Toán lượng giác - Chương 3: Phương trình bậc hai với các hàm số lượng giác
lượt xem 6
download
Nhằm giúp cho học sinh ôn tập, luyện tập và vận dụng các kiến thức vào việc giải các bài tập được tốt hơn mời các bạn tham khảo chương 3: Phương trình bậc hai với các hàm số lượng giác.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Toán lượng giác - Chương 3: Phương trình bậc hai với các hàm số lượng giác
- CHÖÔNG III. PHÖÔNG TRÌNH BAÄC HAI VÔÙI CAÙC HAØ M SOÁ LÖÔÏ NG GIAÙC a sin2 u + b sin u + c = 0 ( a ≠ 0) a cos2 u + b cos u + c = 0 ( a ≠ 0) atg 2 u + btgu = c = 0 ( a ≠ 0) a cot g 2 u + b cot gu + c = 0 ( a ≠ 0) Caù c h giaû i: Ñaë t : t = sin u hay t = cos u vôù i t ≤ 1 π t = tgu (ñieàu kieä n u ≠ + kπ ) 2 t = cot gu (ñieàu kieä n u ≠ kπ ) Caùc phöông trình treâ n thaøn h: at 2 + bt + c = 0 Giaû i phöông trình tìm ñöôïc t, so vôù i ñieà u kieä n ñeå nhaän nghieä m t. Töø ñoù giaû i phöông trình löôïn g giaùc cô baû n tìm ñöôï c u. Baø i 56: (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i A, naê m 2002) Tìm caù c nghieä m treâ n ( 0, 2π ) cuûa phöông trình ⎛ cos 3x + sin 3x ⎞ 5 ⎜ sin x + ⎟ = 3 + cos 2x ( * ) ⎝ 1 + 2 sin 2x ⎠ 1 Ñieà u kieän : sin 2x ≠ − 2 ( ) ( Ta coù : sin 3x + cos 3x = 3sin x − 4 sin 3 x + 4 cos3 x − 3 cos x ) ( = −3 ( cos x − sin x ) + 4 cos3 x − sin3 x ) ( = ( cos x − sin x ) ⎡ −3 + 4 cos2 x + cos x sin x + sin 2 x ⎤ ⎣ ⎦) = ( cos x − sin x )(1 + 2 sin 2x ) ( Luù c ñoù : (*) ⇔ 5 ⎡sin x + ( cos x − sin x ) ⎤ = 3 + 2 cos2 x − 1 ⎣ ⎦ ) ⎛ 1⎞ ⎜ do sin 2x ≠ − ⎟ ⎝ 2⎠ ⇔ 2 cos2 x − 5 cos x + 2 = 0 ⎡ 1 ⇔ ⎢cos x = 2 ⎢ ⎢cos x = 2 ( loaïi ) ⎣ π 3 1 ⇔x=± + k2π (nhaän do sin 2x = ± ≠− ) 3 2 2
- π 5π Do x ∈ ( 0, 2π ) neân x = ∨x= 3 3 Baø i 57: (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i A, naê m 2005) Giaû i phöông trình: cos2 3x.cos 2x − cos2 x = 0 ( *) 1 + cos 6x 1 + cos 2x Ta coù : (*) ⇔ .cos 2x − =0 2 2 ⇔ cos 6x.cos 2x − 1 = 0 (**) ( ) Caù c h 1: (**) ⇔ 4 cos3 2x − 3 cos 2x cos 2x − 1 = 0 ⇔ 4 cos4 2x − 3 cos2 2x − 1 = 0 ⎡cos2 2x = 1 ⇔⎢ 2 ⎢cos 2x = − 1 ( voâ nghieäm ) ⎢ ⎣ 4 ⇔ sin 2x = 0 kπ ⇔ 2x = kπ ⇔ x = ( k ∈ Z) 2 1 Caù c h 2: (**) ⇔ ( cos 8x + cos 4x ) − 1 = 0 2 ⇔ cos 8x + cos 4x − 2 = 0 ⇔ 2 cos2 4x + cos 4x − 3 = 0 ⎡cos 4x = 1 ⇔⎢ ⎢cos 4x = − 3 ( loaïi ) ⎣ 2 kπ ⇔ 4x = k2π ⇔ x = ( k ∈ Z) 2 Caù c h 3: phöông trình löôï n g giaùc khoân g maãu möïc : ⎡cos 6x = cos 2x = 1 (**) ⇔ ⎢ ⎣cos 6x = cos 2x = −1 Caù c h 4: cos 8x + cos 4x − 2 = 0 ⇔ cos 8x + cos 4x = 2 ⇔ cos 8x = cos 4x = 1 ⇔ cos 4x = 1 Baø i 58: (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i D, naê m 2005) ⎛ π⎞ ⎛ π⎞ 3 Giaû i phöông trình: cos4 x + sin 4 x + cos ⎜ x − ⎟ sin ⎜ 3x − ⎟ − = 0 ⎝ 4⎠ ⎝ 4⎠ 2 Ta coù : (*) 1⎡ π⎞ ⎤ 3 ( ) 2 ⎛ ⇔ sin2 x + cos2 x − 2 sin2 x cos2 x + ⎢sin ⎜ 4x − 2 ⎟ + sin 2x ⎥ − 2 = 0 2⎣ ⎝ ⎠ ⎦
