XÂY DỰNG MÔ HÌNH CẤU TRÚC 3 CHIỀU CHO CẤU TẠO DẦU KHÍ
lượt xem 68
download
Sự minh giải tài liệu chấn 3 chiều cho cơ hội để đưa ra các bản đồ cấu trúc dưới sâu mặt đất. Ngoài ra, sự kết hợp minh giải tài liệu địa chấn với tài liệu địa vật lý giếng khoan sẽ cung cấp thêm những thông tin đáng tin cậy đệ thông hiệu tốt các cấu trúc sâu, đặc biệt là xác định các đứt gãy và đới nứt nẻ.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: XÂY DỰNG MÔ HÌNH CẤU TRÚC 3 CHIỀU CHO CẤU TẠO DẦU KHÍ
- Hội nghị khoa học và công nghệ lần thứ 9, Trường Đại học Bách khoa Tp. HCM, 11/10/2005 XÂY DỰNG MÔ HÌNH CẤU TRÚC 3 CHIỀU CHO CẤU TẠO DẦU KHÍ DỰA VÀO TÀI LIỆU ĐỊA CHẤN VÀ ĐỊA VẬT LÝ GIẾNG KHOAN CONSTRUCTING A 3-D STRUCTURAL MODEL OF AN OIL & GAS PROSPECT BASED ON SEISMIC AND WELL LOG DATA Hồ Trọng Long*, Bùi Thị Thanh Huyền**, Keisuke Ushijima1*** * Khoa Kỹ thuật Địa chất và Dầu khí, Đại học Bách Khoa Tp.Hồ Chí Minh, Việt Nam ** Department of Civil and Earth Resources Engineering, Kyoto University, Japan *** Exploration Geophysics Laboratory, Graduate School of Engineering, Kyushu University, Japan --------------------------------------------------------------------------------------------------------------------------- TÓM TẮT Sự minh giải tài liệu địa chấn 3 chiều cho cơ hội để đưa ra các bản đồ cấu trúc dưới sâu mặt đất. Ngoài ra, sự kết hợp minh giải tài liệu địa chấn với tài liệu địa vật lý giếng khoan sẽ cung cấp thêm những thông tin đáng tin cậy để thông hiểu tốt các cấu trúc sâu, đặc biệt là xác định các đứt gãy và các đới nứt nẻ. Trong nghiên cứu này, chúng tôi đã sử dụng một kỹ thuật tính toán dựa vào máy tính gọi là “Mạng Nơron” để tính độ rỗng của vỉa với độ chính xác cao. Các giá trị độ rỗng có thể thành lập được các bản đồ phân bố độ rỗng cho một cấu tạo dầu khí. Chúng tôi nhận thấy rằng, các đới có độ rỗng cao gắn liền với các đứt gãy và các đới nứt nẻ. Vì vậy, sự hiệu chỉnh giữa các bản đồ phân bố độ rỗng và kết quả minh giải tài liệu địa chấn có thể xác định các đứt gãy và các đới nứt nẻ với độ tin cậy cao hơn. Từ đó, mô hình cấu trúc 3 chiều sẽ được thành lập, thể hiện các hình dạng cấu trúc và kiến tạo cho việc đánh giá tiềm năng hydrocarbon. Chúng tôi đã sử dụng tài liệu của cấu tạo dầu khí A2-VD ở thềm lục địa phía Nam Việt Nam cho bài báo này. Các kết quả thu được đã cung cấp những thông tin rất có giá trị cho việc nhận diện vị trí các giếng khoan và khai thác, cũng như cho sự phát triển của cấu tạo này trong tương lai. ABSTRACT Interpretation of three-dimensional (3-D) seismic data gives an opportunity to generate deep subsurface structure maps. Furthermore, combination of seismic with well-logging data interpretation will provide more reliable information for good understanding of deep structures, especially faults and fractured zones prediction. In this study, we used a computing technique based on computer program named “Neural Network”, to predict porosity of reservoirs with high accuracy. Porosity values can build porosity contribution maps for an oil & gas prospect. We found that, the zones with high porosity relate to the faults and fractured zones. Therefore, the correction between porosity distribution maps and results of seismic data interpretation can used to predict faults and fractured zones with higher reliability. Hence, 3-D structural model will be constructed, revealed structural and tectonic configurations for hydrocarbon potential assessment. We used data of A2-VD oil & gas prospect, southern offshore Vietnam, for this paper. Achieved results provided very valuable information for the identification of drilling and production well location, as well as development of the prospect in the future. 145
