---.. -=.T--
Bai 2
Bai 1
vdi (S) ld phia ngoei crla mit cEu tdm 0 bdn kinh R. qr+ 74 * < *
Bei 3 vrTq ^
Khai tridn thinh chu6i nEuy6n 2 him sd tn(I + x)vit In(I -x).
Trinh biy c6ch tfnh gEn dring gi5 tri cia In7.
. rnUorvc pAr Hoc sU pHAu rp HO cHi MrNH v. e a ' ,, ' .
xn-oh vhil}';"i6p'rV$i; r dd] ''r -
Hmffil' )b+1 6*% :
IA
", :s ,;i
Tinh tich ph6n durdnn 0,u Gy + 2x-y) dx + (xy-x + 2y) dy ",,' .Fi*- li
v6i (L) li dudngtrdn rd + f -2ay= O(a>0)theo 2c5ch:
a) Tinh trfc ti6p b) Dirng c6ng thitc Green. S0\ \\>*-
ff
Tinh tich ph6n mit JJ o, 1l ayaz + f axdz + zJ axayl l
fada+?nsaTiii&ngu6 cG pLild trinh vi ph6n:
4xf -(x) +xf '(x)+f(x)=e.
Bii s
Cho him s6 f(x) = 2x vdi x . (41).
HEy bidu di6n f(x) thinh :
a) chuSi Fourier 2 n, sin ntxvdi An ri c6c h6 s6 Fourier.
n=l
+@
f
b) Tich phan Fourier J o A(a) cLrsdx da vdi A(a) ld bi6n ddi Fourier.
frH
i\
1/
I
I
r
i.
i-j
L{
ri
I
\
'\i--
\ i--\
a-.'{
'i.''i