- 1 1 3 ⇔1− sin2 2x + [ − cos 4x + sin 2x ] − = 0 2 2 2 1 1 1 1 ⇔ 2 2 ( ) − sin2 2x − 1 − 2 sin2 2x + sin 2x − = 0 2 2 2 ⇔ sin 2x + sin 2x − 2 = 0 ⎡sin 2x = 1 ⇔ ⎢ ⎣sin 2x = −2 ( loaïi ) π ⇔ 2x = + k2π, k ∈ 2 π ⇔ x = + kπ, k ∈ 4 Baø i 59: (Ñeà thi tuyeå n sinh Ñaï i hoï c khoá i B, naê m 2004) Giaû i phöông trình: 5 sin x − 2 = 3 (1 − sinx ) tg 2 x ( *) Ñieà u kieän : cos x ≠ 0 ⇔ sin x ≠ ±1 sin2 x Khi ñoù : (*) ⇔ 5 sin x − 2 = 3 (1 − sin x ) cos2 x sin2 x ⇔ 5sin x − 2 = 3 (1 − sin x ) 1 − sin2 x 3sin2 x ⇔ 5 sin x − 2 = 1 + sin x 2 ⇔ 2 sin x + 3sin x − 2 = 0 ⎡ 1 ⇔ ⎢sin x = 2 ( nhaän do sin x ≠ ±1) ⎢ ⎢sin x = −2 ( voâ nghieäm ) ⎣ π 5π ⇔x= + k2π ∨ x = + k2π ( k ∈ Z) 6 6 1 1 Baø i 60: Giaû i phöông trình: 2 sin 3x − = 2 cos 3x + ( *) sin x cos x Ñieà u kieän : sin 2x ≠ 0 1 1 Luù c ñoù : (*) ⇔ 2 ( sin 3x − cos 3x ) = + sin x cos x 1 1 ⎣ ( ) ⇔ 2 ⎡3 ( sin x + cos x ) − 4 sin3 x + cos3 x ⎤ = + ⎦ sin x cos x sin x + cos x ⎣ ( ⎦) ⇔ 2 ( sin x + cos x ) ⎡3 − 4 sin2 x − sin x cos x + cos2 x ⎤ = sin x cos x ⎡ 1 ⎤ ⇔ ( sin x + cos x ) ⎢ −2 + 8 sin x cos x − =0 ⎣ sin x cos x ⎥ ⎦
- ⎡ 2 ⎤ ⇔ ( sin x + cos x ) ⎢4 sin 2x − − 2⎥ = 0 ⎣ sin 2x ⎦ ⎡sin x + cos x = 0 ⎡ tgx = −1 ⇔⎢ 2 ⇔⎢ ⎢sin 2x = 1 ∨ sin 2x = −1 ( nhaän so vôùi ñieàu kieän ) ⎣4 sin 2x − 2sin 2x − 2 = 0 ⎣ 2 π π π 7π ⇔x=− + kπ ∨ 2x = + k2π ∨ 2x = − + k2π ∨ 2x = + k2π, k ∈ 4 2 6 6 π π 7π ⇔ x = ± + kπ ∨ x = − + kπ ∨ x = + kπ, k ∈ 4 12 12 Baø i 61: Giaû i phöông trình: ( ) cos x 2 sin x + 3 2 − 2 cos2 x − 1 =1 ( *) 1 + sin 2x π Ñieà u kieän : sin 2x ≠ −1 ⇔ x ≠ − + mπ 4 Luù c ñoù : (*) ⇔ 2 sin x cos x + 3 2 cos x − 2 cos2 x − 1 = 1 + sin 2x ⇔ 2 cos2 x − 3 2 cos x + 2 = 0 2 ⇔ cos x = hay cos x = 2 ( voâ nghieä m ) 2 ⎡ π ⎢ x = 4 + k2π ⇔⎢ ⎢ x = − π + k '2π ( loaïi do ñieàu kieän ) ⎢ ⎣ 4 π ⇔ x = + k 2π 4 Baø i 62: Giaû i phöông trình: x 3x x 3x 1 cos x.cos .cos − sin x sin sin = ( *) 2 2 2 2 2 1 1 1 Ta coù : (*) ⇔ cos x ( cos 2x + cos x ) + sin x ( cos 2x − cos x ) = 2 2 2 2 ⇔ cos x.cos 2x + cos x + sin x cos 2x − sin x cos x = 1 ⇔ cos 2x ( cos x + sin x ) = 1 − cos2 x + sin x cos x ⇔ cos 2x ( cos x + sin x ) = sin x ( sin x + cos x ) ⇔ ( cos x + sin x )( cos 2x − sin x ) = 0 ( * * ) ( ) ⇔ ( cos x + sin x ) 1 − 2 sin 2 x − sin x = 0 ⎡ cos x = − sin x ⇔⎢ 2 ⎣ 2 sin x + sin x − 1 = 0
- ⎡ π ⎡ ⎢ x = − 4 + kπ ⎢ tgx = −1 ⎢ ⎢ π ⇔ ⎢sin x = −1 ⇔ ⎢ x = − + k2π ( k ∈ Z) ⎢ 2 ⎢ 1 ⎢ ⎢sin x = ⎣ 2 ⎢ x = π + k2π ∨ x = 5π + k2π ⎢ ⎣ 6 6 ⎛π ⎞ Caù c h khaù c: (**) ⇔ tgx = −1 ∨ cos 2x = sin x = cos ⎜ − x ⎟ ⎝2 ⎠ Baø i 63: Giaû i phöông trình: 4 cos3 x + 3 2 sin 2x = 8 cos x ( *) Ta coù : (*) ⇔ 4 cos3 x + 6 2 sin x cos x − 8 cos x = 0 ( ⇔ cos x 2 cos2 x + 3 2 sin x − 4 = 0 ) ( ) ⇔ cos x ⎡2 1 − sin 2 x + 3 2 sin x − 4 ⎤ = 0 ⎣ ⎦ 2 ⇔ cos x = 0 ∨ 2 sin x − 3 2 sin x + 2 = 0 ⎡cos x = 0 ⎢ 2 ⇔ ⎢sin x = ⎢ 2 ⎢ ⎢sin x = 2 ( voâ nghieäm ) ⎣ π 2 π ⇔x= + kπ ∨ sin x = = sin 2 2 4 π π 3π ⇔ x = + kπ ∨ x = + k2π ∨ x = + k2π ( k ∈ Z ) 2 4 4 Baø i 64: Giaû i phöông trình: ⎛ π⎞ ⎛ π⎞ cos ⎜ 2x + ⎟ + cos ⎜ 2x − ⎟ + 4 sin x = 2 + 2 (1 − sin x ) ( *) ⎝ 4⎠ ⎝ 4⎠ π (*) ⇔ 2 cos 2x.cos + 4 sin x = 2 + 2 (1 − sin x ) 4 ⇔ ( ) ( ) 2 1 − 2 sin2 x + 4 + 2 sin x − 2 − 2 = 0 ( ⇔ 2 2 sin2 x − 4 + 2 sin x + 2 = 0) ⎡sin x = 2 ( loaï i ) ( ) ⇔ 2 sin x − 2 2 + 1 sin x + 2 = 0 ⇔ ⎢ 2 ⎢sin x = 1 ⎢ ⎣ 2 π 5π ⇔ x = + k2π hay x = + k2π, k ∈ 6 6
- ( ) Baø i 65: Giaû i phöông trình : 3 cot g 2 x + 2 2 sin 2 x = 2 + 3 2 cos x ( *) Ñieà u kieän : sin x ≠ 0 ⇔ cos x ≠ ±1 Chia hai veá (*) cho sin 2 x ta ñöôïc : cos2 x cos x (*) ⇔ 3 sin x4 ( +2 2 = 2+3 2 )sin2 x vaø sin x ≠ 0 cos x Ñaë t t = ta ñöôïc phöông trình: sin 2 x ( ) 3t 2 − 2 + 3 2 t + 2 2 = 0 2 ⇔t= 2∨t= 3 2 cos x 2 * Vôù i t = ta coù : 2 = 3 sin x 3 ( ⇔ 3 cos x = 2 1 − cos2 x ) ⇔ 2 cos2 x + 3 cos x − 2 = 0 ⎡cos x = −2 ( loaïi ) ⇔⎢ ⎢cos x = 1 ( nhaän do cos x ≠ ±1) ⎢ ⎣ 2 π ⇔ x = ± + k2π ( k ∈ Z ) 3 cos x * Vôù i t = 2 ta coù : = 2 sin2 x ( ⇔ cos x = 2 1 − cos2 x ) ⇔ 2 cos2 x + cos x − 2 = 0 ⎡cos x = − 2 ( loaï i ) ⎢ ⇔⎢ 2 ⎢cos x = ( nhaän do cos x ≠ ±1) ⎣ 2 π ⇔ x = ± + k2π, k ∈ 4 4 sin2 2x + 6 sin 2 x − 9 − 3 cos 2x Baø i 66: Giaû i phöông trình: = 0 ( *) cos x Ñieà u kieän : cos x ≠ 0 Luù c ñoù : (*) ⇔ 4 sin2 2x + 6 sin2 x − 9 − 3 cos 2x = 0
- ( ) ⇔ 4 1 − cos2 2x + 3 (1 − cos 2x ) − 9 − 3 cos 2x = 0 ⇔ 4 cos2 2x + 6 cos 2x + 2 = 0 1 ⇔ cos 2x = −1 ∨ cos 2x = − 2 1 ⇔ 2 cos2 x − 1 = −1 ∨ 2 cos2 x − 1 = − 2 ⎡cos x = 0 ( loaïi do ñieàu kieän ) ⇔⎢⎢cos x = ± 1 nhaän do cos x ≠ 0 ⎢ ( ) ⎣ 2 π 2π ⇔ x = ± + k2π ∨ x = ± + k2π ( k ∈ Z ) 3 3 1 2 Baø i 67: Cho f ( x ) = sin x + sin 3x + sin 5x 3 5 Giaûi phöông trình: f ' ( x ) = 0 Ta coù : f '(x) = 0 ⇔ cos x + cos 3x + 2 cos 5x = 0 ⇔ ( cos x + cos 5x ) + ( cos 3x + cos 5x ) = 0 ⇔ 2 cos 3x cos 2x + 2 cos 4x cos x = 0 ( ) ( ) ⇔ 4 cos3 x − 3 cos x cos 2x + 2 cos2 2x − 1 cos x = 0 ( ) ⇔ ⎡ 4 cos2 x − 3 cos 2x + 2 cos2 2x − 1⎤ cos x = 0 ⎣ ⎦ ⎡ ⎡ 2 (1 + cos 2x ) − 3⎤ cos 2x + 2 cos 2x − 1 = 0 2 ⇔ ⎢⎣ ⎦ ⎢cos x = 0 ⎣ ⎡4 cos2 2x − cos 2x − 1 = 0 ⇔⎢ ⎣cos x = 0 1 ± 17 ⇔ cos 2x = ∨ cos x = 0 8 1 + 17 1 − 17 ⇔ cos 2x = = cos α ∨ cos 2x = = cos β ∨ cos x = 0 8 8 α β π ⇔ x = ± + kπ ∨ x = ± + kπ ∨ x = + kπ ( k ∈ Z ) 2 2 2 17 Baø i 68: Giaû i phöông trình: sin8 x + cos8 x = cos2 2x ( *) 16 Ta coù :
