
T¹p chÝ Khoa häc ®hqghn, KHTN & CN, T.xxII, Sè 1PT., 2006
¶nh h−ëng cña Gradient nhiÔu ®éng ¸p suÊt ®Õn m−a
m« pháng
NguyÔn Minh Tr−êng, TrÇn T©n TiÕn
Phßng TN Nghiªn cøu Dù b¸o Thêi tiÕt vµ KhÝ hËu, §HKHTN
334 NguyÔn Tr·i, Thanh Xu©n, Hµ néi
Tãm t¾t. Trong nghiªn cøu nµy mét ph−¬ng tr×nh míi ®· ®−îc x©y dùng thµnh
c«ng ®Ó tÝnh tèc ®é dßng th¨ng trong s¬ ®å tham sè ho¸ ®èi l−u Kain-Fritsch,
trong ®ã gradient th¼ng ®øng cña nhiÔu ®éng ¸p suÊt ®· ®−îc ®−a vµo. Ph−¬ng
tr×nh ®· cho thÊy kh¶ n¨ng cña nã trong viÖc m« pháng c¸c ®ît m−a lín trªn ®Þa
h×nh phøc t¹p, bao gåm l−îng m−a, ph©n bè kh«ng gian vµ ph¸t triÓn theo thêi
gian cña m−a m« pháng. Ngoµi ra c¸c kÕt qu¶ nghiªn cøu còng chØ râ sù cÇn
thiÕt sö dông l−íi tÝnh ®ñ mÞn ®Ó m« pháng vµ dù b¸o m−a lín trªn c¸c ®Þa h×nh
phøc t¹p.
1. Giíi thiÖu
ViÖt Nam ®· tõ l©u ®−îc biÕt ®Õn nh− lµ mét khu vùc cã chÕ ®é thêi tiÕt nhiÖt ®íi
giã mïa ®iÓn h×nh trong khu vùc §«ng Nam ¸. Sù t−¬ng t¸c cña hoµn l−u miÒn nhiÖt
®íi víi ®Þa h×nh vµ hoµn l−u miÒn ngo¹i nhiÖt ®íi ®em l¹i nh÷ng hËu qu¶ thêi tiÕt phøc
t¹p vµ hÕt søc nguy hiÓm. Sù dÞch chuyÓn kinh h−íng theo mïa cña c¸c hÖ thèng hoµn
l−u nhiÖt ®íi, ®Æc biÖt lµ khi chóng ®−îc kÝch ho¹t víi sù hiÖn diÖn cña hÖ thèng miÒn
«n ®íi, vµo c¸c th¸ng chuyÓn tiÕp d−êng nh− ®· trë thµnh “®Þnh mÖnh” tõ n¨m nµy qua
n¨m kh¸c cña thêi tiÕt MiÒn Trung ViÖt Nam. MÆc dï vËy viÖc dù b¸o cho khu vùc l·nh
thæ kh«ng lín nµy l¹i gÆp ph¶i nh÷ng khã kh¨n rÊt lín. Cô thÓ h¬n, trong nh÷ng n¨m
gÇn ®©y, vµ c¶ trong th¸ng 10 n¨m 2005 nµy, c¸c ph−¬ng tiÖn th«ng tin ®¹i chóng liªn
tôc ®−a ra c¸c con sè thèng kª thiÖt h¹i rÊt lín do c¸c h×nh thÕ thêi tiÕt nguy hiÓm g©y
ra cho vïng ®Êt nµy. ¶nh h−ëng cña chóng kh«ng chØ t¸c ®éng ®Õn ®êi sèng sinh ho¹t
cña c− d©n ®Þa ph−¬ng mµ cßn lµm ¶nh h−ëng tíi kÕ ho¹ch ph¸t triÓn kinh tÕ x· héi
cña trung −¬ng vµ ®Þa ph−¬ng.
