Moân hoïc Moân hoïc
LYÙ THUYEÁT ÑIEÀU KHIEÅN TÖÏ ÑOÄNG LYÙ THUYEÁT ÑIEÀU KHIEÅN TÖÏ ÑOÄNG
Giaûng vieân: TS. Huyønh Thaùi Hoaøng Boä moân Ñieàu Khieån Töï Ñoäng Khoa Ñieän – Ñieän Töû Ñaïi hoïc Baùch Khoa TP.HCM Email: hthoang@hcmut.edu.vn Homepage: http://www2.hcmut.edu.vn/~hthoang/
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
1
Chöông 4 Chöông 4
ÑAÙNH GIAÙ CHAÁT LÖÔÏNG ÑAÙNH GIAÙ CHAÁT LÖÔÏNG
HEÄ THOÁNG ÑIEÀU KHIEÅN HEÄ THOÁNG ÑIEÀU KHIEÅN
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
2
Noäi dung chöông 4 Noäi dung chöông 4
(cid:145) Caùc tieâu chuaån chaát löôïng (cid:145) Sai soá xaùc laäp (cid:145) Ñaùp öùng quaù ñoä (cid:145) Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä (cid:145) Quan heä giöõa chaát löôïng trong mieàn taàn soá vaø chaát löôïng trong
mieàn thôøi gian
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
3
Caùc tieâu chuaån chaát löôïng Caùc tieâu chuaån chaát löôïng
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
4
Caùc tieâu chuaån chaát löôïng Caùc tieâu chuaån chaát löôïng
Sai soá xaùc laäp Sai soá xaùc laäp
cht(t)
exl r(t)
(cid:145) Sai soá: laø sai leäch giöõa tín hieäu ñaët vaø tín hieäu hoài tieáp.
⇔
te )(
tr )(
t )(
sE )(
)(
=
=
sCsR )( −
c ht−
ht
(cid:145) Sai soá xaùc laäp: laø sai soá cuûa heä thoáng khi thôøi gian tieán ñeán voâ
cuøng.
e
te )(
e
sE
s )(
=
=
⇔
xl
xl
lim t 0 →
lim s 0 →
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
5
exl e(t) t 0
Caùc tieâu chuaån chaát löôïng Caùc tieâu chuaån chaát löôïng
Ñoä voït loá Ñaùp öùng quaù ñoä: Ñoä voït loá Ñaùp öùng quaù ñoä:
(cid:145) Hieän töôïng voït loá: laø hieän töôïng ñaùp öùng cuûa heä thoáng vöôït quaù
giaù trò xaùc laäp cuûa noù.
c(t) c(t)
voït loá cmax
cmax− cxl
cxl cxl
cxl
t khoâng voït loá t
c
(cid:145) Ñoä voït loá: (Percent of Overshoot – POT) laø ñaïi löôïng ñaùnh giaù möùc ñoä voït loá cuûa heä thoáng, ñoä voït loá ñöôïc tính baèng coâng thöùc: −
xl
%100
POT
=
×
c max c
xl
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
6
0 0
Caùc tieâu chuaån chaát löôïng Caùc tieâu chuaån chaát löôïng
Ñaùp öùng quaù ñoä: Thôøi gian quaù ñoä Ñaùp öùng quaù ñoä:
Thôøi gian leân Thôøi gian quaù ñoä –– Thôøi gian leân
(cid:145) Thôøi gian quaù ñoä (tqñ): laø thôøi gian caàn thieát ñeå sai leäch giöõa ñaùp öùng cuûa heä thoáng vaø giaù trò xaùc laäp cuûa noù khoâng vöôït quaù ε%. ε% thöôøng choïn laø 2% (0.02) hoaëc 5% (0.05)
(cid:145) Thôøi gian leân (tr): laø thôøi gian caàn thieát ñeå ñaùp öùng cuûa heä thoáng
taêng töø 10% ñeán 90% giaù trò xaùc laäp cuûa noù.
c(t) c(t)
(1+ε)cxl cxl (1−ε) cxl cxl 0.9cxl
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
7
t t 0.1cxl 0 0 tqñ tr
Sai soá xaùc laäp Sai soá xaùc laäp
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
8
Sai soá xaùc laäp Sai soá xaùc laäp
Bieåu thöùc sai soá xaùc laäp Bieåu thöùc sai soá xaùc laäp
sE )(
=
(cid:145) Ta coù:
sR )( )( sHsG )(
1
+
(cid:145) Suy ra:
e
sE
=
xl
s
lim s 0 →
lim)( s = 0 →
sR s )( )( sHsG )(
1
+
(cid:145) Nhaän xeùt: sai soá xaùc laäp khoâng chæ phuï thuoäc vaøo caáu truùc vaø
thoâng soá cuûa heä thoáng maø coøn phuï thuoäc vaøo tín hieäu vaøo.
