intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Chuyên đề bất đẳng thức lượng giác_ Chương 1

Chia sẻ: Paradise9 Paradise9 | Ngày: | Loại File: PDF | Số trang:28

62
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo tài liệu 'chuyên đề bất đẳng thức lượng giác_ chương 1', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Chuyên đề bất đẳng thức lượng giác_ Chương 1

  1. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s : Chương 1 CÁC BƯ C ð U CƠ S ð b t ñ u m t cu c hành trình, ta không th không chu n b hành trang ñ lên ñư ng. Toán h c cũng v y. Mu n khám phá ñư c cái hay và cái ñ p c a b t ñ ng th c lư ng giác, ta c n có nh ng “v t d ng” ch c ch n và h u d ng, ñó chính là chương 1: “Các bư c ñ u cơ s ”. Chương này t ng quát nh ng ki n th c cơ b n c n có ñ ch ng minh b t ñ ng th c lư ng giác. Theo kinh nghi m cá nhân c a mình, tác gi cho r ng nh ng ki n th c này là ñ y ñ cho m t cu c “hành trình”. Trư c h t là các b t ñ ng th c ñ i s cơ b n ( AM – GM, BCS, Jensen, Chebyshev …) Ti p theo là các ñ ng th c, b t ñ ng th c liên quan cơ b n trong tam giác. Cu i cùng là m t s ñ nh lý khác là công c ñ c l c trong vi c ch ng minh b t ñ ng th c (ñ nh lý Largare, ñ nh lý v d u c a tam th c b c hai, ñ nh lý v hàm tuy n tính …) M cl c: 1.1. Các b t ñ ng th c ñ i s cơ b n…………………………………………… 4 1.1.1. B t ñ ng th c AM – GM…...……………............................................ 4 1.1.2. B t ñ ng th c BCS…………………………………………………….. 8 1.1.3. B t ñ ng th c Jensen……………………………………………….... 13 1.1.4. B t ñ ng th c Chebyshev…………………………………………..... 16 1.2. Các ñ ng th c, b t ñ ng th c trong tam giác…………………………….. 19 1.2.1. ð ng th c……………………………………………………………... 19 1.2.2. B t ñ ng th c………………………………………………………..... 21 1.3. M t s ñ nh lý khác………………………………………………………. 22 1.3.1. ð nh lý Largare ………………………..……………………………. 22 1.3.2. ð nh lý v d u c a tam th c b c hai………………………………….. 25 1.3.3. ð nh lý v hàm tuy n tính…………………………………………….. 28 1.4. Bài t p…………………………………………………………………….. 29 The Inequalities Trigonometry 3
  2. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s 1.1. Các b t ñ ng th c ñ i s cơ b n : 1.1.1. B t ñ ng th c AM – GM : V i m i s th c không âm a1 , a 2 ,..., a n ta luôn có a1 + a 2 + ... + a n n ≥ a1 a 2 ...a n n B t ñ ng th c AM – GM (Arithmetic Means – Geometric Means) là m t b t ñ ng th c quen thu c và có ng d ng r t r ng rãi. ðây là b t ñ ng th c mà b n ñ c c n ghi nh rõ ràng nh t, nó s là công c hoàn h o cho vi c ch ng minh các b t ñ ng th c. Sau ñây là hai cách ch ng minh b t ñ ng th c này mà theo ý ki n ch quan c a mình, tác gi cho r ng là ng n g n và hay nh t. Ch ng minh : Cách 1 : Quy n p ki u Cauchy V i n = 1 b t ñ ng th c hi n nhiên ñúng. Khi n = 2 b t ñ ng th c tr thành a1 + a 2 ( ) 2 ≥ a1 a 2 ⇔ a1 − a 2 ≥ 0 (ñúng!) 2 Gi s b t ñ ng th c ñúng ñ n n = k t c là : a1 + a 2 + ... + a k k ≥ a1a 2 ...a k k Ta s ch ng minh nó ñúng v i n = 2k . Th t v y ta có : (a1 + a 2 + ... + ak ) + (a k +1 + ak +2 + ... + a 2k ) (a1 + a 2 + ... + ak )(ak +1 + ak +2 + ... + a2k ) ≥ 2k k (k )( ) a1 a 2 ...a k k k a k +1 a k + 2 ...a 2 k k ≥ k = 2 k a1 a 2 ...a k a k +1 ...a 2 k Ti p theo ta s ch ng minh v i n = k − 1 . Khi ñó : a1 + a 2 + ... + a k −1 + k −1 a1a 2 ...a k =1 ≥ k k a1 a 2 ...a k −1 k −1 a1a 2 ...a k −1 = k k −1 a1 a 2 ...a k −1 ⇒ a1 + a 2 + ... + a k −1 ≥ (k − 1)k −1 a1 a 2 ...a k −1 Như v y b t ñ ng th c ñư c ch ng minh hoàn toàn. ð ng th c x y ra ⇔ a1 = a 2 = ... = a n Cách 2 : ( l i gi i c a Polya ) The Inequalities Trigonometry 4