T×nh h×nh trë nªn phøc t¹p h¬n khi MiÒn Trung ViÖt Nam lµ vïng l·nh thæ hÑp,
®−îc giíi h¹n phÝa t©y bëi d·y Tr−êng S¬n cã ®é cao kho¶ng 1000-2000 mÐt. Do vËy c¸c
s«ng ë ®©y rÊt dèc, cã thêi gian tËp trung n−íc nhá. V× thÕ kh«ng cã g× ®¸ng ng¹c nhiªn
lµ sau b¶n tin dù b¸o thêi tiÕt víi kh¶ n¨ng m−a lín bao giê còng lµ b¶n tin dù b¸o
thñy v¨n víi c¶nh b¸o lò, lò quÐt vµ s¹t lë ®Êt. Tuy nhiªn c¸c b¶n tin dù b¸o h¹n ng¾n,
chñ yÕu dïng ph−¬ng ph¸p synèp, th−êng kh«ng chØ ra ®−îc l−îng m−a tÝch luü cô thÓ,
vµ h¬n n÷a lµ ph©n bè m−a trªn c¸c s−ên dèc vµ l−u vùc s«ng. §©y cã lÏ còng lµ mét
trong c¸c khã kh¨n trong viÖc x©y dùng c¸c ph−¬ng ¸n phßng tr¸nh, cøu hé cña c¸c lùc
l−îng chøc n¨ng.
Bªn c¹nh ph−¬ng ph¸p synèp, trong nh÷ng n¨m gÇn ®©y ë ViÖt Nam ph¸t triÓn
m¹nh mÏ c¸c øng dông cña dù b¸o thêi tiÕt b»ng ph−¬ng ph¸p sè. Thµnh tùu lµ rÊt lín
42

¶nh h−ëng cña Gradient nhiÔu ®éng ¸p suÊt ®Õn m−a m« pháng 43
vµ kh«ng thÓ phñ nhËn nh−ng c¸c nhµ dù b¸o còng kh«ng “l¹” g× c¸c mÆt h¹n chÕ cña
ph−¬ng ph¸p nµy. §iÓm qua cã thÓ thÊy ®ã lµ møc ®é chÝnh x¸c cña c¸c ®iÒu kiÖn ban
®Çu, ®iÒu kiÖn biªn xung quanh lÊy tõ m« h×nh dù b¸o toµn cÇu (®©y lµ khã kh¨n g¾n
víi b¶n chÊt to¸n häc cña c¸c bµi to¸n khÝ t−îng, khÝ hËu). C¸c vÊn ®Ò n¶y sinh cïng
®iÒu kiÖn biªn d−íi ¶nh h−ëng th«ng qua c¸c d¹ng t−¬ng t¸c bÒ mÆt, c¸c s¬ ®å tham sè
ho¸ vËt lý, vµ nhÊt lµ s¬ ®å tham sè ho¸ ®èi l−u.
S¬ ®å tham sè ho¸ ®èi l−u bao th−êng ph¶i gi¶i quyÕt hai mÆt cña mét qu¸ tr×nh
®ã lµ mÆt to¸n häc vµ vËt lý. VÒ mÆt to¸n häc nã lµ c¸ch tÝnh c¸c ¶nh h−ëng cña qu¸
tr×nh qui m« ®èi l−u (®−îc gäi lµ qu¸ tr×nh d−íi l−íi) ®Õn tr¹ng th¸i nhiÖt ®éng lùc cña
dßng trung b×nh, vµ c¸c nhµ khÝ t−îng häc th−êng gäi lµ kÐp kÝn ®èi l−u (Arakawa vµ
Schubert 1974; Kuo 1974; Fritsch vµ Chappell 1980; Tiedtke 1989). VÒ mÆt vËt lý c¸c
nhµ m« h×nh ho¸ th−êng ph¶i x©y dùng m« h×nh m©y kh¸i niÖm, nãi c¸ch kh¸c lµ x©y
dùng c¸c t− duy vËt lý chÆt chÏ vÒ sù xuÊt hiÖn, ph¸t triÓn, vµ suy tµn cña c¸c ®¸m m©y
®èi l−u. Trong qu¸ tr×nh nµy c¸c c¸ch tÝnh c¸c ®Æc tr−ng cña m©y còng nh− c¸c qu¸
tr×nh vËt lý x¶y ra trong m©y còng cÇn ph¶i ®−îc ®−a ra (Frank vµ Cohen 1985;
Raymond vµ Blyth 1986; Kain vµ Fritsch 1990; Mape 2000).
Bªn c¹nh ®ã c¸c hiÖu øng meso-
γ
cña ®Þa h×nh ®Õn cÊu tróc ®éng lùc cña dßng
v−ît ®Þa h×nh nói qui m« meso còng ®· ®−îc nghiªn cøu nhiÒu (Doyle vµ Durran, 2002).
Leutbecher vµ Volkert (2000) sö dông m« h×nh kh«ng thuû tÜnh m« pháng sãng nói víi
®é ph©n gi¶i ngang lµ 12, 4 vµ 1,3 km. C¸c kÕt qu¶ thu ®−îc cho thÊy ®é ph©n gi¶i cao
nhÊt cho kÕt qu¶ tèt nhÊt khi m« pháng biªn ®é cña c¸c c−ìng bøc v−ît ®Þa h×nh, dÞ
th−êng nhiÖt ®é vµ tèc ®é cña c¸c dßng th¨ng vµ gi¸ng. MÆc dï vËy, tån t¹i gi÷a c¸c
h−íng nghiªn cøu cã mét yÕu tè quan träng ¶nh h−ëng tíi c¸ch tÝnh dßng th¨ng trong
c¸c m« h×nh m©y vÉn ch−a ®−îc tÝnh ®Õn, ®ã lµ gradient nhiÔu ®éng ¸p suÊt, mÆc dï ®·
cã nhiÒu b»ng chøng cho thÊy vai trß quan träng cña nã (Klemp vµ Wilhemson 1978
a,b; Finley vµ c¸c §TG 2001; Cai vµ Wakimoto 2001). Nguyªn nh©n lµ do c¸c nhµ khÝ
t−îng ch−a x©y dùng ®−îc ph−¬ng tr×nh tÝnh tèc ®é dßng th¨ng cã tÝnh ®Õn vai trß cña
gradient nhiÔu ®éng ¸p suÊt mét c¸ch t−êng minh. §©y còng chÝnh lµ lý do mµ trong
nghiªn cøu nµy sÏ giíi thiÖu mét ph−¬ng tr×nh míi tÝnh tèc ®é dßng th¨ng, sö dông
gradient cña nhiÔu ®éng ¸p suÊt, cô thÓ cña ph−¬ng ph¸p ®−îc ®−a ra trong phÇn d−íi
®©y (Tr−êng vµ c¸c §TG 2005).
2. Ph−¬ng ph¸p
Trong s¬ ®å tham sè ho¸ ®èi l−u Kain-Fritsch tèc ®é dßng th¨ng ®−îc tÝnh theo
ph−¬ng tr×nh
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
+
=
0
0
2
5.012
1
T
TT
g
dz
dw uu (1)
trong ®ã w, T lµ tèc ®é th¼ng ®øng vµ nhiÖt ®é, c¸c chØ sè “u” chØ dßng th¨ng, “0” chØ m«i
tr−êng qui m« synèp. Trong ph−¬ng tr×nh (1) hÖ sè 0.5 ®−îc ®−a vµo ®Ó gi¶i thÝch cho
vai trß cña gradient th¼ng ®øng cña nhiÔu ®éng ¸p suÊt, mÆc dï nã kh«ng ®−îc gi¶i
thÝch mét c¸ch râ rµng (Anthes, 1977). HÖ sè nµy cho thÊy nã lu«n cã gi¸ trÞ theo mét tû

NguyÔn Minh Tr−êng, TrÇn T©n TiÕn
44
lÖ nhÊt ®Þnh víi lùc næi nh−ng ng−îc dÊu, mÆc dï theo Xu vµ Randall (2001) th× ®iÒu
nµy lµ kh«ng ®óng, nh−ng ®−îc ®−a vµo v× cho ®Õn nay c¸c nhµ khÝ t−îng ch−a t×m
®−îc c¸ch ®−a gradient th¼ng ®øng cña nhiÔu ®éng ¸p suÊt vµo ph−¬ng tr×nh tÝnh tèc
®é dßng th¨ng mét c¸ch t−êng minh.