- Hội nghị khoa học và công nghệ lần thứ 9, Trường Đại học Bách khoa Tp. HCM, 11/10/2005 1. INTRODUCTION study area as presented in Figure 2 (JVPC, 2000 and 2001). A2-VD oil prospect, located in Cuu Long basin (Figure 1), southern offshore Vietnam is a 2. THREE-DIMENSIONAL (3-D) SEISMIC main target area for oil and gas exploration in DATA INTERPRETATION OF A2-VD Viet Nam with the major reservoir is fractured PROSPECT granite basement (PV, 1998). The Cuu Long basin that was formed during Cenozoic Era In this research, we conducted seismic under the influence of India-Eurasian collision interpretation of a volume cube for 3-D seismic generating the South China Sea spreading, is the data in the area 12.5 x 6 km2 with 345 inlines most prospective hydrocarbon basin in offshore and 320 crosslines. The major seismic sequences Vietnam (Phuong, 1997), especially the A2-VD in each section were determined by correlation oil prospect in Block 15-2 is of particular with stratigraphy derived from the wells in the interest. study area (JVPC, 2000 and 2001). The interpretation was carried out using the basic The sedimentary stratigraphy of this basin is concepts for seismic stratigraphy interpretation divided into several sequences: basement (Pre- (Badley, 1985; Vail et al., 1977). Figure 3 shows Tertiary), sequence E (Lower Oligocene to the seismic data interpretation in selected Eocene), D (Upper Oligocene), C (Early sections. Miocene), B1 (Middle Miocene), and younger sequences (B2 and A). The stratigraphy correlates with wells VD-1X, VD-2X in the Figure 1 Location of the A2-VD prospect Figure 2 Stratigraphy and wells correlation of (Modified from PV, 1998; JVPC, 2001) Block 15-2 (A2) (after JVPC, 2000) Figure 3 Seismic data interpretation in selected sections 146
- Hội nghị khoa học và công nghệ lần thứ 9, Trường Đại học Bách khoa Tp. HCM, 11/10/2005 3. POROSITY DISTRIBUTIONS USING process of NN, we applied the most common NEURAL NETWORK learning law, back-propagation, as a training law The architecture of NN we used as shown in to reduce the errors (Lippman, 1987). However, Figure 4 with one input layer composed of six back-propagation includes several kinds of nodes. These six nodes represent the response of paradigms such as on-line back-propagation, neutron, density, sonic, resistivity (LLS, LLD batch back-propagation, delta-bar-delta, resilient and MSFL). propagation (RPROP) and quick propagation (Werbos, 1994). The most successful paradigm Processing elements used in this study are batch back-propagation. NPHI (PE) Connection By using batch back-propagation paradigm, weights figure 5 shows the RMS errors as a function of Density training and testing data set patterns of NN, that all of them are lower than 0.1. Porosity or Sonic Permeability The data used for the network design are taken from various wells in A2-VD oil prospect. LLS Output layer We used derived NN to predict porosity from logs data of all wells in A2-VD oil prospect. Comparison of NN predictions and log LLD Hidden layer predictions with core data are displayed in Figure 6 as a selection of well A2-VD-1X. It MSFL shows the results in the cored reservoir intervals, Input layer in that NN method is more efficient than Figure 4 Architecture of neural network used in this study conventional log method. Porosity values versus depth of all wells in study area were used to A single hidden layer has five nodes and the reveal the distribution maps of them. Figure 7 output layer has only one node represents shows the porosity distribution in the upper 100 porosity. With data of this study area, more meters of the basement. hidden layers or more neurons of each layer is The porosity distributions was correlated ineffective and make more complex calculation. with seismic data interpretation for faults and For training NN, we used training data set which fracture zones identification (Figures 7, 8 and 9) is a data set of 6 inputs parameters from well log because the zones of good porosity are related to data and 1 output parameter is porosity that was faults. Hence, 3-D structural models are able to selected from core samples. During training constructed reliably. (a) (b) RMS Error Vs. Pattern RMS Error Vs. Pattern for all Nodes for all Nodes 0.11 0.11 0.09 0.09 Training Data Testing Data 0.07 0.07 Error Error 0.04 0.04 0.02 0.02 0.00 0.00 1 9 17 25 33 41 49 57 65 70 1 5 9 13 17 21 25 27 Pattern # Pattern # Figure 5 RMS errors as a function of training and testing data set patterns of porosity NN for (a) the training data set; (b) the testing data set 147
- Hội nghị khoa học và công nghệ lần thứ 9, Trường Đại học Bách khoa Tp. HCM, 11/10/2005 0.39 0.36 0.33 0.3 0.27 p o ro s it y (% ) 0.24 CORE porosity 0.21 0.18 NN porosity 0.15 LOG porosity 0.12 0.09 0.06 0.03 0 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 depth (m) Figure 6 Comparison of porosity predicted by Figure 7 Porosity distribution combined NN and conventional log method to that of with seismic data to predict major faults core samples in a selected well (A2-VD-1X) and fractured zones in the upper 100 meters of the basement Figure 8. Structure of the top basement Figure 9. Structure of the top D horizon corrected with porosity distribution in A2- correctedwith porosity distribution in A2-VD VD prospect prospect 4. CONSTRUCTION 3-D STRUCTURAL the top of the basement. The faults strongly MODELS OF A2-VD PROSPECT segmented the basement with the location is nearly as the same as the location of high In this study, we focused to construct 3-D porosity distribution from NN. Re-activation of model of the top basement and E sequence, the faults in the Eocene and Lower Oligocene because that are main targets of oil and gas results in basement uplift, completely truncating production in this prospect (JVPC, 2001). the E sequence (Figure 11). Fault activities were A 3-D structural model was prepared using a interpreted meticulously from the seismic PC-based program. The basement is modeled as sections. This uplift shifts the top of the E a Pre-Tertiary formation with a maximum depth sequence from 3000 ms to 2200 ms, and the of 3500 ms and minimum depth (highest point) truncation eliminates the E sequence from the of 2100 ms. basement high. Fault locations from these structural maps are quite coincident with the Figure 10 shows the 3-D structural model for porosity locations obtained by NN. 148
- Hội nghị khoa học và công nghệ lần thứ 9, Trường Đại học Bách khoa Tp. HCM, 11/10/2005 Figure 10. 3-D view of faults and the top Figure 11. 3-D relationship between the basement basement in A2-VD prospect high and the E sequence in A2-VD prospect 5. CONCLUSIONS REFERENCES By using neural network, reliability porosity values can be predicted directly from well log 1. Badley, M. E.,. Practical seismic data. And then, porosity distribution maps were interpretation. International Human combined with seismic data interpretation to Resources Development Corporation, predict faults and fractures zones. Hence, 3-D Boston, USA (1985). structural models were constructed reliably. 