- ( ) 2 sin 8 x + cos8 x = sin4 x + cos4 x − 2 sin 4 x cos4 x 2 1 ( ) 2 = ⎡ sin2 x + cos2 x ⎢ − 2 sin 2 x cos2 x ⎤ − sin4 2x ⎥ ⎣ ⎦ 8 2 ⎛ 1 ⎞ 1 = ⎜ 1 − sin2 2x ⎟ − sin4 2x ⎝ 2 ⎠ 8 1 = 1 − sin2 2x + sin4 2x 8 Do ñoù : 1 ( *) ⇔ 16 ⎛ 1 − sin2 2x + ⎜ ⎝ 8 ⎞ ( sin4 2x ⎟ = 17 1 − sin2 2x ⎠ ) ⇔ 2 sin4 2x + sin2 2x − 1 = 0 ⎡sin2 2x = −1 ( loaï i ) 1 1 ⇔⎢ ⎢sin2 2x = 1 ⇔ (1 − cos 4x ) = 2 2 ⎢ ⎣ 2 π ⇔ cos 4x = 0 ⇔ x = ( 2k + 1) , ( k ∈ Z ) 8 5x x Baø i 69: Giaû i phöông trình: sin = 5 cos3 x.sin ( *) 2 2 x Nhaä n xeù t thaá y : cos = 0 ⇔ x = π + k2π ⇔ cos x = −1 2 Thay vaøo (*) ta ñöôïc : ⎛ 5π ⎞ ⎛π ⎞ sin ⎜ + 5kπ ⎟ = − 5. sin ⎜ + kπ ⎟ , khoâ n g thoûa ∀k ⎝ 2 ⎠ ⎝2 ⎠ x Do cos khoâ n g laø nghieäm cuûa (*) neâ n : 2 5x x x x x ( *) ⇔ sin . cos = 5 cos2 x. sin cos vaø cos ≠ 0 2 2 2 2 2 1 5 x ⇔ ( sin 3x + sin 2x ) = cos3 x.sin x vaø cos ≠ 0 2 2 2 x ⇔ 3sin x − 4 sin3 x + 2 sin x cos x = 5 cos3 x.sin x vaø cos ≠0 2 ⎧ x ⎪cos ≠ 0 ⇔⎨ 2 ⎪3 − 4 sin2 x + 2 cos x = 5 cos3 x ∨ sin x = 0 ⎩ ⎧ x ⎪cos 2 ≠ 0 ⎪ ⇔⎨ ⎪5 cos3 x − 4 cos2 x − 2 cos x + 1 = 0 ∨ sin x = 0 ⎪ ⎩ 2
- ⎧cos x ≠ −1 ⎪ ⇔⎨ x ( ) ⎪( cos x − 1) 5 cos x + cos x − 1 = 0 ∨ sin 2 = 0 ⎩ 2 ⎧cos x ≠ −1 ⎪ ⎪⎡ ⎪ ⎢cos x = 1 ⎪⎢ ⇔ ⎨⎢ −1 + 21 ⎪ ⎢cos x = 10 = cos α ⎪⎢ ⎪⎢ −1 − 21 ⎪ ⎢cos x = 10 = cos β ⎩⎣ ⇔ x = k2π hay x = ±α + k2π hay x = ±β + k2π, ( k ∈ Z ) Baø i 70: Giaû i phöông trình: sin 2x ( cot gx + tg2x ) = 4 cos2 x ( *) Ñieà u kieän : cos 2x ≠ 0 vaø sin x ≠ 0 ⇔ cos 2x ≠ 0 ∧ cos 2x ≠ 1 cos x sin 2x Ta coù : cot gx + tg2x = + sin x cos 2x cos 2x cos x + sin 2x sin x = sin x cos 2x cos x = sin x cos 2x ⎛ cos x ⎞ Luù c ñoù : (*) ⇔ 2 sin x.cos x ⎜ 2 ⎟ = 4 cos x ⎝ sin x cos 2x ⎠ 2 cos x ⇔ = 2 cos2 x cos 2x ⇔ ( cos 2x + 1) = 2 cos 2x ( cos 2x + 1) ⇔ ( cos 2x + 1) = 0 hay 1 = 2 cos 2x 1 ⇔ cos 2x = −1 ∨ cos 2x = ( nhaän do cos 2x ≠ 0 vaø cos 2x ≠ 1) 2 π ⇔ 2x = π + k2π ∨ 2x = ± + k2π, k ∈ 3 π π ⇔ x = + kπ ∨ x = ± + kπ, k ∈ 2 6 6x 8x Baø i 71: Giaû i phöông trình: 2 cos2 + 1 = 3cos ( *) 5 5 ⎛ 12x ⎞ ⎛ 2 4x ⎞ Ta coù : (*) ⇔ ⎜ 1 + cos ⎟ + 1 = 3 ⎜ 2 cos − 1⎟ ⎝ 5 ⎠ ⎝ 5 ⎠ 4x 4x ⎛ 4x ⎞ ⇔ 2 + 4 cos3 − 3cos = 3 ⎜ 2 cos2 − 1⎟ 5 5 ⎝ 5 ⎠
- 4 Ñaë t t = cos x ( ñieà u kieä n t ≤ 1) 5 Ta coù phöông trình : 4t 3 − 3t + 2 = 6t 2 − 3 ⇔ 4t 3 − 6t 2 − 3t + 5 = 0 ⇔ ( t − 1) ( 4t 2 − 2t − 5 ) = 0 1 − 21 1 + 21 ⇔ t = 1∨ t = ∨t = ( loïai ) 4 4 Vaäy 4x 4x • cos =1⇔ = 2kπ 5 5 5kπ ⇔x= ( k ∈ Z) 2 4x 1 − 21 • cos = = cos α ( vôù i 0 < α < 2π ) 5 4 4x ⇔ = ±α + 2π 5 5α 5π ⇔x=± + ,( ∈ Z) 4 2 ⎛ π⎞ Baø i 72 : Giaû i phöông trình tg3 ⎜ x − ⎟ = tgx − 1( *) ⎝ 4⎠ π π Ñaë t t = x − ⇔ x = + t 4 4 ⎛π ⎞ 1 + tgt (*) thaø n h : tg3 t = tg ⎜ + t ⎟ − 1 = − 1 vôù i cos t ≠ 0 ∧ tgt ≠ 1 ⎝4 ⎠ 1 − tgt 2tgt ⇔ tg3 t = 1 − tgt ⇔ tg3 t − tg 4 t = 2tgt ⇔ tgt ( tg3 t − tg2 t + 2 ) = 0 ⇔ tgt ( tgt + 1) ( tg2 t − 2tgt + 2 ) = 0 ⇔ tgt = 0 ∨ tgt = −1( nhaä n so ñieà u kieä n ) π ⇔ t = kπ ∨ t = − + kπ, k ∈ 4 Vaäy (*) π ⇔ x = + kπ hay x = kπ, k ∈ 4
