`. m´.c k, gi´ tri dai diˆn cua c´c<br />
u<br />
e<br />
a<br />
a .<br />
a<br />
o u<br />
a . . e ’ a<br />
.<br />
.<br />
` u<br />
’<br />
’<br />
phˆn t`. x c´ dˆ d`i nho ho.n k luˆn luˆn l` dˆu m´t cua c´c khoang m`. m´.c k. Mˆt c´ch ho.p<br />
a<br />
o o a<br />
o<br />
o a `<br />
a<br />
u ’ a<br />
o u<br />
o a<br />
.<br />
.<br />
.<br />
´<br />
’ a e’<br />
ıa a a<br />
u<br />
u<br />
o a a . . e<br />
a<br />
l´, khi dinh ngh˜ lˆn cˆn m´.c k ch´ng ta mong muˆn c´c gi´ tri dai diˆn nhu. vˆy phai l` diˆ m<br />
y<br />
.<br />
.<br />
.<br />
.<br />
’ a a<br />
trong cua lˆn cˆn m´.c k. V` vˆy ta dinh ngh˜ dˆ tu.o.ng tu. m´.c k nhu. sau. Ch´ng ta luˆn luˆn<br />
u<br />
ı a<br />
ıa o<br />
u<br />
o<br />
o<br />
.<br />
.<br />
.<br />
.<br />
. u<br />
˜ .<br />
´ a<br />
´<br />
´<br />
` u o<br />
’<br />
’<br />
gia thiˆt r˘ ng mˆi tˆp H − v` H + ch´.a ´ nhˆ t 2 gia tu.. X´t X k l` tˆp tˆ t ca c´c phˆn t`. dˆ<br />
e `<br />
o a<br />
a<br />
u ıt a<br />
e<br />
a a a ’ a<br />
a<br />
.<br />
.<br />
’<br />
’<br />
d`i k. Du.a trˆn c´c khoang m`. m´.c k v` c´c khoang m`. m´.c k +1 ch´ng ta mˆ ta khˆng h`<br />
a<br />
e a<br />
o u<br />
a a<br />
o u<br />
u<br />
o ’ o<br />
ınh<br />
.<br />
`<br />
’<br />
’<br />
th´.c viˆc xˆy du.ng mˆt phˆn hoach cua miˆn [0,1] nhu. sau: v´.i k = 1, c´c khoang m`. m´.c<br />
u<br />
e a<br />
o<br />
a<br />
e<br />
o<br />
a<br />
o u<br />
.<br />
.<br />
.<br />
.<br />
−) v` I(c+). C´c khoang m`. m´.c 2 trˆn khoang I(c−) l` I(h c− ) ≤ I(h<br />
−<br />
`<br />
’<br />
’<br />
1 gˆ m I(c<br />
o<br />
a<br />
a<br />
o u<br />
e<br />
a<br />
p<br />
p−1 c ) ≤<br />
... ≤ I(h2 c− ) ≤ I(h1 c− ) ≤ vA (c− ) ≤ I(h−1 c− ) ≤ I(h−2 c− ) ≤ ... ≤ I(h−q+1 c− ) ≤ I(h−q c− ).<br />
`<br />
` o<br />
Khi d´, ta xˆy du.ng phˆn hoach vˆ dˆ tu.o.ng tu. m´.c 1 gˆ m c´c l´.p tu.o.ng du.o.ng sau:<br />
o<br />
a<br />
a<br />
e .<br />
o<br />
a o<br />
.<br />
.<br />
. u<br />
−<br />
−<br />
−<br />
−<br />
−<br />
0<br />
W<br />
S(0) = I(hp c ); S(c ) = I(c ) [I(h−q c )(I(hpc )]; S(W ) = I(h−q c− )(I(h−q c+ ); tu.o.ng tu.<br />
.<br />
ta c´ S(c+) = I(c+)\[I(h−q c+ ) ∪ I(hp c+ )] v` S(1) = I(hpc+ ).<br />
o<br />
a<br />
´<br />
0<br />
1<br />
W<br />
Ta thˆ y, tr`. hai diˆ m dˆu m´t vA (0) = 0 v` vA (1) = 1, c´c gi´ tri dai diˆn vA (c−), vA (W )<br />
a<br />
u<br />
e’ `<br />
a<br />
u<br />
a<br />
a a . . e<br />
.<br />
<br />
.<br />
. ’ . ˜. ˆ<br />
ˆ<br />
ˆ<br />
`.<br />
PHU THUO C DO N DIEU TRONG CO SO DU LIEU MO<br />
.<br />
.<br />
.<br />
.<br />
<br />
23<br />
<br />
` a e’<br />
’ a o<br />
W a<br />
e<br />
v` vA (c+ ) dˆu l` diˆ m trong tu.o.ng u.ng cua c´c l´.p tu.o.ng tu. m´.c 1 S(c− ), S(W ) v` S(c+ ).<br />
a<br />
´<br />
. u<br />
.o.ng tu., v´.i k = 2, ta c´ thˆ xˆy du.ng phˆn hoach c´c l´.p tu.o.ng tu. m´.c 2. Ch˘ng<br />
’<br />
Tu<br />
o<br />
o e’ a<br />
a<br />
a o<br />
a<br />
.<br />
.<br />
.<br />
. u<br />
. m´.c 2, ch˘ng han, I(h c+ ) = (v (Φ h c+ ), v (Σh c+ )] v´.i hai<br />
’<br />
’<br />
han, trˆn mˆt khoang m` u<br />
e<br />
o<br />
o<br />
a<br />
o<br />
i<br />
A Φ i<br />
A<br />
i<br />
.<br />
.<br />
.<br />
. kˆ l` I(hi−1c+ ) v` I(hi+1 c+ ) ch´ng ta s˜ c´ c´c l´.p tu.o.ng du.o.ng dang sau:<br />
` a<br />
kho`ng m` e<br />
a<br />
o<br />
a<br />
u<br />
e o a o<br />
.<br />
Φ<br />
S(hi c+ ) = I(hi c+ )\[I(hphi c+ ) ∪ I(h−q hi c+ )], S(Φhi c+ ) = I(h−q hi−1 c+ ) ∪ I(h−q hi c+ ) v`<br />
a<br />
+ ) = I(h h c+ ) ∪ I(h h c+ ), v´.i i sao cho −q ≤ i ≤ p v` i = 0. B˘ ng c´ch tu.o.ng tu.<br />
`<br />
Φ<br />
S(Φhi c<br />
o<br />
a<br />
a<br />
a<br />
p i<br />
p i<br />
.<br />
. vˆy ta c´ thˆ xˆy du.ng c´c phˆn hoach c´c l´.p tu.o.ng tu. m´.c k bˆ t k`. Tuy nhiˆn, trong<br />
’ a<br />
´ y<br />
o e<br />
a<br />
a<br />
a o<br />
a<br />
e<br />
nhu a<br />
.<br />
.<br />
.<br />
. u<br />
´<br />
`<br />
´<br />
´<br />
’ a o<br />
thu.c tˆ u.ng dung ch´ng ta c´ thˆ gi´.i han sˆ gia tu. t´c dˆng liˆn tiˆp lˆn phˆn tu. nguyˆn<br />
e<br />
e e<br />
a ’<br />
u<br />
o e’ o . o<br />
e<br />
.<br />
. e ´<br />
.<br />
− v` c+ . C´c gi´ tri kinh diˆ n v` c´c gi´ tri m`. goi l` c´ dˆ tu.o.ng tu. m´.c k nˆu c´c<br />
´<br />
’<br />
thuy c<br />
a<br />
a<br />
a .<br />
e’ a a<br />
a . o . a o o<br />
e a<br />
.<br />
. u<br />
` m trong mˆt l´.p tu.o.ng tu. m´.c k.<br />
e ’<br />
u<br />
u<br />
a<br />
o o<br />
gi´ tri dai diˆn cua ch´ng c`ng n˘<br />
a . .<br />
.<br />
.<br />
. u<br />
’<br />
’ ’<br />
Lˆn cˆn m´.c k cua kh´i niˆm m`.: gia su. phˆn hoach c´c l´.p tu.o.ng tu. m´.c k l` c´c<br />
a a<br />
u<br />
a e<br />
o<br />
a<br />
a o<br />
a a<br />
.<br />
.<br />
.<br />
. u<br />
. u chı v` chı thuˆc vˆ mˆt l´.p tu.o.ng<br />
˜<br />
’<br />
’ a ’<br />
khoang S(x1), S(x2), ..., S(xm). Khi d´, mˆi gi´ tri m`<br />
o o a . o<br />
o ` o o<br />
. e .<br />
