Upload
Nâng cấp VIP
Trang chủ » Công Nghệ Thông Tin » Cơ sở dữ liệu
55 trang
33 lượt xem
0
0

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Child Mind Institute - Problematic Internet Use

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Child Mind Institute - Problematic Internet Use trình bày việc phân tích dữ liệu để phát hiện hành vi sử dụng Internet có vấn đề ở trẻ em. Thuyết trình tập trung vào xử lý đặc trưng, xây dựng mô hình và đánh giá kết quả. Đề tài mang ý nghĩa thực tiễn trong giáo dục và chăm sóc sức khỏe tâm lý trẻ nhỏ. Mời các bạn cùng tham khảo để biết thêm chi tiết!

Từ khoá:

hoatrongguong03

Khai thác dữ liệu

Ứng dụng khai thác dữ liệu

Data Mining and Application

Sử dụng Internet không lành mạnh

Phân tích dữ liệu hành vi trẻ em

Mô hình phát hiện vấn đề tâm lý

Khai thác đặc trưng dữ liệu giáo dục

Share
/
55

Có thể bạn quan tâm

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

Bài giảng Khai thác dữ liệu và ứng dụng: Tổng quan về khóa học và Giới thiệu về khai thác dữ liệu

42 trang
Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

Bài giảng Khai thác dữ liệu và ứng dụng: Tiền xử lý dữ liệu (Data Pre-Processing)

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Logistic Regression

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Decision Tree

18 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Artificial neural network for classification

33 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Partitioning Method K-Means

37 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Hierarchical Clustering

32 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based method

34 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Khai thác dữ liệu (Frequent Patterns Mining)

51 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Sequential Pattern Mining

44 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Trajectory Data Mining

53 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Linear Models For Anomaly Detection

45 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Density-based anomaly detection

25 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): DNN-Based Anomaly Detection

42 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Anime Recommendation-System

50 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): COMPAS Recidivism Racial Bias

48 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Loan approval prediction

20 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Các phương pháp khai thác dữ liệu trong phát triển hệ thống hỏi-đáp y tế

35 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Abstractive News Summarization for Vietnamese

31 trang
Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

Bài thuyết trình Ứng dụng khai thác dữ liệu (Data Mining and Application): Phân tích cảm xúc văn bản Tiếng Việt

37 trang

Tài liêu mới

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

Bài giảng Kỹ thuật tài liệu hóa hệ thống - Nguyễn Bích Liên

43 trang
Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

Bài giảng Yếu tố con người: Chương 2 - Các mô hình khái niệm về sự cố, tai nạn và mối liên quan với công tác kiểm soát không lưu

49 trang
Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

Bài giảng Yếu tố con người: Chương 3 - Các dạng và bản chất của sai sót có liên quan tới việc cung cấp ATS

42 trang
Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

Bài giảng Yếu tố con người: Chương 4 - Khả năng nhận thức và giới hạn của con người trong môi trường ĐHB

88 trang
Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

Câu hỏi ôn tập Cấu trúc dữ liệu và giải thuật

24 trang
Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

Câu hỏi ôn tập Cơ sở dữ liệu có đáp án

14 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 8 - Nguyễn Mạnh Sơn

44 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 7 - Nguyễn Mạnh Sơn

20 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 6 - Nguyễn Mạnh Sơn

27 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 5 - Nguyễn Mạnh Sơn

30 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 4 - Nguyễn Mạnh Sơn

40 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 3 - Nguyễn Mạnh Sơn

35 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 2 - Nguyễn Mạnh Sơn

12 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Bài 1 - Nguyễn Mạnh Sơn

34 trang
Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

Bài giảng Cấu trúc dữ liệu và giải thuật: Giới thiệu môn học - Nguyễn Mạnh Sơn

32 trang

AI tóm tắt

- Giúp bạn nắm bắt nội dung tài liệu nhanh chóng!

Giới thiệu tài liệu

Tài liệu này cung cấp một cái nhìn tổng quan về việc sử dụng Internet có vấn đề và các yếu tố liên quan. Nó bao gồm giới thiệu về vấn đề, phân tích dữ liệu khám phá (EDA) của các đặc trưng, tiền xử lý dữ liệu, xây dựng mô hình, đánh giá mô hình và trình diễn.

Đối tượng sử dụng

Sinh viên, nhà nghiên cứu

Từ khoá chính

Internet UseChild Mind InstituteKhai Thác Dữ LiệuỨng DụngProblematic Internet Use

Nội dung tóm tắt

Tài liệu này trình bày chi tiết về việc phân tích và mô hình hóa dữ liệu liên quan đến việc sử dụng Internet có vấn đề. Nó bắt đầu bằng việc giới thiệu về vấn đề và mô tả bộ dữ liệu được sử dụng, bao gồm các thông tin về số lượng mẫu, độ tuổi của đối tượng và các biến số có sẵn. Phần EDA tập trung vào việc khám phá các đặc trưng quan trọng như chỉ số suy giảm mức độ nghiêm trọng (SII), tổng điểm PCIAT, và giờ sử dụng Internet, cũng như mối tương quan giữa chúng và các yếu tố khác như tuổi và giới tính. Quá trình tiền xử lý dữ liệu bao gồm việc loại bỏ các cột không cần thiết, xử lý các giá trị bị thiếu và dữ liệu sai lệch, cũng như áp dụng các kỹ thuật feature engineering để cải thiện hiệu suất mô hình. Các mô hình học máy như XGBoost, Random Forest và Neural Network được sử dụng để dự đoán việc sử dụng Internet có vấn đề, và hiệu suất của chúng được đánh giá bằng các độ đo như accuracy, precision, recall và f1-score. Kết quả cho thấy Neural Network cho hiệu suất tốt nhất sau khi áp dụng feature engineering.

Giới thiệu

Về chúng tôi

Việc làm

Quảng cáo

Liên hệ

Chính sách

Thoả thuận sử dụng

Chính sách bảo mật

Chính sách hoàn tiền

DMCA

Hỗ trợ

Hướng dẫn sử dụng

Đăng ký tài khoản VIP

Zalo/Tel:

093 303 0098

Email:

support@tailieu.vn

Phương thức thanh toán

Layer 1

Theo dõi chúng tôi

Facebook

Youtube

TikTok

Chịu trách nhiệm nội dung: Nguyễn Công Hà. ©2025 Công ty TNHH Tài Liệu trực tuyến Vi Na.
Địa chỉ: 54A Nơ Trang Long, P. Bình Thạnh, TP.HCM - Điện thoại: 0283 5102 888 - Email: info@tailieu.vn
Giấy phép Mạng Xã Hội số: 670/GP-BTTTT cấp ngày 30/11/2015