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
9
Sai soá xaùc laäp Sai soá xaùc laäp
Sai soá xaùc laäp khi tín hiệu vaøo laø haøm naác Sai soá xaùc laäp khi tín hiệu vaøo laø haøm naác
(cid:145) Neáu tín hieäu vaøo laø haøm naác ñôn vò:
sR
s
/1)( =
e
=
K
sHsG )( )(
=
vôùi
xl
p
(heä soá vò trí)
lim s 0 →
1
1 K +
p
cht(t) cht(t)
1 1
t t
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
10
0 G(s)H(s) khoâng coù khaâu tích phaân lyù töôûng 0 G(s)H(s) coù ít nhaát 1 khaâu tích phaân lyù töôûng
Sai soá xaùc laäp Sai soá xaùc laäp
Sai soá xaùc laäp khi tín hiệu vaøo laø haøm doác Sai soá xaùc laäp khi tín hiệu vaøo laø haøm doác
(cid:145) Neáu tín hieäu vaøo laø haøm naác ñôn vò:
sR
2/1)( s =
K
sG
sHs )( )(
=
vôùi
e
v
(heä soá vaän toác)
lim s 0 →
1 = xl K
v
cht(t) cht(t) cht(t)
r(t) r(t) r(t)
exl ≠0 exl = 0
e(t)→ ∞
G(s)H(s) coù 1 khaâu TPLT
t t t 0
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
11
0 G(s)H(s) coù nhieàu hôn 1 khaâu TPLT 0 G(s)H(s) khoâng coù khaâu TPLT
Sai soá xaùc laäp Sai soá xaùc laäp
Sai soá xaùc laäp khi tín hiệu vaøo laø haøm parabol Sai soá xaùc laäp khi tín hiệu vaøo laø haøm parabol
(cid:145) Neáu tín hieäu vaøo laø haøm parabol:
sR
3/1)( s =
vôùi
e
K
sHsGs )( )(
=
(heä soá gia toác)
a
lim 2 0 s →
1 = xl K
a
cht(t) cht(t) cht(t)
r(t) r(t) r(t)
exl≠0 exl = 0 e(t)→ ∞
G(s)H(s) coù 2 khaâu TPLT
t t t 0
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
12
0 G(s)H(s) coù nhieàu hôn 2 khaâu TPLT 0 G(s)H(s) coù ít hôn 2 khaâu TPLT
Sai soá xaùc laäp Sai soá xaùc laäp
soá xaùc laäp Moái lieân heä giöõa soá khaâu tích phaân trong G(s)H(s) vaø sai soá xaùc laäp Moái lieân heä giöõa soá khaâu tích phaân trong G(s)H(s) vaø sai (cid:145) Tuøy theo soá khaâu tích phaân lyù töôûng coù trong haøm truyeàn G(s)H(s) maø caùc heä soá
Kp, Kv, Ka coù giaù trò nhö sau:
(cid:145) Nhaän xeùt:
(cid:142) Muoán exl cuûa heä thoáng ñoái vôùi tín hieäu vaøo laø haøm naác baèng 0 thì haøm truyeàn
G(s)H(s) phaûi coù ít nhaát 1 khaâu tích phaân lyù töôûng.
(cid:142) Muoán exl cuûa heä thoáng ñoái vôùi tín hieäu vaøo laø haøm doác baèng 0 thì haøm truyeàn
G(s)H(s) phaûi coù ít nhaát 2 khaâu tích phaân lyù töôûng.
(cid:142) Muoán exl cuûa heä thoáng ñoái vôùi tín hieäu vaøo laø haøm parabol baèng 0 thì haøm
truyeàn G(s)H(s) phaûi coù ít nhaát 3 khaâu tích phaân lyù töôûng.
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
13
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
14
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Heä quaùn tính baäc 1 Heä quaùn tính baäc 1
R(s)
C(s)
K 1+Ts
sG )(
=
(cid:145) Haøm truyeàn heä quaùn tính baäc 1:
1
K Ts +
(cid:145) Heä quaùn tính baäc 1 coù moät cöïc thöïc:
p 1 −=
1 T
(cid:145) Ñaùp öùng quaù ñoä:
.
sC )(
sGsR )( )(
=
=
1 s
1
K Ts +
⇒
tc )(
K
1(
/Tte
)
=
−−
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
15
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Heä quaùn tính baäc 1 (tt) Heä quaùn tính baäc 1 (tt)
c(t) Im s
(1+ε).K K (1−ε).K
Re s
0.63K 0 −1/T
Ñaùp öùng quaù ñoä cuûa khaâu quaùn tính baäc 1 taêng theo qui luaät haøm muõ
Giaûn ñoà cöïc –zero cuûa khaâu quaùn tính baäc 1
tc )(
K
1(
/Tte
)
=
−−
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
16
t 0 T tqñ
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Nhaän xeùt veà heä quaùn tính baäc 1 Nhaän xeùt veà heä quaùn tính baäc 1
(cid:145) Heä quaùn tính baäc 1 chæ coù 1 cöïc thöïc (−1/T), ñaùp öùng quaù ñoä
khoâng coù voït loá.
(cid:145) Thôøi haèng T: laø thôøi ñieåm ñaùp öùng cuûa khaâu quaùn tính baäc 1 ñaït
63% giaù trò xaùc laäp.
(cid:145) Cöïc thöïc (−1/T) caøng naèm xa truïc aûo thì thôøi haèng T caøng nhoû,
heä thoáng ñaùp öùng caøng nhanh.
(cid:145) Thôøi gian quaù ñoä cuûa heä quaùn tính baäc 1 laø:
lnT
=
tqñ
1 ε
vôùi ε = 0.02 (tieâu chuaån 2%) hoaëc ε = 0.05 (tieâu chuaån 5%)
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
17
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä quaùn tính baäc 1 Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä quaùn tính baäc 1
(cid:145) Cöïc naèm caøng xa truïc aûo ñaùp öùng cuûa heä quaùn tính baäc 1 caøng
nhanh, thôøi gian quaù ñoä caøng ngaén.
Im s c(t)
K
Re s
0
Giaûn ñoà cöïc –zero cuûa khaâu quaùn tính baäc 1
Ñaùp öùng quaù ñoä cuûa khaâu quaùn tính baäc 1
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
18
t 0
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Heä dao ñoäng baäc 2 Heä dao ñoäng baäc 2
R(s)
C(s)
22 sT
Ts
1
K 2 ξ
+
+
(cid:145) Haøm truyeàn heä dao ñoäng baäc 2:
0 ,
)1
( ω
ξ <<
sG )(
=
=
2
1 = Tn
22 sT
Ts
1
s
+
+
+
K 2 ξ
+
2 K ω n 2 2 s ωξω n
n
(cid:145) Heä dao ñoäng baäc 2 coù caëp cöïc phöùc:
−=
±
2 j 1 ξω
−
ξω n
n
p 2,1
(cid:145) Ñaùp öùng quaù ñoä:
sC )(
sGsR )( )(
.
=
=
2
1 s
s
+
+
2 K ω n 2 2 s ωξω n
tn ξω −
e
⇒
(cos ξθ= )
)( tc
K
sin
) t
2 ( 1 ξω
θ
=
−
−
+
n
[
1
2 ξ
−
n ]
1
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
19
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Heä dao ñoäng baäc 2 (tt) Heä dao ñoäng baäc 2 (tt)
c(t)
Im s
2 j 1 ξω −
n
cos θ= ξ
ωn (1+ε).K K (1−ε).K Re s θ
−
2 j 1 ξω −
n
0 −ξωn
t 0
Giaûn ñoà cöïc –zero cuûa khaâu dao ñoäng baäc 2
Ñaùp öùng quaù ñoä cuûa khaâu dao ñoäng baäc 2
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
20
tqñ
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Nhaän xeùt veà heä dao ñoäng baäc 2 Nhaän xeùt veà heä dao ñoäng baäc 2 (cid:145) Heä dao ñoäng baäc 2 coù caëp cöïc phöùc, ñaùp öùng quaù ñoä coùù daïng dao
ñoäng vôùi bieân ñoä giaûm daàn.
ξ= 0 ξ= 0.2
ξ= 0.4
(cid:142) Neáu ξ= 0, ñaùp öùng cuûa heä laø dao ñoäng khoâng suy giaûm vôùi taàn soá ωn ⇒ ωn goïi laø taàn soá dao ñoäng töï nhieân.
ξ= 0.6
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
21
(cid:142) Neáu 0< ξ<1, ñaùp öùng cuûa heä laø dao ñoäng vôùi bieân ñoä giaûm daàn ⇒ ξgoïi laø heä soá taét (hay heä soá suy giaûm), ξ caøng lôùn (cöïc caøng naèm gaàn truïc thöïc) dao ñoäng suy giaûm caøng nhanh.
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Nhaän xeùt veà heä dao ñoäng baäc 2 Nhaän xeùt veà heä dao ñoäng baäc 2 (cid:145) Ñaùp öùng quaù ñoä cuûa heä dao ñoäng baäc 2 coù voït loá.
ξπ
POT
%100
=
−
Ñoä voït loá
1
−
ξ
exp
. 2
)
%
( T O P
(cid:142) ξ caøng lôùn (caëp cöïc caøng naèm gaàn truïc thöïc) POT caøng nhoû (cid:142) ξ caøng nhoû (caëp cöïc phöùc caøng naèm gaàn truïc aûo) POT caøng lôùn
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
22
ξ Quan heä giöõa heä soá taét vaø ñoä voït loá
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Nhaän xeùt veà heä dao ñoäng baäc 2 Nhaän xeùt veà heä dao ñoäng baäc 2
(cid:145) Thôøi gian quaù ñoä:
t
Tieâu chuaån 5%:
=qñ
3 ξω n
t
Tieâu chuaån 2%:
=qñ
4 ξω n
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
23
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä dao ñoäng baäc 2 Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä dao ñoäng baäc 2 (cid:145) Caùc heä dao ñoäng baäc 2 coù caùc cöïc naèm treân cuøng 1 tia xuaát phaùt töø goùc toïa ñoä thì coù heä soá taét baèng nhau, do ñoù coù ñoä voït loá baèng nhau. Heä naøo coù cöïc naèm xa goác toïa ñoä hôn thì coù taàn soá dao ñoäng töï nhieân lôùn hôn, do ñoù thôøi gian quaù ñoä ngaén hôn.
Im s c(t)
K
cosθ = ξ Re s θ
0
Giaûn ñoà cöïc –zero cuûa khaâu dao ñoäng baäc 2
Ñaùp öùng quaù ñoä cuûa khaâu dao ñoäng baäc 2
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
24
t 0
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä dao ñoäng baäc 2 Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä dao ñoäng baäc 2 (cid:145) Caùc heä dao ñoäng baäc 2 coù caùc cöïc naèm caùch goác toïa ñoä moät khoaûng baèng nhau thì coù cuøng taàn soá dao ñoäng töï nhieân, heä naøo coù cöïc naèm gaàn truïc aûo hôn thì coù heä soá taét nhoû hôn, do ñoù ñoä voït loá cao hôn, thôøi gian quaù ñoä daøi hôn.
Im s c(t)
K ωn Re s
0
t
Giaûn ñoà cöïc –zero cuûa khaâu dao ñoäng baäc 2
Ñaùp öùng quaù ñoä cuûa khaâu dao ñoäng baäc 2
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
25
0
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä dao ñoäng baäc 2 Quan heä giöõa vò trí cöïc vaø ñaùp öùng heä dao ñoäng baäc 2 (cid:145) Caùc heä dao ñoäng baäc 2 coù caùc cöïc naèm caùch truïc aûo moät khoaûng baèng nhau thì coù ξωn baèng nhau, do ñoù thôøi gian quaù ñoä baèng nhau. Heä naøo coù cöïc naèm xa truïc thöïc hôn thì coù heä soá taét nhoû hôn, do ñoù ñoä voït loá cao hôn.
Im s c(t)
K Re s
0 −ξωn
t
Giaûn ñoà cöïc –zero cuûa khaâu dao ñoäng baäc 2
Ñaùp öùng quaù ñoä cuûa khaâu dao ñoäng baäc 2
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
26
0
Ñaùp öùng quaù ñoä Ñaùp öùng quaù ñoä
Heä baäc cao Heä baäc cao
(cid:145) Heä baäc cao coù nhieàu hôn 2 cöïc
(cid:145) Neáu heä baäc cao coù 1 caëp cöïc phöùc naèm gaàn truïc aûo hôn so vôùi caùc cöïc coøn laïi thì coù theå xaáp xæ heä baäc cao veà heä baäc 2. Caëp cöïc phöùc naèm gaàn truïc aûo nhaát goïi laø caëp cöïc quyeát ñònh cuûa heä baäc cao. c(t)
Im s
Ñaùp öùng heä baäc cao
Re s
0
Ñaùp öùng heä baäc 2 vôùi caëp cöïc quyeát ñònh
Heä baäc cao coù nhieàu hôn 2 cöïc
Heä baäc cao coù theå xaáp xæ veà heä baäc 2 vôùi caëp cöïc quyeát ñònh
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
27
t 0
Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
28
Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä
(cid:145) Tieâu chuaån IAE (Integral of the Absolute Magnitude of the Error )
+∞
te )( dt
=
J IAE
∫
0
(cid:145) Tieâu chuaån ISE (Integral of the Square of the Error)
+∞
2 te
)( dt
=
J ISE
∫
0
(cid:145) Tieâu chuaån ITAE (Integral of Time multiplied by the Absolute Value of the Error) +∞
tet
)( dt
=
J ITAE
∫
0
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
29
Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä
(cid:145) Heä baäc 2:
707
707
.0→ξ 5.0→ξ .0→ξ
khi khi khi
min→IAEJ min→ISEJ min→ITAE J
ξ=0.3 c(t)
ξ=0.5
ξ=0.707
ξ=0.9
Ñaùp öùng cuûa heä baäc 2
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
30
t 0
Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä
(cid:145) Tieâu chuaån ITAE ñöôïc söû duïng phoå bieán nhaát
(cid:145) Ñeå ñaùp öùng quaù ñoä cuûa heä thoáng baäc n laø toái öu theo chuaån ITAE
thì maãu soá haøm truyeàn kín heä baäc n phaûi coù daïng
(cid:145) Neáu maãu soá haøm truyeàn heä kín coù daïng nhö baûng treân vaø töû soá haøm truyeàn heä kín cuûa heä baäc n laø thì ñaùp öùng quaù ñoä cuûa heä thoáng laø toái öu vaø sai soá xaùc laäp baèng 0.
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
31
Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä Caùc tieâu chuaån toái öu hoùa ñaùp öùng quaù ñoä
(cid:145) Ñaùp öùng toái öu theo chuaån ITAE
c(t)
Heä baäc 1
Heä baäc 2
Heä baäc 3
Heä baäc 4
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
32
t 0
Quan heä giöõa ñaëc tính taàn soá vaø Quan heä giöõa ñaëc tính taàn soá vaø
chaát löôïng trong mieàn thôøi gian chaát löôïng trong mieàn thôøi gian
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
33
Quan heä giöõa ñaëc tính taàn soá vaø sai soá xaùc laäp Quan heä giöõa ñaëc tính taàn soá vaø sai soá xaùc laäp
C(s)
R(s)
G(s)
+ −
(cid:145) Sai soá xaùc laäp cuûa heä kín chæ phuï thuoäc vaøo bieân ñoä ôû mieàn taàn soá thaáp cuûa heä hôû, khoâng phuï thuoäc vaøo bieân ñoä ôû mieàn taàn soá cao.
(cid:145) Heä hôû coù bieân ñoä ôû mieàn taàn soá thaáp caøng cao thì heä kín coù sai soá
xaùc laäp caøng nhoû.
(cid:145) Tröôøng hôïp ñaëc bieät neáu heä hôû coù bieân ñoä ôû taàn soá thaáp voâ cuøng lôùn thì heä kín coù sai soá xaùc laäp baèng 0 ñoái vôùi tín hieäu vaøo laø haøm naác.
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
34
Quan heä giöõa ñaëc tính taàn soá vaø chaát löôïng quaù ñoä Quan heä giöõa ñaëc tính taàn soá vaø chaát löôïng quaù ñoä
C(s)
R(s)
G(s)
+ −
(cid:145) Heä hôû coù taàn soá caét bieân caøng cao thì heä kín coù baêng thoâng caøng roäng ⇒ heä thoáng kín ñaùp öùng caøng nhanh, thôøi gian quaù ñoä caøng nhoû. (Chuù yù baêng thoâng cuûa heä kín xaáp xæ taàn soá caét bieân cuûa heä hôû)
(cid:145) Heä hôû coù ñoä döï tröõ pha cuûa caøng cao thì heä kín coù ñoä voït loá caøng thaáp. Caùc nghieân cöùu thöïc nghieäm cho thaáy ñoä döõ tröõ pha cuûa heä hôû lôùn hôn 600 thì ñoä voït loá cuûa heä kín nhoû hôn 10%.
26 September 2006
© H. T. Hoàng - ÐHBK TPHCM
35