., ch˘ng han d´ l` S(x ) v` n´ goi l` lˆn cˆn m´.c k cua u v` k´ hiˆu l` Ω (u).<br />
’<br />
’<br />
tu<br />
a<br />
o a<br />
a o . a a a<br />
u<br />
a y e a k<br />
i<br />
.<br />
.<br />
.<br />
.<br />
3.3. C´c quan hˆ dˆi s´nh trong CSDL m`.<br />
a<br />
e o a<br />
o<br />
. ´<br />
o<br />
ıa<br />
Du.a trˆn kh´i niˆm dˆ tu.o.ng tu. nhu. vˆy, c´c quan hˆ dˆi s´nh du.o.c dinh ngh˜ nhu. sau.<br />
e<br />
a e<br />
a a<br />
e o a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. ´<br />
. .<br />
’ ’<br />
a a<br />
o u e<br />
e a u .<br />
a<br />
o ınh. Ta n´i<br />
o<br />
Dinh ngh˜ 3.1. [1] Gia su. t v` s l` hai bˆ d˜. liˆu trˆn tˆp v˜ tru U c´c thuˆc t´<br />
ıa<br />
.<br />
.<br />
.<br />
.<br />
.<br />
`<br />
´<br />
’<br />
t[Ai ] =k s[Ai ] v` goi l` ch´ng b˘ ng nhau m´.c k, nˆu mˆt trong c´c diˆu kiˆn sau xay ra:<br />
a . a u<br />
a<br />
u<br />
e<br />
o<br />
a `<br />
e<br />
e<br />
.<br />
.<br />
´<br />
(1) Nˆu t[Ai ], s[Ai ] ∈ DAi th` t[Ai ] = s[Ai ].<br />
e<br />
ı<br />
’<br />
´<br />
(2) Nˆu mˆt trong hai gi´ tri t[Ai ], s[Ai ] l` kh´i niˆm m`., ch˘ng han d´ l` t[Ai ], th` ta<br />
e<br />
o<br />
a .<br />
a a e<br />
o<br />
a<br />
o a<br />
ı<br />
.<br />
.<br />
.<br />
’ o<br />
phai c´ s[Ai ] ∈ Ωk (t[Ai]).<br />
´<br />
` a a . o<br />
(3) Nˆu ca hai gi´ tri t[Ai ], s[Ai ] dˆu l` gi´ tri m`., th` Ωk (t[Ai ]) = Ωk (s[Ai]).<br />
e ’<br />
a .<br />
e<br />
ı<br />
’<br />
´u diˆu kiˆn t[Ai ] =k s[Ai ] khˆng xay ra ta c´ biˆ u th´.c t[Ai ] =k s[Ai ].<br />
`<br />
’<br />
Nˆ<br />
e<br />
e<br />
e<br />
o<br />
o e<br />
u<br />
.<br />
`<br />
e<br />
Mˆnh dˆ 3.1. [1] Quan hˆ =k l` quan hˆ tu.o.ng du.o.ng trˆn [0, 1].<br />
e<br />
e<br />
e<br />
a<br />
e<br />
.<br />
.<br />
.<br />
. t v` s l` hai bˆ d˜. liˆu trˆn tˆp v˜ tru U c´c thu ˆc t´<br />
’ ’<br />
Dinh ngh˜ 3.2. [1] Gia su<br />
ıa<br />
a a<br />
o u e<br />
e a u .<br />
a<br />
o ınh. Khi<br />
.<br />
.<br />
.<br />
.<br />
.<br />
d´:<br />
o<br />
´<br />
(1) Ta viˆt t[Ai ] ≤k s[Ai ], ho˘c t[Ai ] =k s[Ai ] ho˘c Ωk (t[Ai ]) < Ωk (s[Ai]).<br />
e<br />
a<br />
a<br />
.<br />
.<br />
´<br />
´<br />
(2) Ta viˆt t[Ai ] k s[Ai ], nˆu Ωk (t[Ai ]) > Ωk (s[Ai]).<br />
e<br />
e<br />
. so. c´c quan hˆ dˆi s´nh v`.a tr` b`y, trong phˆn tiˆp theo ch´ng tˆi nghiˆn c´.u<br />
`<br />
´<br />
Trˆn co ’ a<br />
e<br />
e o a<br />
u<br />
ınh a<br />
a e<br />
u<br />
o<br />
e u<br />
. ´<br />
. liˆu d´ l` phu thuˆc do.n diˆu trong CSDL m`..<br />
mˆt dang phu thuˆc d˜ e o a<br />
o .<br />
o u .<br />
o<br />
e<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
ˆ<br />
ˆ<br />
`.<br />
4. PHU THUOC DO N DIEU TRONG CSDL MO<br />
.<br />
.<br />
.<br />
’ o<br />
Khi ng˜. ngh˜ cua CSDL du.o.c mo. rˆng, nhu. cho ph´p lu.u gi˜. trong CSDL c´c thˆng tin<br />
u<br />
ıa ’<br />
e<br />
u<br />
a<br />
o<br />
.<br />
.<br />
. ngh˜ cua c´c phu thuˆc d˜. liˆu c˜ng thay dˆ i, ngh˜ l` phai mo. rˆng<br />
’<br />
´<br />
’<br />
’ o<br />
khˆng ch˘c th` ng˜<br />
o<br />
a<br />
ı u<br />
ıa ’ a<br />
o u e u<br />
o<br />
ıa a<br />
.<br />
.<br />
.<br />
.<br />
. liˆu. Trong thu.c tˆ, ch´ng ta thu.`.ng g˘p c´c tri th´.c dang nhu. nˆu<br />
´ u<br />
´<br />
c´c dang phu thuˆc d˜ e<br />
a .<br />
o u .<br />
o<br />
a a<br />
u<br />
e<br />
.<br />
.<br />
. e<br />
.<br />
.<br />
’<br />
´<br />
’ ng viˆn c´ hoc h`m v` hoc vi c`ng cao th` lu.o.ng c`ng cao; nˆu mˆt tˆp thˆ T1 lao<br />
a<br />
e<br />
o a<br />
e<br />
mˆt gia<br />
o<br />
e o .<br />
a<br />
a . . a<br />
ı<br />
. .<br />
.<br />
’<br />
’<br />
’<br />
’<br />
dˆng ch˘m chı ho.n tˆp thˆ T2 th` Thu nhˆp cua tˆp thˆ T1 cao ho.n tˆp thˆ T2 . Ho˘c trong<br />
o<br />
a<br />
a<br />
e<br />
ı<br />
a ’ a<br />
e<br />
a<br />
e<br />
a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.`.ng ho.p kh´c nˆu mˆt tˆp thˆ T1 lao dˆng khˆng ch˘m chı ho.n tˆp thˆ T2 th` Thu<br />
’<br />
’<br />
´<br />
’<br />
a e<br />
o a<br />
e<br />
a<br />
e<br />
ı<br />
mˆt tru o<br />
o<br />
o<br />
o<br />
a<br />
.<br />
.<br />
. .<br />
.<br />
.<br />
’ a<br />
’ T1 thˆ p ho.n tˆp thˆ T2. O. dˆy ta khˆng nh` nhˆn mˆi quan hˆ trˆn nhu.<br />
’<br />
´<br />
´<br />
nhˆp cua tˆp thˆ<br />
a ’ a<br />
e<br />
a<br />
a<br />
e<br />
o<br />
ın a<br />
o<br />
e e<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
’<br />
l` mˆt luˆt cua mˆt co. so. tri th´.c n`o d´ m` xem nhu. l` mˆi quan hˆ gi˜.a c´c thuˆc t´<br />
a o<br />
a ’<br />
o<br />
u a o a<br />
a o<br />
e u a<br />
o ınh<br />
.<br />
.<br />
.<br />
.<br />
.<br />
<br />
24<br />
<br />
˜<br />
`<br />
˜<br />
ˆ<br />
´<br />
ˆ<br />
ˆ<br />
ˆ<br />
`<br />
NGUYEN CAT HO, NGUYEN CONG HAO<br />
<br />
´<br />
o a<br />
o ınh a `<br />
a<br />
trong CSDL, d´ l` thuˆc t´ V˘n b˘ ng, Lu.o.ng, Sˆ ng`y l`m viˆc trong th´ng, T´ ky luˆt<br />
o a a<br />
e<br />
a<br />
ınh ’ a<br />
.<br />
.<br />
.<br />