2. Japan Vietnam Petroleum Company The 3-D structure models and structural (JVPC). Report for the Block 15-2 prospect, maps prepared based on 3-D seismic data and southern offshore Vietnam (2000), pp. 41- well log data for the A2-VD prospect have 42. revealed the detail subsurface structure of this 3. Japan Vietnam Petroleum Company area. This research provides useful data for oil (JVPC). Report for the Block 15-2 prospect, field development in offshore Vietnam, and will southern offshore Vietnam (2001), pp. 103- be supplemented in the near future with more 104. detailed research on the fault distributions in this area and also illustrated the influence of India- 4. Lippman, R. An introduction to computing Eurasian to the tectonics of Vietnam. These with neural nets, IEEE Transactions on studies thus form the basis for hydrocarbon Acoustics. Speech and Signal Processing, potential assessment in this area, and provide Vol. 4 (1987), pp. 4-22. fundamental data for planning of oil prospects. 5. Long, H.T., Huyen, B.T.T., El-Qady, G., Ushijima, K. Porosity & permeability Acknowledgements estimation in A2-VD oil prospect, southern offshore Vietnam using artificial neural Gratitude is extended to Japan Vietnam networks. Proceedings of Second Annual Petroleum Company (JVPC) and PetroVietnam Petroleum Conference and Exhibition, for providing the data for this research. Egypt (2005), pp. 16. 149
- Hội nghị khoa học và công nghệ lần thứ 9, Trường Đại học Bách khoa Tp. HCM, 11/10/2005 6. PetroVietnam. Report of Cuu Long basin, Thompson, S., III. Seismic stratigraphy and southern offshore Vietnam (1998), pp. 7-8. global changes of sea level, Part 2, The depositional sequence as a basic unit for 7. Phuong, L.T. Lithofacies and depositional stratigraphic analysis: in Seismic environments of the Oligocene sediments of Stratigraphy--Applications to Hydrocarbon the Cuulong basin and their relationship to Exploration, Payton, C. E. (Ed.). AAPG hydrocarbon potential. Proceedings of an Memoirs, Vol. 26, (1977), pp. 53-62. International Conference on Petroleum Systems of Southeast Asia & Australia, 9. Werbos, P.J. The Roots of Back- Jakarta, May 21-23, IPA (1997), pp. 531- Propagation. John Wiley & Sons, Inc 538. (1994), pp. 115-127. 8. Vail, P. R., Mitchum, R. M., Jr. and 150
CÓ THỂ BẠN MUỐN DOWNLOAD
-
XÂY DỰNG MÔ HÌNH, THÀNH LẬP HỆ PHƯƠNG TRÌNH SỬ DỤNG PHẦN MỀM MATLAB XÁC ĐỊNH LỰC DẪN HƯỚNG CỦA ĐẦU MÁY
9 p | 251 | 58
-
Động lực học máy xây dựng - Chương 3
13 p | 116 | 34
-
Phương pháp luận xây dựng mô hình chuẩn đoán hệ thống dẫn động thuỷ lực khí nén
3 p | 111 | 8
-
Xây dựng mô hình robot di động đa hướng
8 p | 16 | 7
-
Ứng dụng mô hình toán Mike21Fm đánh giá hiệu quả công trình bảo vệ bờ ổn định lòng dẫn sau khi xây dựng cống ngăn triều kinh lộ thuộc hệ thống công trình chống ngập cho khu vực thành phố Hồ Chí Minh
7 p | 101 | 5
-
Nghiên cứu ảnh hưởng của các thông số chế độ hàn đến độ bền kéo và kích thước hình học của mối hàn điện xỉ – áp lực ứng dụng trong kỹ thuật cơ khí xây dựng
9 p | 63 | 5
-
Nghiên cứu và xây dựng mô hình thực nghiệm lưới điện một chiều siêu nhỏ
6 p | 11 | 5
-
Nghiên cứu cơ tính vật liệu cấu trúc lưới cho công nghệ in 3D bằng phương pháp phần tử hữu hạn
7 p | 10 | 4
-
Xây dựng mô hình động học trục các đăng trong hệ thống truyền lực xe ô tô tải nhẹ
5 p | 89 | 4
-
Nghiên cứu xây dựng mô hình động học và điều khiển cho động cơ SSBM
6 p | 23 | 3
-
Mô hình quy hoạch xây dựng khu chức năng đặc thù tại Việt Nam - Khu nghiên cứu
4 p | 28 | 3
-
Nghiên cứu, xây dựng mô hình bài toán thuật phóng trong của đạn nhiễu ĐN10.VN-1
8 p | 51 | 3
-
Phương pháp xử lý hiện tượng mô hình quá khớp trong xây dựng mô hình học sâu để ước lượng khả năng chịu tải của giàn phi tuyến
9 p | 88 | 3
-
Xây dựng mô hình dự đoán khả năng chịu lực của cầu trục
9 p | 35 | 2
-
Sử dụng phương pháp biên nhúng (IBM) xây dựng mô hình 3D tính toán khí động cho cánh máy bay
6 p | 56 | 2
-
Nghiên cứu xây dựng mô hình mô phỏng bảng điện chính tàu thủy phục vụ huấn luyện, đào tạo
8 p | 5 | 1
-
Thực hành nghiên cứu máy xây dựng: Phần 2
104 p | 1 | 0
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn