RĐ:Đậu Thế PhiệtNgày: . . . . . . . . . . . . . . . PD:Nguyễn Tiến DũngNgày . . . . . . . . . . . .
Ký tên ....................................... Ký tên .......................................
..........................................................................................................
Đại học Bách khoa-ĐHQG
TPHCM
Khoa Khoa học Ứng dụng
THI GIỮA KỲ Kỳ/năm học II 2023-2024
Ngày thi 04/08/2024
Môn học Môn ĐẠI SỐ TUYẾN TINH
môn học MT1007
Thời gian 50 phút đề 1101
Notes: - Đề thi trắc nghiệm gồm 40 câu/4 trang.
- Sinh viên không được dùng tài liệu. Nộp lại đề thi giấy nháp cho giám thị.
-Mỗi câu trắc nghiệm sai: -1/5 số điểm của câu đó. Nếu không khoanh thì không trừ điểm.
EXAM
..........................................................................................................
(Question 1 to question 3)
Let A="2 1 2 1
3 2 1 2#and B="1m
22#, m R,be two matrices.
..........................................................................................................
Question 1 (L.O.1, L.O.2). Which of the following statements is CORRECT?
A.BA ="3m+ 2 2m+ 1 m2 1 2m
226 6 #.B.A+B="3m+ 1
5 0 #.
C. None of the others. D.BA does not exist. E.AB =
8 2m6
5m4
02m2
3m+ 4
.
Question 2 (L.O.1, L.O.2). Let f(x)=3x22x4be a polynomial. Find f(B).
A.f(B) = "4m55m4
14 4m+ 10 #.
B.f(B) = "4m52m6
3m4 4m+ 10 #.
C.f(B) = "4m52m10
3m8 4m+ 10 #.
D. None of the others.
E.f(B) = "6m35m
10 6m+ 12#.
Question 3 (L.O.1, L.O.2). Given that m= 2. Find a matrix Xsuch that: 2BX = 3A+X.
A.X="64
21
34
21 16
7
6
7
68
21
44
21
4
712
7#.B.X="22
7
13
76
73
7
5
7
2
79
7
6
7#.
C.X=
22
7
5
7
13
7
2
7
6
79
7
3
7
6
7
.D.Xdoes not exist. E. None of the others.
..........................................................................................................
(Question 4 to question 5)
The population of a species is divided into 3 age classes: Class I: from 0 to 3 months old, Class II: from 3
to 6 months old and Class III: from 6 to 9 months old. Suppose that after each 3 months, each individual
in Class I, Class II and Class III produces 1, 6 and 4 offsprings, respectively. The survival rates after each
MSSV: .................Họ và tên SV:.......................................... Trang 1/4 1101
3 months of Class I and Class II are 70% and 90%,respectively. Suppose that at the beginning there are
1000 individuals in Class I (there is no individual in Class II and Class III).
..........................................................................................................
Question 4 (L.O.1, L.O.2). The Leslie transition matrix is
A. None of the others. B.
064
0.7 0 0
0 0.9 0.7
.C.
6 10 6
0.800.7
0.900.1
.
D.
1 6 4
0.700
0 0.9 0
.E.
1 7 5
0.800
0 0.9 0
.
Question 5 (L.O.1, L.O.2). After 1 year, how many individuals are there in Class I? (Round the answer
to the nearest integer).
A. None of the others. B.47900.C.8344.
D.36280.E.3276.
..........................................................................................................
(Question 6 to question 9)
The population of a city is divided into two subgroups: suburb (I) and center (II). According to a survey,
after each year, the probability that a person moves from the suburb to the center is 0.14 and from the
center to the suburb is 0.06.At the initial time, there are 2millions of people living in the suburb and 6
millions of people living in the center. Suppose that the number of people that are born, die and move
between cities is negligible.
..........................................................................................................
Question 6 (L.O.1, L.O.2). Find the Markov transition matrix.
A.A=[[0.860.14][0.060.94]].B.A=[[0.940.14][0.060.86]].C.A=[[0.940.06][0.140.86]].
D.A=[[0.860.06][0.140.94]].E. None of the others.
Question 7 (L.O.1, L.O.2). After 2 years, how many people live in the center?
A. None of the others. B.5.86.C.2.08.
D.5.57.E.2.14.
Question 8 (L.O.1, L.O.2). Suppose that the population distribution reaches equilibrium, find the per-
centage of citizens who live in the center (compared with the total population).
A.40.00%.B. None of the othersc. C.30.00%.
D.50.00%.E.70.00%.
Question 9 (L.O.1, L.O.2). In the vector space M2(R)of all 2×2real matrices, let F={XM2(R)|AX =
X}be a subspace. One basis of Fis
A.("1 1
11#).B.("0.06 0
0.14 0#,"0 0.06
0 0.14#).C.{(6,14)}.
D.("14.0 6.0
14.06.0#).E. None of the others.
..........................................................................................................
(Question 10 to question 11)
Let mbe a real number; x= (2,1,1), u1= (1,2,3), u2= (3,1,3) and u3= (0,1, m)}be vectors in the
vector space R3.
..........................................................................................................
Question 10 (L.O.1, L.O.2). Find all values of msuch that {u1, u2, u3}is a basis of R3.
A.m= 16/5.B. None of the others. C.m= 6/5.
D.m= 11/5.E.m= 1/5.
Question 11 (L.O.1, L.O.2). Find all values of msuch that the vector xis a linear combination of
{u1, u3}.
A.m=5
3.B.m=2
3.C.m=8
3.
MSSV: .................Họ và tên SV:.......................................... Trang 2/4 1101
D. None of the others. E.mdoes not exist.
Question 12 (L.O.1, L.O.2). In the vector space R4,let
F=span{(1,1,2,2),(2,1,1,2),(4,1,1,2)}be a subspace. Find one basis of F.
A.Fhas no basis. B.{(1,1,2,2),(2,1,1,2)}.C. None of the others.
D.{(1,1,2,2),(0,1,3,2),(0,0,0,0)}.E.{(1,1,2,2),(2,1,1,2),(4,1,1,2)}.
(Question 13 to question 14)
..........................................................................................................
In R3,let E={(1,1,2),(3,2,1),(2,1,2)}and F={(2,1,1),(1,1,1),(2,1,2)}be two bases.
..........................................................................................................
Question 13 (L.O.1, L.O.2). Find the transition matrix from Eto F(which is denoted as PFE).
A.PFE=
21 1
12 7 0
74 0
.B.PFE=
3 2 16
3112
2 1 9
.C. None of the others.
D.PFE=
328
3 5 12
113
.E.PFE=
047
0 7 12
112
.
Question 14 (L.O.1, L.O.2). Let uR3be a vector whose coordinate vector with respect to the basis
Eis [u]E=
2
3
4
.Find [u]F.
A.[u]F=
5
3
2
.B.[u]F=
40
69
13
.C.[u]F=
76
57
43
.
D. None of the others. E.[u]F=
44
69
17
.
..........................................................................................................
(Question 15 to question 20)
Let A=
1 1 1 1
2131
0 1 3 2
5m43
, X =
x1
x2
x3
x4
M4×1(R)and b=
5
6
7
10
.
..........................................................................................................
Question 15 (L.O.1, L.O.2). Find all real values of msuch that Ais invertible.
A.m= 1.B.m= 5.C.m= 4.
D.m= 3.E. None of the others.
Question 16 (L.O.1, L.O.2). Find the trace of A·AT
A. None of the others.
B.trace(A·AT) = m2+ 83.
C.trace(A·AT)=3m2+ 241.
D.trace(A·AT) = m2+ 86.
E.trace(A·AT)=2m2+ 161.
Question 17 (L.O.1, L.O.2). Let m= 1 and BM4(R)be a matrix, where det(B) = 2. Find det(2AT·
(B3)1).
A. None of the others. B.det(2AT·(B3)1) = 22.C.det(2AT·(B3)1) = 11.
D.det(2AT·(B3)1) = 11
4.E.det(2AT·(B3)1) = 11
2.
Question 18 (L.O.1, L.O.2). Let m= 2.Which of the following statements about the linear system
AX =bis CORRECT?
A. The system has 4 solutions.
B. The system has a unique solution.
MSSV: .................Họ và tên SV:.......................................... Trang 3/4 1101
C. The system has infinitely many solutions.
D. The system has no solution.
E. None of the others.
Question 19 (L.O.1, L.O.2). With m= 2,let X={xR4|Ax = 0}be a subspace of R4.Find one basis
of X.
A.{(1,1,3,1),(2,1,0,1))}.B.{(1,1,3,2),(3
2,11
4,1
4,1)}.C.Xhas no basis.
D.{(3
2,11
4,1
4,1)}.E. None of the others.
Question 20 (L.O.1, L.O.2). With m= 2,consider the linear system AX =bas in the question 18. Find
all solutions of the above system.
A. None of the others.
B.(3t
2+ 2,215t
4, t + 3,2), t R.
C.(3t
2+ 1,11t
4,9t
4+ 2, t), t R.
D.(3t
2+ 1,211t
4,t
4+ 1, t + 1), t R.
E.(3t
2+ 2,215t
4,5t
4+ 2,2t+ 1), t R.
==================== The end ====================
MSSV: .................Họ và tên SV:.......................................... Trang 4/4 1101
RĐ:Đậu Thế PhiệtNgày: . . . . . . . . . . . . . . . PD:Nguyễn Tiến DũngNgày . . . . . . . . . . . .
Ký tên ....................................... Ký tên .......................................
..........................................................................................................
Đại học Bách khoa-ĐHQG
TPHCM
Khoa Khoa học Ứng dụng
THI GIỮA KỲ Kỳ/năm học II 2023-2024
Ngày thi 04/08/2024
Môn học Môn ĐẠI SỐ TUYẾN TINH
môn học MT1007
Thời gian 50 phút đề 1102
Notes: - Đề thi trắc nghiệm gồm 40 câu/4 trang.
- Sinh viên không được dùng tài liệu. Nộp lại đề thi giấy nháp cho giám thị.
-Mỗi câu trắc nghiệm sai: -1/5 số điểm của câu đó. Nếu không khoanh thì không trừ điểm.
EXAM
..........................................................................................................
(Question 1 to question 3)
Let A="3 1 2 1
2 2 1 2#and B="1m
32#, m R,be two matrices.
..........................................................................................................
Question 1 (L.O.1, L.O.2). Which of the following statements is CORRECT?
A.BA does not exist. B.AB =
3 4 3m
5m4
52m2
7m+ 4
.C.A+B="2m+ 1
5 0 #.
D.BA ="2m3 2m+ 1 m2 1 2m
13 7 4 1 #.E. None of the others.
Question 2 (L.O.1, L.O.2). Let f(x)=3x22x4be a polynomial. Find f(B).
A.f(B) = "9m35m
15 12 9m#.
B.f(B) = "6m55m4
11 10 6m#.
C. None of the others.
D.f(B) = "6m5 9 2m
63m10 6m#.
E.f(B) = "6m5 5 2m
23m10 6m#.
Question 3 (L.O.1, L.O.2). Given that m= 2. Find a matrix Xsuch that: 2BX = 3A+X.
A. None of the others.
B.X="34
19
6
19 32
19
22
19
58
19
46
19
8
19 34
19 #.
C.X=
9
19
30
19
21
19 6
19
48
19
27
19
51
19 18
19
.
D.Xdoes not exist.
E.X="69
19 39
19
18
19
9
19
60
19
24
19 33
19
12
19 #.
MSSV: .................Họ và tên SV:.......................................... Trang 1/4 1102