.`.ng ho.p trˆn n´ tˆ n tai mˆi quan hˆ khˆng ch´<br />
`<br />
´<br />
’<br />
lao dˆng v` Thu nhˆp. Trong ca hai tru o<br />
o<br />
a<br />
a<br />
e<br />
o o .<br />
o<br />
e o<br />
ınh<br />
.<br />
.<br />
.<br />
.<br />
´<br />
e’<br />
o ` o o<br />
a<br />
e u a .<br />
x´c nhu. mˆi quan hˆ cua c´c phu thuˆc kinh diˆ n. Do d´, cˆn c´ mˆt nghiˆn c´.u c´c dang<br />
a<br />
o<br />
e ’ a<br />
o<br />
.<br />
.<br />
.<br />
.<br />
´ .<br />
´<br />
phu thuˆc d˜. liˆu nhu. thˆ dˆ u.ng dung trong viˆc ph´t hiˆn tri th´.c v` c´c qui t˘c cˆp nhˆt<br />
o u e<br />
e e’ ´<br />
e<br />
a<br />
e<br />
u a a<br />
a a<br />
a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
. liˆu trong CSDL m` ch´ng tˆi goi l` phu thuˆc do.n diˆu. V` phu thuˆc d˜. liˆu kinh diˆ n<br />
d˜ e<br />
u .<br />
a u<br />
o . a<br />
o<br />
e<br />
ı<br />
o u e<br />
e’<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
’<br />
du.o.c xem l` mˆt tru.`.ng ho.p riˆng cua phu thuˆc d˜. liˆu m`., do d´ ch´ng tˆi xem x´t phu<br />
o u<br />
o<br />
e<br />
a o<br />
o<br />
e<br />
o u e<br />
o<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.<br />
.n diˆu trong ca hai tru.`.ng ho.p kinh diˆ n v` m`..<br />
’ a o<br />
’<br />
thuˆc do<br />
o<br />
e<br />
o<br />
e<br />
.<br />
.<br />
.<br />
’<br />
4.1. Phu thuˆc do.n diˆu trong CSDL kinh diˆn<br />
o<br />
e<br />
e<br />
.<br />
.<br />
.<br />
4.1.1. Phu thuˆc do.n diˆu t˘ng<br />
o<br />
e a<br />
.<br />
.<br />
.<br />
.i X l` mˆt tˆp con cua U v` t, s l` hai bˆ t`y y trˆn U , ta viˆt t[X] ≤ s[X], nˆu v´.i<br />
´<br />
´<br />
’<br />
V´<br />
o<br />
a o a<br />
a<br />
a<br />
o u ´ e<br />
e<br />
e o<br />
. .<br />
.<br />
moi A ∈ X , ta c´ t[A] ≤ s[A].<br />
o<br />
.<br />
`<br />
Dinh ngh˜ 4.1. Cho U l` mˆt lu.o.c dˆ quan hˆ, r l` mˆt quan hˆ trˆn U v` X, Y ⊆ U. Ta<br />
ıa<br />
a o<br />
e<br />
a o<br />
e e<br />
a<br />
.<br />
. o<br />
.<br />
.<br />
.<br />
.<br />
’<br />
n´i r˘ ng quan hˆ r thoa m˜n phu thuˆc do.n diˆu t˘ng X x´c dinh Y , k´ hiˆu l` X + → Y,<br />
o `<br />
a<br />
e<br />
a<br />
o<br />
e a<br />
a .<br />
y e a<br />
.<br />
.<br />
.<br />
.<br />
.<br />
´<br />
trong quan hˆ r , nˆu ta c´: ∀t, s ∈ r, t[X] ≤ s[X] ⇒ t[Y ] ≤ s[Y ].<br />
e<br />
e<br />
o<br />
.<br />
`<br />
V´ du 4.1. Ta x´t lu.o.c dˆ quan hˆ U = {M AGV, T ENGV, SOT IET GIAN G, V U OT GIO}<br />
ı .<br />
e<br />
e<br />
. o<br />
.<br />
.i y ngh˜ M˜ sˆ gi´o viˆn (MAGV), Tˆn gi´o viˆn (TENGV), Sˆ tiˆt giang trong n˘m hoc<br />
´ a<br />
´ ´ ’<br />
v´ ´<br />
o<br />
ıa: a o<br />
e<br />
e<br />
a<br />
e<br />
o e<br />
a<br />
.<br />
.o.t gi`. (VUOTGIO). Quan hˆ Giangday x´c dinh trˆn U cho o. Bang 4.1.<br />
`<br />
’ ’<br />
o<br />
e<br />
a .<br />
e<br />
(SOTIET), Tiˆn vu .<br />
e<br />
.<br />
’<br />
Bang 4.1. Quan hˆ Giangday<br />
e<br />
.<br />
MAGV<br />
G1<br />
G2<br />
G3<br />
G4<br />
G5<br />
G6<br />
G7<br />
G8<br />
G9<br />
<br />
TENCN<br />
Anh<br />
´<br />
Hiˆu<br />
e<br />
Nhˆn<br />
a<br />
Giang<br />
’<br />
Hai<br />
H`<br />
a<br />
Thanh<br />
Thiˆn<br />
e<br />
.<br />
Nhˆn<br />
a<br />
<br />
SOTIETGIANG<br />
350<br />
450<br />
600<br />
300<br />
370<br />
360<br />
500<br />
650<br />
700<br />
<br />
VUOTGIO<br />
120000<br />
3000000<br />
4000000<br />
1000000<br />
1400000<br />
1300000<br />
3500000<br />
4500000<br />
50000000<br />
<br />
´ a<br />
´<br />
’<br />
Trong quan hˆ Giangday ta thˆ y r˘ ng nˆu SOT IET GIAN G cua gi´o viˆn c`ng l´.n<br />
e<br />
a `<br />
e<br />
a<br />
e a<br />
o<br />
.<br />
.n, hay phu thuˆc do.n diˆu t˘ng SOT IET GIAN G+ → V U OT GIO<br />
o<br />
th` V U OT GIO c`ng l´<br />
ı<br />
a<br />
o<br />
e a<br />
.<br />
.<br />
.<br />
d´ng trong quan hˆ Giangday . Thˆt vˆy, ∀t, s ∈ Giangday ta c´ t[SOT IET GIAN G] ≤<br />
u<br />
e<br />
a a<br />
o<br />
.<br />
.<br />
.<br />
s[SOT IET GIAN G] ⇒ t[V U OT GIO] ≤ s[V U OT GIO].<br />
`<br />
Goi FA l` ho c´c phu thuˆc do.n diˆu t˘ng trˆn lu.o.c dˆ quan hˆ U. Ta k´ hiˆu FA∗ l` tˆp<br />
a . a<br />
o<br />
e a<br />
e<br />
e<br />
y e<br />
a a<br />
.<br />
.<br />
.<br />
.<br />
. o<br />
.<br />
.<br />
.<br />
.n diˆu t˘ng X + → Y m` du.o.c suy dˆn t`. F .<br />
˜<br />
´<br />
tˆ t ca c´c phu thuˆc do<br />
a ’ a<br />
o<br />
e a<br />
a<br />
a u A<br />
.<br />
.<br />
.<br />
.<br />
’<br />
Dinh l´ 4.1. Trong CSDL v´.i tˆp v˜ tru c´c thuˆc t´ U , ho FA∗ thoa m˜n c´c tiˆn dˆ<br />
y<br />
o a u . a<br />
o ınh<br />
a a e `<br />
e<br />
.<br />
.<br />
.<br />
.<br />
sau:<br />
’ .<br />
(1) Phan xa: X + → X ∈ FA∗ .<br />
(2)Gia t˘ng: X + → Y ∈ FA∗ ⇒ XZ + → Y Z ∈ FA∗ , v´.i Z ⊆ U.<br />
a<br />
o<br />
´ a<br />
(3) B˘c cˆu: X + → Y ∈ FA∗ , Y + → Z ∈ FA∗ ⇒ X + → Z ∈ FA∗ .<br />
a `<br />
´<br />
C´c tiˆn dˆ (1) - (3) trong Dinh l´ 4.1 l` d´ng d˘n.<br />
a e `<br />
e<br />
y<br />
a u<br />
a<br />
.<br />
<br />