Theo quan ®iÓm cña c¸c nhµ nghiªn cøu ®èi l−u khÝ quyÓn, khi ph¸t triÓn c¸c s¬
®å tham sè ho¸ ®èi l−u cÇn tr¸nh t¨ng bËc tù do cña s¬ ®å. Hay nãi c¸ch kh¸c c¸c
ph−¬ng tr×nh sö dông trong s¬ ®å cµng cã quan hÖ gÇn gòi víi c¸c ph−¬ng tr×nh nhiÖt
®éng lùc häc cña m« h×nh cµng tèt. Trong nghiªn cøu nµy ®Ó t×m ra ph−¬ng tr×nh míi
tÝnh tèc ®é dßng th¨ng trong s¬ ®å tham sè ho¸ ®èi l−u Kain-Fritsch sö dông cho m«
h×nh RAMS chóng ta xuÊt ph¸t tõ ph−¬ng tr×nh cho dßng Boussinesq dõng, mét chiÒu,
kh«ng rèi nh− sau
z
g
z
w
w∂
′
∂
−
′
=
∂
∂
π
θ
θ
θ
0
0
(2)
trong ®ã
θ
,
π
lµ nhiÖt ®é thÕ vÞ vµ hµm Exner, dÊu g¹ch trªn chØ trung b×nh « l−íi. §Ó
thuËn tiÖn khi tÝnh to¸n dßng th¨ng cÇn biÓu diÔn qua nhiÖt ®é tuyÖt ®èi thay cho nhiÖt
®é thÕ vÞ, dùa trªn mèi quan hÖ gi÷a thÓ tÝch riªng víi c¸c ®Æc tr−ng nhiÖt ®éng lùc
kh¸c (Pielke, 1984)
000 p
p
T
T′
−
′
≈
′
α
α
, ®ång thêi
000 p
p
C
C
p
v
′
−
′
=
′
θ
θ
α
α
sÏ thu ®−îc
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
′
−
′
=
′
p
v
C
C
p
p
T
T1
000
θ
θ
(3)
trong ®ã Cv, Cp,
α
lµ nhiÖt dung ®¼ng tÝch, nhiÖt dung ®¼ng ¸p, vµ thÓ tÝch riªng. §−a
(3) vµo (2) sÏ nhËn ®−îc
zC
C
p
p
T
T
g
z
w
w
p
v
∂
′
∂
−
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
′
−
′
=
∂
∂
π
θ
0
00
1 (4)
Theo ®Þnh nghÜa trung b×nh « l−íi, vµ nhiÔu ®éng qui m« võa (Pielke, 1984) cã thÓ
suy diÔn ph−¬ng tr×nh (4) nh− sau
()
()
()()
()() ()()
z
B
z
A
C
C
p
ppB
T
TTB
g
C
C
p
ppA
T
TTA
g
z
BwAw
BwAw
ru
p
vrr
p
vuuru
ru
∂
−∂
−
∂
−∂
−
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
−
−
−
+
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
−
−
−
=
∂
+∂
+
0
0
0
0
0
0
0
0
0
0
0
0
1
1
ππ
θ
ππ
θ
(5)
trong ®ã A, B lµ tû lÖ diÖn tÝch dßng th¨ng vµ diÖn tÝch ngoµi dßng th¨ng trªn diÖn tÝch
« l−íi vµ A + B =1. ChØ sè “u” chØ dßng th¨ng, “r” chØ c¸c ®Æc tr−ng ngoµi dßng th¨ng.
Trong qu¸ tr×nh suy diÔn ph−¬ng tr×nh (5) ®· sö dông c¸c quan hÖ
0
Φ−Φ=Φ′,ru BA Φ+Φ=Φ , víi
Φ
lµ biÕn bÊt kú. L−u ý r»ng thµnh phÇn thø nhÊt vµ

¶nh h−ëng cña Gradient nhiÔu ®éng ¸p suÊt ®Õn m−a m« pháng 45
thø ba trong vÕ ph¶i cña ph−¬ng tr×nh (5) lµ lùc næi vµ lùc g©y ra bëi gradient th¼ng
®øng cña nhiÔu ®éng ¸p suÊt trong dßng th¨ng (t¹m gäi lµ lùc dßng th¨ng). Thµnh
phÇn thø hai vµ thø t− lµ lùc næi vµ lùc g©y ra bëi gradient th¼ng ®øng cña nhiÔu ®éng
¸p suÊt ngoµi dßng th¨ng (t¹m gäi lµ lùc hÖ thèng). VÕ tr¸i cña ph−¬ng tr×nh (5) cã thÓ
viÕt
()
()
z
Bw
Bw
z
Bw
Aw
z
Aw
Bw
z
Aw
Aw
z
BwAw
BwAw r
r
r
u
u
r
u
u
ru
ru ∂
∂
+
∂
∂
+
∂
∂
+
∂
∂
=
∂
+∂
+ (6)
trong ®ã thµnh phÇn thø nhÊt bªn vÕ ph¶i cña ph−¬ng tr×nh trªn m« t¶ tèc ®é biÕn ®æi
®éng l−îng cña dßng th¨ng theo chiÒu th¼ng ®øng. Thµnh phÇn thø t− m« t¶ tèc ®é
biÕn ®æi ®éng l−îng ngoµi dßng th¨ng theo chiÒu th¼ng ®øng. VÒ mÆt ý nghÜa vËt lý
chóng ph¶i ®−îc g©y ra bëi c¸c lùc t−¬ng øng. So s¸nh víi ph−¬ng tr×nh (29) vµ (30)
trong Lappen vµ Randall (2001) thµnh phÇn thø hai vµ thø ba t−¬ng øng víi dßng thæi
vµo vµ thæi ra, do vËy ph−¬ng tr×nh (6) cã thÓ t¸ch lµm hai thµnh phÇn t−¬ng øng,
trong ®ã cho dßng th¨ng cã thÓ viÕt
()() ()
Ent
z
A
C
C
p
ppA
T
TTA
g
z
Aw
Aw u
p
vuuu
u+
∂
−∂
−
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
−
−
−
=
∂
∂0
0
0
0
0
01
ππ
θ
(7)
Trong ®ã Ent lµ dßng thæi vµo ®· ®−îc tham sè ho¸ trong s¬ ®å gèc, dßng thæi ra
®−îc xem lµ Ýt ¶nh h−ëng ®Õn vËn tèc dßng th¨ng. NÕu gi¶ thiÕt r»ng ¸p suÊt cña dßng
th¨ng thÝch øng ngay víi ¸p suÊt « l−íi (Anthes, 1977) sÏ cã
()
(
)
(
)
Ent
z
A
C
C
p
ppA
T
TTA
g
z
Aw
Aw
p
vuu
u+
∂
−∂
−
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
−
−
−
=
∂
∂0
0
0
0
0
01
ππ
θ
(8)
Víi vÕ ph¶i ®· biÕt, cã thÓ viÕt l¹i (8) d−íi d¹ng mét ph−¬ng tr×nh ®¹o hµm
th−êng d−íi d¹ng quen thuéc
()
(
)
(
)
Ent
z
A
C
C
p
ppA
T
TTA
g
dz
wdA
p
vuu +
∂
−∂
−
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛−
−
−
−
=0
0
0
0
0
0
2
22
1
2
1
ππ
θ
(9)
So s¸nh ph−¬ng tr×nh (1) vµ ph−¬ng tr×nh (9) cã thÓ thÊy sù kh¸c biÖt rÊt lín, bao
gåm:
1. §¸ng l−u ý nhÊt lµ gradient th¼ng ®øng cña nhiÔu ®éng ¸p suÊt ®· ®−îc ®−a
vµo ph−¬ng tr×nh tÝnh tèc ®é dßng th¨ng mét c¸ch t−êng minh, ®iÒu mµ tr−íc ®©y ch−a
x©y dùng ®−îc.
2. Ngoµi ra cÇn chó ý lµ thµnh phÇn lùc næi ®· ®−îc hiÖu chØnh ®i mét l−îng tû lÖ
víi sù chªnh lÖch nhiÖt ®é gi÷a nhiÖt ®é qui m« l−íi vµ qui m« synèp. §iÒu nµy lµ phï
hîp vÒ mÆt vËt lý v× lùc næi trong dßng th¨ng sÏ phô thuéc vµo nhiÖt ®é m«i tr−êng n¬i
mµ nã tån t¹i (tøc lµ nhiÖt ®é « l−íi).

NguyÔn Minh Tr−êng, TrÇn T©n TiÕn
46
3. M« h×nh vµ thùc nghiÖm sè
Trong nghiªn cøu nµy m« h×nh dù b¸o qui m« võa RAMS (The Regional
Atmospheric Modeling System) ®−îc sö dông ®Ó thö nghiÖm dù b¸o m−a cho ®ît m−a
lín tõ 24 ®Õn 26 th¸ng 11 n¨m 2004. C¸c ®Æc ®iÓm to¸n lý c¬ b¶n cña m« h×nh ®−îc m«
t¶ chi tiÕt trong Pielke vµ c¸c §TG (1992) vµ Cotton vµ c¸c §TG (2003). CÊu h×nh l−íi
®−îc x©y dùng ®Ó ®èi chiÕu kÕt qu¶ dù b¸o ®−îc ®−a ra trong B¶ng 1. L−u ý r»ng trong
tr−êng hîp sö dông ba l−íi lång th× s¬ ®å ®èi l−u trong l−íi thø ba ®· ®−îc t¾t, v× l−íi
thø ba cã kÝch th−íc l−íi 2 km chØ ®Ó m« t¶ chi tiÕt dßng v−ît ®Þa h×nh. Tuy nhiªn l−íi
nµy còng bao phñ hÇu hÕt khu vùc cÇn quan t©m.
§iÒu kiÖn ban ®Çu lµ c¸c tr−êng ph©n tÝch toµn cÇu AVN lóc 00Z ®−îc cung cÊp
bëi Trung t©m Quèc gia Dù b¸o M«i tr−êng (NCEP), Hoa Kú, bao gåm hai thµnh phÇn
giã ngang, nhiÖt ®é, ®é Èm t−¬ng ®èi vµ ®é cao ®Þa thÕ vÞ cho 26 mÆt ®¼ng ¸p. §é ph©n
gi¶i ngang cña ®iÒu kiÖn ban ®Çu vµ ®iÒu kiÖn biªn lµ 10 x 10. §iÒu kiÖn biªn ®−îc cËp
nhËt 6 h mét lÇn cho c¸c biÕn dù b¸o trong m« h×nh RAMS, sö dông tr−êng dù b¸o toµn
cÇu AVN. S¬ ®å ®èi l−u bao gåm s¬ ®å Kain-Fritsch gèc vµ s¬ ®å ®· ®−îc c¶i tiÕn c¸ch
tÝnh tèc ®é dßng th¨ng nh− ®· chØ ra trong Môc 2.
B¶ng 1: C¸c thùc nghiÖm sè.
Tr−êng hîp Sè ®iÓm l−íi T©m l−íi KÝch th−íc l−íi S¬ ®å ®èi l−u
I: 94 x 90 150N-1090E 40 km BËt
I
II: 54 x 46 15.50N-108.50E 10 km BËt
I: 94 x 90 150N-1090E 40 km BËt
II: 54 x 46 15.50N-108.50E 10 km BËt
II
III: 147 x 152 15.50N-108.50E 2 km T¾t
4. KÕt qu¶ tÝnh to¸n
Cho ®Õn 00Z ngµy 24 th¸ng 11 n¨m 2004 b·o Muifa ®ang di chuyÓn vÒ phÝa nam
trong khi kh«ng khÝ l¹nh lôc ®Þa Ch©u ¸ ®ang lÊn xuèng phÝa b¾c ViÖt Nam, kÕt qu¶ lµ
t¹o ra mét vïng héi tô giã m¹nh däc bê biÓn MiÒn Trung ViÖt Nam (H×nh 1a) n¬i cã ®Þa
h×nh nói cao thuéc d·y Tr−êng S¬n ch¹y song song víi ®−êng bê (H×nh 1b).