- sin 4 2x + cos4 2x Baø i 73 : Giaû i phöông trình = cos4 4x (*) ⎛π ⎞ ⎛π ⎞ tg ⎜ − x ⎟ tg ⎜ + x ⎟ ⎝4 ⎠ ⎝4 ⎠ Ñieà u kieän ⎧ ⎛π ⎞ ⎛π ⎞ ⎧ ⎛π ⎞ ⎪sin ⎜ 4 − x ⎟ cos ⎜ 4 − x ⎟ ≠ 0 ⎪sin ⎜ 2 − 2x ⎟ ≠ 0 ⎪ ⎝ ⎠ ⎝ ⎠ ⎪ ⎝ ⎠ ⎨ ⇔⎨ ⎪sin ⎛ π + x ⎞ cos ⎛ π + x ⎞ ≠ 0 ⎪sin ⎛ π + 2x ⎞ ≠ 0 ⎪ ⎝ ⎜4 ⎟ ⎜4 ⎟ ⎪ ⎜2 ⎟ ⎩ ⎠ ⎝ ⎠ ⎩ ⎝ ⎠ ⇔ cos2x ≠ 0 ⇔ sin 2x ≠ ±1 Do : ⎛π ⎞ ⎛π ⎞ 1 − tgx 1 + tgx tg ⎜ − x ⎟ tg ⎜ + x ⎟ = . =1 ⎝4 ⎠ ⎝4 ⎠ 1 + tgx 1 − tgx Khi cos2x ≠ 0 thì : (*) ⇔ sin 4 2x + cos4 2x = cos4 4x ⇔ 1 − 2sin 2 2x cos2 2x = cos4 4x 1 ⇔ 1 − sin 2 4x = cos4 4x 2 1 ⇔ 1 − (1 − cos2 4x ) = cos4 4x 2 ⇔ 2 cos4 4x − cos2 4x − 1 = 0 ⎡ cos2 4x = 1 ⇔⎢ 2 ⇔ 1 − sin 2 4x = 1 ⎢ cos 4x = − 1 ( voâ nghieä m ) ⎢ ⎣ 2 ⇔ sin 4x = 0 ⇔ 2 sin 2x cos 2x = 0 ⇔ sin 2x = 0 ( do cos2x ≠ 0 ) π ⇔ 2x = kπ, k ∈ ⇔ x = k , k ∈ 2 1 2 Baø i 74 :Giaû i phöông trình: 48 − − 2 (1 + cot g2x cot gx ) = 0 (*) cos x sin x 4 Ñieà u kieän : sin 2x ≠ 0 Ta coù : cos 2x cos x 1 + cot g2x cot gx = 1 + . sin 2x sin x sin 2x sin x + cos 2x cos x = sin x sin 2x cos x 1 = = ( do cos x ≠ 0 ) 2 sin x cos x 2 sin 2 x 2 1 1 Luù c ñoù (*) ⇔ 48 − − 4 =0 cos x sin x 4
- 1 1 sin 4 x + cos4 x ⇔ 48 = + = cos4 x sin 4 x sin 4 x cos4 x ⇔ 48sin 4 x cos4 x = sin 4 x + cos4 x ⇔ 3sin 4 2x = 1 − 2 sin 2 x cos2 x 1 ⇔ 3sin 4 2x + sin 2 2x − 1 = 0 2 ⎡ 2 2 ⎢sin x = − 3 ( loï ai ) ⇔⎢ ⎢sin 2 x = 1 ( nhaä n do ≠ 0 ) ⎢ ⎣ 2 1 1 ⇔ (1 − cos 4x ) = 2 2 ⇔ cos 4x = 0 π ⇔ 4x = + kπ 2 π kπ ⇔ x = + ( k ∈ Z) 8 4 Baø i 75 : Giaû i phöông trình 5 ( ) sin8 x + cos8 x = 2 sin10 x + cos10 x + cos 2x ( *) 4 Ta coù : (*) 5 ( ) ( ⇔ sin8 x − 2sin10 x + cos8 x − 2 cos10 x = ) 4 cos2x 5 ⇔ sin8 x (1 − 2sin 2 x ) − cos8 x ( −1 + 2 cos2 x ) = cos 2x 4 5 ⇔ sin8 x.cos2x − cos8 x cos 2x = cos 2x 4 ⇔ 4 cos 2x ( sin x − cos x ) = 5cos 2x 8 8 ⇔ cos 2x = 0 hay 4 ( sin 8 x − cos8 x ) = 5 ⇔ cos 2x = 0 hay 4 ( sin 4 x − cos4 x )( sin 4 x + cos4 x ) = 5 ⎛ 1 ⎞ ⇔ cos 2x = 0 hay 4 ⎜ 1 − sin 2 2x ⎟ = 5 ⎝ 2 ⎠ ⇔ cos 2x = 0 hay − 2 sin 2x = 1(Voâ nghieä m ) 2 π ⇔ 2x = + kπ, k ∈ 2 π kπ ⇔x= + , k∈ 4 2 Caù c h khaù c: Ta coù 4 ( sin8 x − cos8 x ) = 5 voâ nghieä m
- Vì ( sin 8 x − cos8 x ) ≤ 1, ∀ x neâ n 4 ( sin 8 x − cos8 x ) ≤ 4 < 5, ∀x Ghi chuù : Khi gaëp phöông trình löôï n g giaù c daï n g R(tgx, cotgx, sin2x, cos2x, tg2x) vôù i R haøm höõ u tyû thì ñaë t t = tgx 2t 2t 1 − t2 Luùc ñoù tg2x = , sin 2x = , cos 2x = 1 − t2 1 + t2 1 + t2 Baø i 76 : (Ñeå thi tuyeå n sinh Ñaï i hoï c khoá i A, naê m 2003) Giaû i phöông trình cos 2x 1 cot gx − 1 = + sin2 x − sin 2x ( *) 1 + tgx 2 Ñieà u kieän : sin 2x ≠ 0 vaø tgx ≠ −1 Ñaë t t = tgx thì (*) thaønh : 1 − t2 1 1⎡ 1 − t 2 ⎤ 1 2t − 1 = 1 + t + ⎢1 − 2 t 1+t 2⎣ ⎥− . 1 + t2 ⎦ 2 1 + t2 1−t 1 − t 1 2t 2 t ⇔ = + . − ( do t ≠ −1) t 1+t 2 2 1+t 2 1 + t2 2 1 − t t 2 − 2t + 1 (1 − t ) ⇔ = = t 1 + t2 1 + t2 ⇔ ( 1 − t ) (1 + t 2 ) = ( 1 − t ) t 2 ⎡1 − t = 0 ⎡ t = 1 ( nhaä n do t ≠ −1) ⇔⎢ ⇔⎢ 2 ⎣1 + t = (1 − t ) t ⎢2t − t + 1 = 0 ( voâ nghieä m ) 2 ⎣ π Vaäy (*) ⇔ tgx = 1 ⇔ x = + kπ ( nhaä n do sin 2x = 1 ≠ 0) 4 Baø i 77 : Giaû i phöông trình: sin 2x + 2tgx = 3 ( * ) Ñieà u kieän : cos x ≠ 0 Ñaë t t = tgx thì (*) thaø n h : 2t + 2t = 3 1 + t2 ⇔ 2t + ( 2t − 3) (1 + t 2 ) = 0 ⇔ 2t 3 − 3t 2 + 4t − 3 = 0 ⇔ ( t − 1) ( 2t 2 − t + 3) = 0 ⎡t = 1 ⇔⎢ 2 ⎣2t − t + 3 = 0 ( voâ nghieä m ) π Vaä y (*) ⇔ tgx = 1 ⇔ x = + kπ ( k ∈ Z ) 4
- Baø i 78 : Giaû i phöông trình 2 cot gx − tgx + 4 sin 2x = ( *) sin 2x Ñieà u kieän : sin 2x ≠ 0 2t Ñaë t t = tgx thì : sin 2x = do sin 2x ≠ 0 neâ n t ≠ 0 1 + t2 1 8t 1 + t2 1 (*) thaø n h : − t + = = +t t 1 + t2 t t 8t ⇔ = 2t 1 + t2 4 ⇔ = 1 ( do t ≠ 0 ) 1 + t2 ⇔ t 2 = 3 ⇔ t = ± 3 ( nhaä n do t ≠ 0 ) ⎛ π⎞ Vaä y (*) ⇔ tgx = tg ⎜ ± ⎟ ⎝ 3⎠ π ⇔ x = ± + kπ, k ∈ 3 Baø i 79 : Giaû i phöông trình (1 − tgx )(1 + sin 2x ) = 1 + tgx ( * ) Ñieà u kieän : cos x ≠ 0 Ñaë t = tgx thì (*) thaø n h : 2t ⎞ (1 − t ) ⎛ 1 + ⎜ ⎟ =1+t ⎝ 1 + t2 ⎠ ( t + 1) = 1 + t 2 ⇔ (1 − t ) 1 + t2 ⎡ t = −1 ⎡ t = −1 ⇔ ⎢ (1 − t )(1 + t ) ⇔ ⎢ ⎢ =1 ⎣1 − t = 1 + t 2 2 ⎢ ⎣ 1+ t 2 ⇔ t = −1 ∨ t = 0 ⎡ tgx = −1 π Do ñoù (*) ⇔ ⎢ ⇔ x = − + kπ hay x = kπ, k ∈ ⎣ tgx = 0 4 Baø i 80 : Cho phöông trình cos 2x − ( 2m + 1) cos x + m + 1 = 0 ( * ) 3 a/ Giaû i phöông trình khi m = 2 ⎛ π 3π ⎞ b/ Tìm m ñeå (*) coù nghieä m treâ n ⎜ , ⎟ ⎝2 2 ⎠ Ta coù (*) 2 cos x − ( 2m + 1) cos x + m = 0 2
- ⎧t = cos x ([ t ] ≤ 1) ⎪ ⇔⎨ ⎪2t − ( 2m + 1) t + m = 0 2 ⎩ ⎧ t = cos x ([ t ] ≤ 1) ⎪ ⇔⎨ 1 ⎪t = ∨ t = m ⎩ 2 3 a/ Khi m = , phöông trình thaø nh 2 1 3 cos x = ∨ cos x = ( loaï i ) 2 2 π ⇔ x = ± + k2π ( k ∈ Z ) 3 ⎛ π 3π ⎞ b/ Khi x ∈ ⎜ , ⎟ thì cos x = t ∈ [−1, 0) ⎝2 2 ⎠ 1 Do t = ∉ [ −1, 0] neâ n 2 ⎛ π 3π ⎞ ( *) coù nghieäm treân ⎜ , ⎟ ⇔ m ∈ ⎡−1, 0) ⎣ ⎝2 2 ⎠ Baø i 81 : Cho phöông trình ( cos x + 1)( cos 2x − m cos x ) = m sin 2 x ( *) a/ Giaû i (*) khi m= -2 ⎡ 2π ⎤ b/ Tìm m sao cho (*) coù ñuù n g hai nghieä m treâ n ⎢0, ⎥ ⎣ 3⎦ Ta coù (*) ⇔ ( cos x + 1) ( 2 cos2 x − 1 − m cos x ) = m (1 − cos2 x ) ⇔ ( cos x + 1) ⎡2 cos2 x − 1 − m cos x − m (1 − cos x ) ⎤ = 0 ⎣ ⎦ ⇔ ( cos x + 1) ( 2 cos2 x − 1 − m ) = 0 a/ Khi m = -2 thì (*) thaø n h : ( cos x + 1) ( 2 cos2 x + 1) = 0 ⇔ cosx = -1 ⇔ x = π + k2π ( k ∈ Z ) ⎡ 2π ⎤ ⎡ 1 ⎤ b / Khi x ∈ ⎢ 0, ⎥ thì cos x = t ∈ ⎢ − ,1⎥ ⎣ 3⎦ ⎣ 2 ⎦ ⎡ 1 ⎤ Nhaä n xeù t raè n g vôù i moãi t treâ n ⎢ − ,1⎥ ta chæ tìm ñöôï c duy nhaát moä t x treân ⎣ 2 ⎦ ⎡ 2π ⎤ ⎢0, 3 ⎥ ⎣ ⎦ ⎡ 1 ⎤ Yeâ u caà u baø i toaù n ⇔ 2t 2 − 1 − m = 0 coù ñuù n g hai nghieä m treâ n ⎢ − ,1⎥ ⎣ 2 ⎦
- Xeù t y = 2t 2 − 1 ( P ) vaø y = m ( d ) Ta coù y’ = 4t ⎡ 2π ⎤ Vaäy (*) coù ñuù n g hai nghieä m treân ⎢0, ⎥ ⎣ 3⎦ ⎡ 1 ⎤ ⇔ (d) caé t (P) taï i hai ñieå m phaân bieä t treân ⎢ − ,1⎥ ⎣ 2 ⎦ 1 ⇔ −1 < m ≤ 2 2 Baø i 82 : Cho phöông trình (1 − a ) tg 2 x − + 1 + 3a = 0 (1) cos x 1 a/ Giaû i (1) khi a = 2 ⎛ π⎞ b/ Tìm a ñeå (1) coù nhieà u hôn moä t nghieä m treâ n ⎜ 0, ⎟ ⎝ 2⎠ π Ñieà u kieän : cos x ≠ 0 ⇔ x ≠ + kπ 2 (1) ⇔ (1 − a ) sin x − 2 cos x + (1 + 3a ) cos2 x = 0 2 ⇔ (1 − a ) (1 − cos2 x ) − 2 cos x + (1 + 3a ) cos2 x = 0 ⇔ 4a cos2 x − 2 cos x + 1 − a = 0 ⇔ a ( 4 cos2 x − 1) − ( 2 cos x − 1) = 0 ⇔ ( 2 cos x − 1) ⎡a ( 2 cos x + 1) − 1⎤ = 0 ⎣ ⎦ 1 ⎛ 1⎞ a/ Khi a = thì (1) thaø n h : ( 2 cos x − 1) ⎜ cos x − ⎟ = 0 2 ⎝ 2⎠ 1 π ⇔ cos x = = cos ( nhaä n do cos x ≠ 0 ) 2 3 π ⇔ x = ± + k2π ( k ∈ Z ) 3 ⎛ π⎞ b/ Khi x ∈ ⎜ 0, ⎟ thì cos x = t ∈ ( 0,1) ⎝ 2⎠
- ⎡ 1 cos x = t = ∈ ( 0,1) Ta coù : (1) ⇔ ⎢ 2 ⎢ ⎢2a cos x = 1 − a ( 2) ⎣ ⎧ ⎪a ≠ 0 ⎪ ⎧1 ⎫ ⎪ 1−a Yeâ u caà u baø i toaù n ⇔ (2) coù nghieäm treâ n ( 0,1) \ ⎨ ⎬ ⇔ ⎨0 < 0 ⎧1 ⎪ 2a ⎪ ⎪ 1 ⎪
- Thì y ' = −4t + 3 Yeâ u caà u baø i toaù n ⇔ (d) y = m caé t taï i hai ñieå m phaân bieä t treân [ 0,1] 17 ⇔2 ≤ m < 8 Caù c h khaù c :ñaë t f (x) = 2t 2 − 3t + m − 1 . Vì a = 2 > 0, neâ n ta coù ⎧Δ =17 − 8m > 0 ⎪ ⎪ f (0) = m −1≥ 0 ⎪ 17 Yeâu caàu baø i toaùn ⇔ ⎨ f (1) = m − 2 ≥ 0 ⇔ 2 ≤ m < ⎪ 8 S 3 ⎪ 0 ≤ = ≤1 ⎪ ⎩ 2 4 Baø i 84 : Cho phöông trình 4 cos5 x.sin x − 4 sin 5 x cos x = sin 2 4x + m (1 ) a/ Bieá t raè n g x = π laø nghieä m cuû a (1). Haõ y giaû i (1) trong tröôøn g hôï p ñoù . π b/ Cho bieá t x = − laø moä t nghieä m cuû a (1). Haõ y tìm taá t caû nghieä m cuûa (1) thoûa 8 x − 3x + 2 < 0 4 2 (1) ⇔ 4 sin x cos x ( cos4 x − sin 4 x ) = sin 2 4x + m ⇔ 2 sin 2x ( cos2 x − sin 2 x )( cos2 x + sin 2 x ) = sin 2 4x + m ⇔ 2 sin 2x.cos 2x = sin 2 4x + m ⇔ sin 2 4x − sin 4x + m = 0 (1) a/ x = π laø nghieäm cuû a (1) ⇒ sin2 4π − sin 4π + m = 0 ⇒m = 0 Luù c ñoù (1) ⇔ sin 4x (1 − sin 4x ) = 0 ⇔ sin 4x = 0 ∨ sin 4x = 1 π ⇔ 4x = kπ ∨ 4x = + k2π 2 kπ π kπ ⇔x = ∨x= + ( k ∈ Z) 4 8 2 ⎧t = x2 ≥ 0 ⎪ ⎧t = x2 ≥ 0 b/ x − 3x + 2 < 0 ⇔ ⎨ 2 4 2 ⇔ ⎨ ⎪t − 3t + 2 < 0 ⎩ ⎩1 < t < 2
- ⇔ 1 < x2 < 2 ⇔ 1 < x < 2 ⇔ − 2 < x < −1 ∨ 1 < x < 2 ( * ) π ⎛ π⎞ x=− thì sin 4x = sin ⎜ − ⎟ = −1 8 ⎝ 2⎠ π x = − laø nghieä m cuû a (1) ⇒ 1 + 1 + m = 0 8 ⇒ m = −2 Luù c ñoù (1) thaø n h : sin2 4x − sin 4x − 2 = 0 ⎧t = sin 4x ( vôù i t ≤ 1) ⎪ ⇔⎨ ⎪t − t − 2 = 0 2 ⎩ ⎧t = sin 4x ( vôù i t ≤ 1) ⎪ ⇔⎨ ⎪t = −1 ∨ t = 2 ( loaï i ) ⎩ ⇔ sin 4x = −1 π ⇔ 4x = − + k2π 2 π kπ ⇔x = − + 8 2 Keá t hôï p vôùi ñieà u kieä n (*) suy ra k = 1 π π 3π Vaäy (1) coù nghieäm x = − + = thoû a x4 − 3x2 + 2 < 0 8 2 8 Baø i 85 : Tìm a ñeå hai phöông trình sau töông ñöông 2 cos x.cos 2x = 1 + cos 2x + cos 3x (1 ) 4 cos2 x − cos 3x = a cos x + ( 4 − a )(1 + cos 2x ) ( 2) Ta coù : (1) ⇔ cos 3x + cos x = 1 + cos 2x + cos 3x ( ⇔ cos x = 1 + 2 cos2 x − 1 ) ⇔ cos x (1 − 2 cos x ) = 0 1 ⇔ cos x = 0 ∨ cos x = 2 ( ) Ta coù : (2) ⇔ 4 cos x − 4 cos x − 3 cos x = a cos x + ( 4 − a ) 2 cos2 x 2 3 ⇔ 4 cos3 x + ( 4 − 2a ) cos2 x ( a − 3) cos x = 0 ⎡cos x = 0 ⇔⎢ ⎢4 cos x + 2 ( 2 − a ) cos x + a − 3 = 0 2 ⎣ ⎛ 1⎞ ⇔ cos x = 0 hay ⎜ cos x − ⎟ [ 2 cos x + 3 − a ] = 0 ⎝ 2⎠ 1 a−3 ⇔ cos x = 0 ∨ cos x = ∨ cos x = 2 2
- Vaä y yeâ u caà u baø i toaù n ⎡a − 3 ⎢ 2 =0 ⎢ ⎡a = 3 ⇔ ⎢a − 3 = 1 ⇔ ⎢a = 4 ⎢ 2 2 ⎢ ⎢a − 3 a−3 ⎣a < 1 ∨ a > 5 ⎢ ⎢ < −1 ∨ >1 ⎢ 2 ⎣ 2 Baø i 86 : Cho phöông trình : cos4x = cos2 3x + asin 2 x (*) a/ Giaû i phöông trì nh khi a = 1 ⎛ π ⎞ b/ Tìm a ñeå (*) coù nghieä m treâ n ⎜ 0, ⎟ ⎝ 12 ⎠ 1 a Ta coù : ( *) ⇔ cos 4x = (1 + cos 6x ) + (1 − cos 2x ) 2 2 ( ) ⇔ 2 2 cos 2x − 1 = 1 + 4 cos 2x − 3 cos 2x + a (1 − cos 2x ) 2 3 ⎧t = cos 2x ⎪ ( t ≤ 1) ⇔⎨ ⎩ 2 ( 3 ) ⎪2 2t − 1 = 1 + 4t − 3t + a (1 − t ) ⎧t = cos 2x ⎪ ( t ≤ 1) ⇔⎨ ⎪−4t + 4t + 3t − 3 = a (1 − t ) 3 2 ⎩ ⎧1 = cos 2x ⎪ ( t ≤ 1) ⇔⎨ ( ) ⎪( t − 1) −4t + 3 = a (1 − t ) ( * *) ⎩ 2 a/ Khi a = 1 thì (*) thaø n h : ⎪t = cos 2x ( t ≤ 1) ⎧ ⇔⎨ ⎪t = cos 2x ⎧ (t ≤ 1) ⎨ ⎩ ( ⎪( t − 1) −4t + 4 = 0 2 ) ⎩t = ±1 ⎪ ⇔ cos 2x = ±1 ⇔ cos2 2x = 1 kπ ⇔ sin 2x = 0 ⇔ 2x = kπ ⇔ x = , ( k ∈ Z) 2 ⎛ π ⎞ ⎛ π⎞ ⎛ 3 ⎞ b/ Ta coù : x ∈ ⎜ 0, ⎟ ⇔ 2x ∈ ⎜ 0, ⎟ .Vaä y cos 2x = t ∈ ⎜ ⎜ 2 ,1 ⎟ ⎟ ⎝ 12 ⎠ ⎝ 6⎠ ⎝ ⎠ ( ) Vaä y (**) ⇔ ( t-1) −4t 2 + 3 = a (1 − t ) ⇔ 4t 2 − 3 = a ( do t ≠ 1) ⎛ 3 ⎞ Xeù t y = 4t 2 − 3 ( P ) treâ n ⎜ ⎜ 2 ,1 ⎟ ⎟ ⎝ ⎠ ⎛ 3 ⎞ ⇒ y ' = 8t > 0 ∀t ∈ ⎜ ⎜ 2 ,1 ⎟ ⎟ ⎝ ⎠
CÓ THỂ BẠN MUỐN DOWNLOAD
-
10 PHẢN XẠ HAY DÙNG KHI GIẢI PHƯƠNG TRÌNH LƯỢNG GIÁC TRONG KỲ THI ĐẠI HỌC
11 p | 842 | 219
-
Bài tập hệ thức lượng giác
16 p | 526 | 99
-
200 phương trình lượng giác
5 p | 522 | 88
-
Toán học lớp 11: Một số dạng phương trình lượng giác thường gặp (phần 3) - Thầy Đặng Việt Hùng
3 p | 243 | 76
-
Luyện thi Đại học - Chuyên đề 3: Phương trình lượng giác (Đặng Thanh Nam)
54 p | 160 | 40
-
Chuyên đề lượng giác - Lê Quốc Bảo
14 p | 247 | 39
-
PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN ( 3 tiết)
6 p | 344 | 37
-
Luyện thi ĐH môn Toán: Nguyên hàm lượng giác (Phần 3) - Thầy Đặng Việt Hùng
1 p | 251 | 35
-
Đại số sơ cấp (Phần 3): Lượng giác
48 p | 73 | 14
-
CÔNG THỨC LƯỢNG GIÁC -2
3 p | 190 | 13
-
Hình học lớp 9 Tiết 6: TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN
9 p | 288 | 9
-
§ 1.GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC BẤT KỲ ( Từ 00 đến 1800)
5 p | 169 | 8
-
Chuyên đề: Sử dụng máy tính cầm tay giải nhanh trắc nghiệm lượng giác - Trần Anh Khoa
25 p | 19 | 8
-
Công thức lượng giác
3 p | 128 | 6
-
Tài liệu tự học Toán lớp 11: Hàm số lượng giác và phương trình lượng giác - Trần Quốc Nghĩa
107 p | 21 | 6
-
§2. TỈ SỐ LƯỢNG GIÁC CỦA GÓC NHỌN
6 p | 224 | 5
-
Bài giảng Toán 10 - Bài 3: Công thức lượng giác
18 p | 83 | 5
-
Giáo án Toán 9 theo phương pháp mới - Chủ đề: Tỉ số lượng giác của góc nhọn
4 p | 39 | 3
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn