intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Đề thi môn toán tuyển sinh vào lớp 10 trường chuyên số 47

Chia sẻ: Ngoclan Lan | Ngày: | Loại File: DOCX | Số trang:2

100
lượt xem
4
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Tham khảo đề thi - kiểm tra 'đề thi môn toán tuyển sinh vào lớp 10 trường chuyên số 47', tài liệu phổ thông, ôn thi đh-cđ phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả

Chủ đề:
Lưu

Nội dung Text: Đề thi môn toán tuyển sinh vào lớp 10 trường chuyên số 47

  1. ĐỀ SỐ 47 bài 1.(1,5 điểm) Cho phơng trình: x2-2(m+1)x+m2-1 = 0 với x là ẩn, m là số cho trớc. 1. Giải phơng trình đã cho khi m = 0. 2. Tìm m để phơng trình đã cho có 2 nghiệm dơng x1,x2 phân biệt thoả mãn điều kiện x12-x22= bài 2.(2 điểm) Cho hệ phơng trình: trong đó x, y là ẩn, a là số cho trớc. 1. Giải hệ phơng trình đã cho với a=2003. 2. Tìm giá trị của a để hệ phơng trình đã cho có nghiệm. bài 3.(2,5 điểm) Cho phơng trình: với x là ẩn, m là số cho trớc. 1. Giải phơng trình đã cho với m=2. 2. Giả sử phơng trình đã cho có nghiệm là x=a. Chứng minh rằng khi đó phơng trình đã cho còn có một nghiệm nữa là x=14-a. 3. Tìm tất cả các giá trị của m để phơng trình đã cho có đúng một nghiệm. bài 4.(2 điểm) Cho hai đờng tròn (O) và (O’) có bán kính theo thứ tự là R và R’ cắt nhau tại 2 điểm A và B. 1. Một tiếp tuyến chung của hai đờng tròn tiếp xúc với (O) và(O ’) lần lợt tại C và D. Gọi H và K theo thứ tự là giao điểm của AB với OO’ và CD. Chứng minh rằng: a. AK là trung tuyến của tam giác ACD. b. B là trọng tâm của tam giác ACD khi và chỉ khi 2. Một cát tuyến di động qua A cắt (O) và (O ’) lần lợt tại E và F sao cho A nằm trong đoạn EF. xác định vị trí của cát tuyến EF để diện tích tam giác BEF đạt giá tr ị l ớn nhất. bài 5. (2 điểm) Cho tam giác nhọn ABC. Gọi D là trung di ểm c ủa cạnh BC, M là đi ểm tuỳ ý trên cạnh AB (không trùng với các đỉnh A va B). Gọi H là giao điểm c ủa các đo ạn th ẳng AD và CM. Chứng minh rằng nếu tứ giác BMHD nội ti ếp đ ợc trong m ột đ ờng tròn thì có bất đẳng thức . ĐỀ SỐ 48 bài 1.(1,5 điểm) Cho phơng trình x2+x-1=0. Chứng minh rằng phơng trình có hai nghiệm trái dấu. Gọi x1 là nghiệm âm của phơng trình. Hãy tính giá trị của biểu thức: Bài 2.(2 điểm) Cho biểu thức: Tìm giá trị nhỏ nhất và lớn nhất của P khi 0 ≤ x ≤ 3. Bài 3.(2 điểm) 1. Chứng minh rằng không tồn tại các số nguyên a, b, c sao cho:
  2. a2+b2+c2=2007 2. Chứng minh rằng không tồn tại các số hữu tỷ x, y, z sao cho: x2+y2+z2+x+3y+5z+7=0 Bài 4.(2,5 điểm) Cho tam giác ABC vuông tại A. Vẽ đờng cao AH. G ọi (O) là vòng tròn ngo ại ti ếp tam giác AHC. Trên cung nhỏ AH của vòng tròn (O) l ấy đi ểm M bất kỳ khác A. Trên tiếp tuyến tại M của vòng tròn (O) lấy hai điểm D và E sao cho BD=BE=BA. Đ ờng thẳng BM cắt vòng tròn (O) tại điểm thứ hai là N. 1. Chứng minh rằng tứ giác BDNE nội tiếp một vòng tròn. 2. Chứng minh vòng tròn ngoại tiếp tứ giác BDNE và vòng tròn (O) tiếp xúc với nhau. Bài 5.(2 điểm) Có n điểm, trong đó không có ba điểm nào thẳng hàng. Hai đi ểm b ất kỳ n ối v ới nhau bằng một đoạn thẳng, mỗi đoạn thẳng đợc tô m ột màu xanh, đ ỏ ho ặc vàng. Bi ết rằng: có ít nhất một đoạn màu xanh, một đoạn màu đ ỏ, và m ột đo ạn màu vàng; không có điểm nào mà các đoạnthẳng xuất phát từ đó có đủ cả ba màu và không có tam giác nào tạo bởi các đoạn thẳng đã nối có ba cạnh cùng màu. 1. Chứng minh rằng không tồn tại ba đo ạn thẳng cùng màu xu ất phát t ừ cùng m ột điểm. 2. Hãy cho biết có nhiều nhất bao nhiêu điểm thoả mãn đề bài.
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2