  3. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s a 1 + a 2 + ... + a n GiA= n Khi ñó b t ñ ng th c c n ch ng minh tương ñương v i a1 a 2 ...a n ≤ A n (*) Rõ ràng n u a1 = a 2 = ... = a n = A thì (*) có d u ñ ng th c. Gi s chúng không b ng nhau. Như v y ph i có ít nh t m t s , gi s là a1 < A và m t s khác, gi s là a 2 > A t c là a1 < A < a 2 . Trong tích P = a1 a 2 ...a n ta hãy thay a1 b i a'1 = A và thay a 2 b i a' 2 = a1 + a 2 − A . Như v y a'1 + a' 2 = a1 + a 2 mà a'1 a' 2 −a 2 a 2 = A(a1 + a 2 − A) − a1a 2 = (a1 − A)(a 2 − A) > 0 ⇒ a'1 a' 2 > a1 a 2 ⇒ a1 a 2 a3 ...a n < a'1 a' 2 a3 ...a n Trong tích P ' = a '1 a' 2 a3 ...a n có thêm th a s b ng A . N u trong P ' còn th a s khác A thì ta ti p t c bi n ñ i ñ có thêm m t th a s n a b ng A . Ti p t c như v y t i ña n − 1 l n bi n ñ i ta ñã thay m i th a s P b ng A và ñư c tích A n . Vì trong quá trình bi n ñ i tích các th a s tăng d n. ⇒ P < A n . ⇒ ñpcm. Ví d 1.1.1.1. Cho A,B,C là ba góc c a m t tam giác nh n. CMR : tan A + tan B + tan C ≥ 3 3 L i gi i : tan A + tan B Vì tan ( A + B ) = − tan C ⇔ = − tan C 1 − tan A tan B ⇒ tan A + tan B + tan C = tan A tan B tan C Tam giác ABC nh n nên tanA,tanB,tanC dương. Theo AM – GM ta có : tan A + tan B + tan C ≥ 33 tan A tan B tan C = 33 tan A + tan B + tan C ⇒ (tan A + tan B + tan C ) ≥ 27(tan A + tan B + tan C ) 2 ⇒ tan A + tan B + tan C ≥ 3 3 ð ng th c x y ra ⇔ A = B = C ⇔ ∆ABC ñ u. Ví d 1.1.1.2. Cho ∆ABC nh n. CMR : cot A + cot B + cot C ≥ 3 The Inequalities Trigonometry 5
  4. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s L i gi i : Ta luôn có : cot ( A + B ) = − cot C cot A cot B − 1 ⇔ = − cot C cot A + cot B ⇔ cot A cot B + cot B cot C + cot C cot A = 1 Khi ñó : (cot A − cot B )2 + (cot B − cot C )2 + (cot C − cot A)2 ≥ 0 ⇔ (cot A + cot B + cot C ) ≥ 3(cot A cot B + cot B cot C + cot C cot A) = 3 2 ⇒ cot A + cot B + cot C ≥ 3 D u b ng x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.1.3. CMR v i m i ∆ABC nh n và n ∈ N * ta luôn có : n −1 tan n A + tan n B + tan n C ≥3 2 tan A + tan B + tan C L i gi i : Theo AM – GM ta có : tan n A + tan n B + tan n C ≥ 33 (tan A tan B tan C ) = 33 (tan A + tan B + tan C ) n n n −1 tan n A + tan n B + tan n C () n −3 ≥ 33 (tan A + tan B + tan C ) ≥ 33 3 3 n −3 ⇒ =3 2 tan A + tan B + tan C ⇒ ñpcm. Ví d 1.1.1.4. Cho a,b là hai s th c th a : cos a + cos b + cos a cos b ≥ 0 CMR : cos a + cos b ≥ 0 L i gi i : Ta có : cos a + cos b + cos a cos b ≥ 0 ⇔ (1 + cos a )(1 + cos b ) ≥ 1 Theo AM – GM thì : The Inequalities Trigonometry 6
  5. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s (1 + cos a ) + (1 + cos b ) ≥ (1 + cos a )(1 + cos b ) ≥ 1 2 ⇒ cos a + cos b ≥ 0 Ví d 1.1.1.5. Ch ng minh r ng v i m i ∆ABC nh n ta có : 2 A cos A cos B cos B cos C cos C cos A 3 A B B C C  sin sin + sin sin + sin sin  + + + ≤ 3 2 2 A B B C C A 2 2 2 2 2 cos cos cos cos cos cos 2 2 2 2 2 2 L i gi i : Ta có cos A A A = sin cot A 2 2 2 cos 2 3 cos A cos B  B  3  A 4 =  sin sin  cot A cot B  B 2  4  A 2 4 cos cos 2 2 Theo AM – GM thì : 2   3 B3 A cos A cos B  sin sin + cot A cot B  4 2 24 ≤  B  A 2   4 cos cos 2  2 2  cos A cos B B3 A ⇒  sin sin + cot A cot B  ≤ 3  A B 2 24 cos cos 2 2 Tương t ta có : 2  cos B cos C C3 B  sin sin + cot B cot C  ≤ 3  B C 2 24 cos cos 2 2 2 C  cos C cos A 3 A  sin sin + cot C cot A  ≤ 3  C A 2 2 4 cos cos 2 2 C ng v theo v các b t ñ ng th c trên ta ñư c: The Inequalities Trigonometry 7
  6. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s cos A cos B cos B cos C cos C cos A + + A B B C C A cos cos cos cos cos cos 2 2 2 2 2 2 2 A 3 A B B C C (cot A cot B + cot B cot C + cot C cot A)  sin sin + sin sin + sin sin  + ≤ 3 2 2 2 2 2 2 2 2 A 3 A B B C C ⇒ ñpcm.  sin sin + sin sin + sin sin  + = 3 2 2 2 2 2 2 2 Bư c ñ u ta m i ch có b t ñ ng th c AM – GM cùng các ñ ng th c lư ng giác nên s c nh hư ng ñ n các b t ñ ng th c còn h n ch . Khi ta k t h p AM – GM cùng BCS, Jensen hay Chebyshev thì nó th c s là m t vũ khí ñáng g m cho các b t ñ ng th c lư ng giác. 1.1.2. B t ñ ng th c BCS : (a1 , a2 ,..., an ) và (b1 , b2 ,..., bn ) ta luôn có : V i hai b s (a1b1 + a2 b2 + ... + a n bn )2 ≤ (a1 2 + a2 2 + ... + an 2 )(b12 + b2 2 + ... + bn 2 ) N u như AM – GM là “cánh chim ñ u ñàn” trong vi c ch ng minh b t ñ ng th c thì BCS (Bouniakovski – Cauchy – Schwartz) l i là “cánh tay ph i” h t s c ñ c l c. V i AM – GM ta luôn ph i chú ý ñi u ki n các bi n là không âm, nhưng ñ i v i BCS các bi n không b ràng bu c b i ñi u ki n ñó, ch c n là s th c cũng ñúng. Ch ng minh b t ñ ng th c này cũng r t ñơn gi n. Ch ng minh : Cách 1 : Xét tam th c : f ( x) = (a1 x − b1 ) + (a 2 x − b2 ) + ... + (a n x − bn ) 2 2 2 Sau khi khai tri n ta có : ( ) ( ) f ( x) = a1 + a 2 + ... + a n x 2 − 2(a1b1 + a 2 b2 + ... + a n bn )x + b1 + b2 + ... + bn 2 2 2 2 2 2 M t khác vì f ( x) ≥ 0∀x ∈ R nên : ( )( ) ∆ f ≤ 0 ⇔ (a1b1 + a 2 b2 + ... + a n bn ) ≤ a1 + a 2 + ... + a n b1 + b2 + ... + bn ⇒ ñpcm. 2 2 2 2 2 2 2 a a1 a 2 = ... = n (quy ư c n u bi = 0 thì ai = 0 ) ð ng th c x y ra ⇔ = b1 b2 bn Cách 2 : The Inequalities Trigonometry 8
  7. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s S d ng b t ñ ng th c AM – GM ta có : 2 2 2 ai bi ai bi +2 ≥ (a )( ) 2 2 2 2 2 a1 + a 2 + ... + a n b1 + b2 + ... + bn 2 2 2 2 2 2 + a 2 + ... + a n b1 + b2 + ... + bn 1 Cho i ch y t 1 ñ n n r i c ng v c n b t ñ ng th c l i ta có ñpcm. ðây cũng là cách ch ng minh h t s c ng n g n mà b n ñ c nên ghi nh ! Bây gi v i s ti p s c c a BCS, AM – GM như ñư c ti p thêm ngu n s c m nh, như h m c thêm cánh, như r ng m c thêm vây, phát huy hi u qu t m nh hư ng c a mình. Hai b t ñ ng th c này bù ñ p b sung h tr cho nhau trong vi c ch ng minh b t ñ ng th c. Chúng ñã “lư ng long nh t th ”, “song ki m h p bích” công phá thành công nhi u bài toán khó. “Trăm nghe không b ng m t th y”, ta hãy xét các ví d ñ th y rõ ñi u này. Ví d 1.1.2.1. CMR v i m i a, b, α ta có : 2 (sin α + a cos α )(sin α + b cos α ) ≤ 1 +  a + b    2 L i gi i : Ta có : (sin α + a cos α )(sin α + b cos α ) = sin 2 α + (a + b )sin α cos α + ab cos 2 α 1 − cos 2α (a + b ) 1 + cos 2α sin 2α + ab = + 2 2 2 1 = (1 + ab + (a + b )sin 2α + (ab − 1) cos 2α ) (1) 2 Theo BCS ta có : (2) A2 + B 2 A sin x + B cos x ≤ Áp d ng (2) ta có : (a )( ) (3) (a + b )sin 2α + (ab − 1) cos 2α ≤ (a + b )2 + (ab − 1)2 2 +1 b2 +1 = Thay (3) vào (1) ta ñư c : )) (4) (sin α + a cos α )(sin α + b cos α ) ≤ 1 (1 + ab + (a )( 2 +1 b2 +1 2 Ta s ch ng minh b t ñ ng th c sau ñây v i m i a, b : 2 ( )) a+b 1 (a )( (5) 2 +1 b2 +1 ≤ 1 +   1 + ab + 2 2 The Inequalities Trigonometry 9
  8. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s Th t v y : a 2 + b 2 ab 1 ab 1 (a )( ) (5) 2 +1 b2 +1 ≤ 1+ ⇔ + + + 222 4 2 a2 + b2 + 2 ( )( ) a 2 +1 b2 +1 ≤ ⇔ 2 )( )( ) a +1 + b2 +1 2 ( )( (6) 2 2 ⇔ a +1 b +1 ≤ 2 Theo AM – GM thì (6) hi n nhiên ñúng ⇒ (5) ñúng. T (1) và (5) suy ra v i m i a, b, α ta có : 2 (sin α + a cos α )(sin α + b cos α ) ≤ 1 +  a + b    2 ð ng th c x y ra khi x y ra ñ ng th i d u b ng (1) và (6) a = b a = b a 2 = b 2    ⇔  a+b ab − 1 ⇔  a+b ⇔  π a+b 1 (k ∈ Z ) tgα = α = arctg = +k   sin 2α cos 2α   ab − 1 ab − 1 2 2 Ví d 1.1.2.2. Cho a, b, c > 0 và a sin x + b cos y = c . CMR : cos 2 x sin 2 y 1 1 c2 + ≤ +−3 a b a + b3 a b L i gi i : B t ñ ng th c c n ch ng minh tương ñương v i : 1 − sin 2 x 1 − cos 2 y 1 1 c2 + ≤ +−3 a b a + b3 a b sin 2 x cos 2 y c2 (*) ⇔ + ≥3 a + b3 a b Theo BCS thì : ( )( ) (a1b1 + a 2 b2 )2 ≤ a12 + a 2 2 b1 2 + b2 2  sin x cos y a1 = ; a2 =  a b vi b = a a ; b = b b 1 2  sin 2 x cos 2 y  3 ( )  a + b  a + b ≥ (a sin x + b cos y ) ⇒ 2 3    do a + b > 0 và a sin x + b cos y = c ⇒ (*) ñúng ⇒ ñpcm. 3 3 The Inequalities Trigonometry 10
  9. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s a1 a 2 sin x cos y ð ng th c x y ra ⇔ = ⇔ 2= 2 b1 b2 a b  sin x cos y  =2 ⇔  a2 b a sin x + b cos y = c   a 2c sin x = 3   a + b3 ⇔ 2 cos y = b c   a3 + b3 Ví d 1.1.2.3. CMR v i m i ∆ABC ta có : a2 + b2 + c2 x+ y+ z≤ 2R v i x, y, z là kho ng cách t ñi m M b t kỳ n m bên trong ∆ABC ñ n ba c nh BC , CA, AB . A L i gi i : Ta có : P S ABC = S MAB + S MBC + S MCA y Q z S MAB S MBC S MCA ha M ⇔ + + =1 S ABC S ABC S ABC x C B z y x N ⇔ ++ =1 hc hb ha x z y ⇒ ha + hb + hc = (ha + hb + hc ) + +  h   a hb hc  Theo BCS thì : x z y x z y (ha + hb + hc ) + +  = ha + hb + hc x + y + z = ha + hb + hc ≤    ha hb hc  ha hb hc 1 1 aha = ab sin C ⇒ ha = b sin C , hb = c sin A , hc = a sin B mà S = 2 2 ab bc ca ⇒ ha + hb + hc = (a sin B + b sin C + c sin A) = + + 2R 2R 2R T ñó suy ra : a2 + b2 + c2 ab + bc + ca ⇒ ñpcm. x+ y+ z≤ ≤ 2R 2R The Inequalities Trigonometry 11
  10. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s a = b = c ð ng th c x y ra khi và ch khi  ⇔ ∆ABC ñ u và M là tâm n i ti p ∆ABC . x = y = z Ví d 1.1.2.4. Ch ng minh r ng :  π cos x + sin x ≤ 4 8 ∀x ∈  0 ;   2 L i gi i : Áp d ng b t ñ ng th c BCS liên ti p 2 l n ta có : ( ) ≤ ((1 ) ) 4 2 + 12 (cos x + sin x ) 2 cos x + sin x ≤ (1 + 1 ) (1 )( ) 22 2 2 + 12 cos 2 x + sin 2 x = 8 ⇒ cos x + sin x ≤ 8 4 π ð ng th c x y ra khi và ch khi x = . 4 Ví d 1.1.2.5. Ch ng minh r ng v i m i s th c a và x ta có ( ) 1 − x 2 sin a + 2 x cos a ≤1 1+ x2 L i gi i : Theo BCS ta có : (( ) + (2 x ) )(sin ((1 − x )sin a + 2 x cos a ) ) 2 2 2 2 ≤ 1− x2 2 a + cos 2 a 2 4 2 2 4 = 1 − 2x + x + 4x = 1 + 2x + x (( ) ) ≤ (1 + x ) 2 22 ⇒ 1 − x 2 sin a + 2 x cos a (1 − a )sin a + 2 x cos a ≤ 1 2 ⇔ 1+ x2 ⇒ ñpcm. The Inequalities Trigonometry 12
  11. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s 1.1.3. B t ñ ng th c Jensen : Hàm s y = f ( x) liên t c trên ño n [a, b] và n ñi m x1 , x 2 ,..., x n tùy ý trên ño n [a, b] ta có : i) f ' ' ( x) > 0 trong kho ng (a, b ) thì :  x + x 2 + ... + x n  f ( x1 ) + f ( x 2 ) + ... + f ( x n ) ≥ nf  1    n ii) f ' ' ( x) < 0 trong kho ng (a, b ) thì :  x + x 2 + ... + x n  f ( x1 ) + f ( x 2 ) + ... + f ( x n ) ≥ nf  1    n B t ñ ng th c AM – GM và b t ñ ng th c BCS th t s là các ñ i gia trong vi c ch ng minh b t ñ ng th c nói chung. Nhưng riêng ñ i v i chuyên m c b t ñ ng th c lư ng giác thì ñó l i tr thành sân chơi riêng cho b t ñ ng th c Jensen. Dù có v hơi khó tin nhưng ñó là s th t, ñ n 75% b t ñ ng th c lư ng giác ta ch c n nói “theo b t ñ ng th c Jensen hi n nhiên ta có ñpcm”. Trong phát bi u c a mình, b t ñ ng th c Jensen có ñ c p ñ n ñ o hàm b c hai, nhưng ñó là ki n th c c a l p 12 THPT. Vì v y nó s không thích h p cho m t s ñ i tư ng b n ñ c. Cho nên ta s phát bi u b t ñ ng th c Jensen dư i m t d ng khác : x+ y Cho f : R + → R th a mãn f ( x) + f ( y ) ≥ 2 f  +  ∀x, y ∈ R Khi ñó v i m i 2 + x1 , x 2 ,..., x n ∈ R ta có b t ñ ng th c :  x + x 2 + ... + x n  f ( x1 ) + f ( x 2 ) + ... + f ( x n ) ≥ nf  1    n S th t là tác gi chưa t ng ti p xúc v i m t ch ng minh chính th c c a b t ñ ng th c Jensen trong phát bi u có f ' ' ( x) . Còn vi c ch ng minh phát bi u không s d ng ñ o hàm thì r t ñơn gi n. Nó s d ng phương pháp quy n p Cauchy tương t như khi ch ng minh b t ñ ng th c AM – GM. Do ñó tác gi s không trình bày ch ng minh ñây. Ngoài ra, m t s tài li u có th b n ñ c g p khái ni m l i lõm khi nh c t i b t ñ ng th c Jensen. Nhưng hi n nay trong c ng ñ ng toán h c v n chưa quy ư c rõ ràng ñâu là l i, ñâu là lõm. Cho nên b n ñ c không nh t thi t quan tâm ñ n ñi u ñó. Khi ch ng minh ta ch c n xét f ' ' ( x) là ñ ñ s d ng b t ñ ng th c Jensen. Ok! M c dù b t ñ ng th c Jensen không ph i là m t b t ñ ng th c ch t, nhưng khi có d u hi u manh nha c a nó thì b n ñ c c tùy nghi s d ng . The Inequalities Trigonometry 13
  12. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s Ví d 1.1.3.1. Ch ng minh r ng v i m i ∆ABC ta có : 33 sin A + sin B + sin C ≤ 2 L i gi i : Xét f ( x) = sin x v i x ∈ (0 ; π ) Ta có f ' ' ( x) = − sin x < 0 ∀x ∈ (0 ; π ) . T ñó theo Jensen thì :  A+ B+C  π 33 f ( A) + f (B ) + f (C ) ≤ 3 f  ⇒ ñpcm.  = 3 sin =   3 3 2 ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.2. Ch ng minh r ng v i m i ∆ABC ñ u ta có : A B C tan + tan + tan ≥ 3 2 2 2 L i gi i :  π Xét f ( x ) = tan x v i x ∈  0 ;   2  π 2 sin x Ta có f ' ' ( x ) = > 0 ∀x ∈  0 ;  . T ñó theo Jensen thì : 3  2 cos x A B C ++  A  B  C π f   + f   + f   ≥ 3 f  2 2 2  = 3 sin = 3 ⇒ ñpcm.   2 2 2 3 6     ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.3. Ch ng minh r ng v i m i ∆ABC ta có : 22 22 22  A  B  C ≥ 31− 2  tan  +  tan  +  tan   2  2  2 L i gi i : The Inequalities Trigonometry 14
  13. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s  π Xét f ( x ) = (tan x ) 22 v i x ∈  0;   2 ( ) ( ) Ta có f ' ( x ) = 2 2 1 + tan 2 x (tan x ) = 2 2 (tan x ) + (tan x ) 2 2 −1 2 2 −1 2 2 +1 (( ) )( ( )( ) ) f ' ' ( x ) = 2 2 2 2 − 1 1 + tan 2 x (tan x ) + 2 2 + 1 1 + tan 2 x (tan x ) 2 2 −2 22 >0 Theo Jensen ta có : A B C ++ 22  A B C  π f   + f   + f   ≥ 3 f  2 2 2  = 3 tg  = 31− 2 ⇒ ñpcm.    6 2 2 2 3     ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.4. Ch ng minh r ng v i m i ∆ABC ta có : C3 A B C A B sin + sin + sin + tan + tan + tan ≥ + 3 2 2 2 2 2 22 L i gi i :  π Xét f ( x ) = sin x + tan x v i x ∈  0 ;   2 ( )  π 4 sin x 1 − cos x f ' ' (x ) = > 0 ∀x ∈  0 ;  Ta có 4  2 cos x Khi ñó theo Jensen thì : A B C ++  A B C  π π 3 f   + f   + f   ≥ 3 f  2 2 2  = 3 sin + tan  = + 3 ⇒ ñpcm.   2 2 2 6 2 3 6     ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.3.5. Ch ng minh r ng v i m i ∆ABC nh n ta có : 33 2 2 (sin A) (sin B ) (sin C ) sin A sin B sin C ≥  3 L i gi i : Ta có The Inequalities Trigonometry 15
  14. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s sin 2 A + sin 2 B + sin 2 C = 2 + 2 cos A cos B cos C   sin A + sin B + sin C ≥ sin 2 A + sin 2 B + sin 2 C  33 và sin A + sin B + sin C ≤ 2 33 ⇒ 2 < sin A + sin B + sin C ≤ 2 Xét f ( x ) = x ln x v i x ∈ (0 ;1] Ta có f ' ( x ) = ln x + 1 1 f ' ' ( x ) = > 0 ∀x ∈ (0 ;1] x Bây gi v i Jensen ta ñư c : sin A + sin B + sin C  sin a + sin B + sin C  sin A(ln sin A) + sin B(ln sin B ) + sin C (ln sin C ) ln ≤   3 3 3 sin A+ sin B + sin C  sin A + sin B + sin C  ≤ ln(sin A) + ln(sin B ) + ln(sin C ) sin A sin B sin C ⇔ ln    3  sin A + sin B + sin C  sin A+sin B +sin C  [ ]  ≤ ln (sin A) (sin B ) (sin C ) sin A sin B sin C ⇔ ln      3   (sin A + sin B + sin C )sin A+sin B +sin C ≤ (sin A)sin A (sin B )sin B (sin C )sin C ⇔ sin A+ sin B + sin C 3 33 sin A + sin B + sin C 2 sin A+sin B +sin C  2  2 2 ⇒ (sin A) (sin B ) (sin C ) sin A sin B sin C ≥ sin A+sin B +sin C =   ≥  3 3 3 ⇒ ñpcm. 1.1.4. B t ñ ng th c Chebyshev : V i hai dãy s th c ñơn ñi u cùng chi u a1 , a 2 ,..., a n và b1 , b2 ,..., bn thì ta có : 1 a1b1 + a 2 b2 + ... + a n bn ≥ (a1 + a 2 + ... + a n )(b1 + b2 + ... + bn ) n Theo kh năng c a mình thì tác gi r t ít khi s d ng b t ñ ng th c này. Vì trư c h t ta c n ñ ý t i chi u c a các bi n, thư ng ph i s p l i th t các bi n. Do ñó bài toán c n có yêu c u ñ i x ng hoàn toàn gi a các bi n, vi c s p x p th t s không làm m t tính t ng quát c a bài toán. Nhưng không vì th mà l i ph nh n t m nh hư ng c a b t ñ ng th c Chebyshev trong vi c ch ng minh b t ñ ng th c lư ng giác, m c dù nó có m t ch ng minh h t s c ñơn gi n và ng n g n. The Inequalities Trigonometry 16
  15. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s Ch ng minh : B ng phân tích tr c ti p, ta có ñ ng th c : n ∑ (a − a )(b − b ) ≥ 0 n(a1b1 + a 2 b2 + ... + a n bn ) − (a1 + a 2 + ... + a n )(b1 + b2 + ... + bn ) = i j i j i , j =1 u nên (a − a )(b − b ) ≥ 0 Vì hai dãy a1 , a 2 ,..., a n và b1 , b2 ,..., bn ñơn ñi u cùng chi i j i j N u 2 dãy a1 , a 2 ,..., a n và b1 , b2 ,..., bn ñơn ñi u ngư c chi u thì b t ñ ng th c ñ i chi u. Ví d 1.1.4.1. Ch ng minh r ng v i m i ∆ABC ta có : aA + bB + cC π ≥ a+b+c 3 L i gi i : Không m t tính t ng quát gi s : a≤b≤c⇔ A≤ B≤C Theo Chebyshev thì :  a + b + c  A + B + C  aA + bB + cC   ≤    3 3 3 aA + bB + cC A + B + C π ⇒ ≥ = a+b+c 3 3 ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.4.2. Cho ∆ABC không có góc tù và A, B, C ño b ng radian. CMR :  sin A sin B sin C  3(sin A + sin B + sin C ) ≤ ( A + B + C )  + + A C B L i gi i :  π sin x Xét f ( x ) = v i x ∈  0;   2 x cos x( x − tan x )  π Ta có f ' ( x ) = ≤ 0 ∀x ∈  0 ;  2  2 x The Inequalities Trigonometry 17
  16. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s V y f ( x ) ngh ch bi n trên  0 ; π     2 Không m t t ng quát gi s : sin A sin B sin C A≥ B≥C⇒ ≤ ≤ A B C Áp d ng b t ñ ng th c Chebyshev ta có : ( A + B + C ) sin A + sin B + sin C  ≥ 3(sin A + sin B + sin C ) ⇒ ñpcm.   A C B ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.4.3. Ch ng minh r ng v i m i ∆ABC ta có : sin A + sin B + sin C tan A tan B tan C ≤ cos A + cos B + cos C 3 L i gi i : Không m t t ng quát gi s A ≥ B ≥ C tan A ≥ tan B ≥ tan C ⇒ cos A ≤ cos B ≤ cos C Áp d ng Chebyshev ta có :  tan A + tan B + tan C  cos A + cos B + cos C  tan A cos A + tan B cos B + tan C cos C   ≥    3 3 3 sin A + sin B + sin C tan A + tan B + tan C ⇔ ≤ cos A + cos B + cos C 3 Mà ta l i có tan A + tan B + tan C = tan A tan B tan C ⇒ ñpcm. ð ng th c x y ra khi và ch khi ∆ABC ñ u. Ví d 1.1.4.4. Ch ng minh r ng v i m i ∆ABC ta có : 3 sin 2 A + sin 2 B + sin 2C 2(sin A + sin B + sin C ) ≥ 2 cos A + cos B + cos C L i gi i : a≤b≤c Không m t t ng quát gi s The Inequalities Trigonometry 18
  17. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s sin A ≤ sin B ≤ sin C ⇒ cos A ≥ cos B ≥ cos C Khi ñó theo Chebyshev thì :  sin A + sin B + sin C  cos A + cos B + cos C  sin A cos A + sin B cos B + sin C cos C   ≥    3 3 3 3 sin 2 A + sin 2 B + sin 2C ⇔ 2(sin A + sin B + sin C ) ≥ 2 cos A + cos B + cos C ⇒ ñpcm. ð ng th c x y ra khi và ch khi ∆ABC ñ u. 1.2. Các ñ ng th c b t ñ ng th c trong tam giác : Sau ñây là h u h t nh ng ñ ng th c, b t ñ ng th c quen thu c trong tam giác và trong lư ng giác ñư c dùng trong chuyên ñ này ho c r t c n thi t cho quá trình h c toán c a b n ñ c. Các b n có th dùng ph n này như m t t ñi n nh ñ tra c u khi c n thi t.Hay b n ñ c cũng có th ch ng minh t t c các k t qu như là bài t p rèn luy n. Ngoài ra tôi cũng xin nh c v i b n ñ c r ng nh ng ki n th c trong ph n này khi áp d ng vào bài t p ñ u c n thi t ñư c ch ng minh l i. 1.2.1. ð ng th c : a b c = = = 2R sin A sin B sin C a 2 = b 2 + c 2 − 2bc cos A a = b cos C + c cos B b 2 = c 2 + a 2 − 2ca cos B b = c cos A + a cos C c = a cos B + b cos A c 2 = a 2 + b 2 − 2ab cos C 1 1 1 S= a.ha = b.hb = c.hc 2 2 2 1 1 1 = bc sin A = ca sin B = ab sin C 2 2 2 abc = 2 R 2 sin A sin B sin C = pr = 4R = ( p − a )ra = ( p − b )rb = ( p − c )rc p( p − a )( p − b )( p − c ) = The Inequalities Trigonometry 19
  18. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s A 2bc cos A 2 r = ( p − a ) tan la = 2b 2 + 2c 2 − a 2 2 b+c 2 = ma 4 B B = ( p − b ) tan 2ca cos 2c + 2a 2 − b 2 2 2 2 2 = lb = mb c+a C 4 = ( p − c ) tan 2a + 2b 2 − c 2 2 C 2 2 2ab cos = mc A B C 2 4 lc = = 4 R sin sin sin a+b 2 2 2  A− B tan  2 a−b =  A+ B a+b b2 + c2 − a2 tan  cot A = 2 4S  B−C  c + a2 − b2 2 tan  cot B = 2 b−c 4S = B+C a + b2 − c2 2 b+c tan  cot C = 2 4S C − A a2 + b2 + c2 tan  cot A + cot B + cot C = 2 c−a 4S = C + A c+a tan  2 ( p − b)( p − c ) ( p − b )( p − c ) p( p − a ) A A A = tan = = sin cos p( p − a ) 2 2 2 bc bc ( p − c )( p − a ) p( p − b ) ( p − c )( p − a ) B B B = = = sin cos tan p( p − b ) 2 2 2 ca ca ( p − a )( p − b) p( p − c ) ( p − a )( p − b ) C C C = = sin cos = tan p( p − c ) 2 2 ab ab 2 A B Cp sin A + sin B + sin C = 4 cos cos cos = 2 2 2R sin 2 A + sin 2 B + sin 2C = 4 sin A sin B sin C sin 2 A + sin 2 B + sin 2 C = 2(1 + cos A cos B cos C ) A B C r cos A + cos B + cos C = 1 + 4 sin sin sin = 1 + 2 2 2 R 2 2 2 cos A + cos B + cos C = 1 − 2 cos A cos B cos C The Inequalities Trigonometry 20
  19. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s tan A + tan B + tan C = tan A tan B tan C A B C A B C + cot + cot = cot cot cot cot 2 2 2 2 2 2 A B B C C A tan tan + tan tan + tan tan = 1 2 2 2 2 2 2 cot A cot B + cot B cot C + cot C cot A = 1 A B C sin (2k + 1) A + sin (2k + 1)B + sin (2k + 1)C = (− 1) 4 cos(2k + 1) cos(2k + 1) cos(2k + 1) k 2 2 2 sin 2kA + sin 2kB + sin 2kC = (− 1) k +1 4 sin kA sin kB sin kC A B C cos(2k + 1) A + cos(2k + 1)B + cos(2k + 1)C = 1 + (− 1) 4 sin (2k + 1) sin (2k + 1) sin (2k + 1) k 2 2 2 cos 2kA + cos 2kB + cos 2kC = −1 + (− 1) 4 cos kA cos kB cos kC k tan kA + tan kB + tan kC = tan kA tan kB tan kC cot kA cot kB + cot kB cot kC + cot kC cot kA = 1 A B B C C A tan (2k + 1) tan (2k + 1) + tan (2k + 1) tan (2k + 1) + tan (2k + 1) tan (2k + 1) = 1 2 2 2 2 2 2 A B C A B C cot (2k + 1) + cot (2k + 1) + cot (2k + 1) = cot (2k + 1) cot (2k + 1) cot (2k + 1) 2 2 2 2 2 2 cos kA + cos kB + cos kC = 1 + (− 1) 2 cos kA cos kB cos kC k 2 2 2 sin 2 kA + sin 2 kB + sin 2 kC = 2 + (− 1) k +1 2 cos kA cos kB cos kC 1.2.2. B t ñ ng th c : a−b < c < a+b a≤b⇔ A≤ B b−c < a
  20. Trư ng THPT chuyên Lý T Tr ng – C n Thơ B t ñ ng th c lư ng giác Chương 1 Các bư c ñ u cơ s A B C cos 2 + cos 2 + cos 2 3 2 2 2 cos 2 A + cos 2 B + cos 2 C ≥ 4 A B C sin 2 + sin 2 + sin 2 9 2 2 2 sin 2 A + sin 2 B + sin 2 C ≤ 4 A B C tan 2 + tan 2 + tan 2 ≥ 1 2 2 2 tan A + tan B + tan C ≥ 9 2 2 2 A B C cot 2 A + cot 2 B + cot 2 C ≥ 1 cot 2 + cot 2 + cot 2 2 2 2 C 33 A B 1 cos cos ≤ cos cos A cos B cos C ≤ 2 2 2 8 8 C1 A B 33 sin sin sin ≤ sin A sin B sin C ≤ 2 2 28 8 1 A A A tan tan tan ≤ tan A tan B tan C ≥ 3 3 2 2 2 33 1 cot A cot B cot C ≤ A A A cot cot cot ≥ 3 3 33 2 2 2 1.3. M t s ñ nh lý khác : 1.3.1. ð nh lý Lagrange : N u hàm s y = f ( x ) liên t c trên ño n [a ; b] và có ñ o hàm trên kho ng (a ; b ) thì t n t i 1 ñi m c ∈ (a ; b ) sao cho : f (b ) − f (a ) = f ' (c )(b − a ) Nói chung v i ki n th c THPT, ta ch có công nh n ñ nh lý này mà không ch ng minh. Ví ch ng minh c a nó c n ñ n m t s ki n th c c a toán cao c p. Ta ch c n hi u cách dùng nó cùng nh ng ñi u ki n ñi kèm trong các trư ng h p ch ng minh. Ví d 1.3.1.1. Ch ng minh r ng ∀a, b ∈ R, a < b thì ta có : sin b − sin a ≤ b − a L i gi i : The Inequalities Trigonometry 22
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2