The transmission of forced waves at a junction Alexandra Irwin Master of Applied Science RMIT
The transmission of forced waves at a junction A thesis submitted in fulfillment of the requirements for the degree of Master of Applied Science Alexandra Laura Irwin BSc(Hons)(Physics) School of Applied Sciences College of Science, Engineering and Health RMIT Universit y February 2013
Declaration
I d ecl ar e t ha t t h e wo r k p r es e nted i n t hi s t he si s is t hat o f m y o wn , e x cep t wh er e d u e
ac k no wl ed g me n t ha s b ee n ma d e, a nd ha s no t b ee n s ub mi t ted p r e v io u sl y, in wh o le o r
p ar t, to q ua li f y f o r a n y o th er a cad e mic a wa r d .
T he co n te nt o f t h e t h es i s i s t he r e s ul t o f wo r k whi c h ha s b ee n c ar r i ed o u t s i nc e 2 8t h
Feb r ua r y, 2 0 1 1, t hi s b e i n g t he o f f ic ial d at e o f c o mme n ce me n t o f t h is p r o gr a m me.
i
Si g n at ur e : …… … …… … …… .. Na me : Ale x a nd r a I r wi n Dat e: Feb r u ar y, 2 0 1 3.
Acknowledgements
I wi s h to a c k no wl ed ge t he co nt i n ued s up p o r t a n d e nco ur a g e me n t I ha v e r ece i ved fr o m
m y p r o j e ct s up er v i so r , Ad j u nc t. P r o fe s so r J o h n Da v y. T ha n k s fo r t he m an y h o ur s sp e nt
o n m y p r o j ect, I wa s r ea ll y i mp r e s sed wi t h yo ur in n o vat i ve id ea s a nd b o u nd le ss
k no wled g e.
I wo uld al so li k e to t ha n k m y s eco nd s up er v i so r As so c P r o f P h il ip W i l k s ch.
ii
I mu s t a lso t ha n k V lad i mi r P a va so v ic fo r h i s wo nd er f u l t he si s P a v aso v i c ( 2 0 0 6) , a so ur c e o f i n sp ir a tio n.
Table of Contents
Declaration .............................................................................................. i
Acknowledgements .................................................................................. ii
Table of Contents ................................................................................... iii
Abstract ................................................................................................ xvi
Chapter 1 Introduction .............................................................................. 1
Chapter 2 Derivation of the fluid media sound equations ............................. 4
2.1 Introduction ..................................................................................... 4
2.2 Normal Incidence with the same media on both sides of the junction ... 4
2.3 Media same for x<0 and x>0, normal incidence forced wave ............... 8
2.4 The total intensity when x =0 (at the junction of the two media) ......... 11
2.5 The transmitted intensit y (I t(x)) when x>0 ....................................... 12
2.6 The intensit y carried b y the reflected wave (x<0) if propagating alone. .......................................................................................................... 13
2.7 Media different for x<0 and x>0. A normall y incident forced wave is firstl y considered. The transmitted intensit y and the incident and reflected intensit y is found. ................................................................................ 14
2.8 The acoustic particle velocit y in the oblique incidence case. ............. 17
2.9 Proof of no power flow in a nearfield .............................................. 19
2.10 Derivation of transmitted and reflected pressures for oblique incidence. ........................................................................................... 21
2.11 Derivation of total and forced intensit y for oblique incidence. Different Media. .................................................................................. 26
2.12 Diffuse field incidence. Media the same. Anal ytical calculation of intensit y for r less than or equal to 1..................................................... 30
2.13 Diffuse field incidence. Media the same. r greater than or equal to 1. .......................................................................................................... 37
2.14 Diffuse incidence when the media are different. In terms of Z ,k. ...... 38
2.15 Summary ..................................................................................... 41
Chapter 3 The fluid media sound results ................................................... 43
3.1 Introduction ................................................................................... 43
3.2 Normal incidence, the same media ................................................... 43
3.3 Normal incidence, different media. .................................................. 49
3.4 Oblique incidence, same media. ...................................................... 49
3.5 Oblique incidence, different impedances, same wave numbers ........... 51
3.6 Oblique incidence, different wave numbers ...................................... 53
3.7 Summary ....................................................................................... 63
Chapter 4 The transmission of bending waves between two panels at a pinned joint....................................................................................................... 64
iii
4.1 Introduction ................................................................................... 64
4.2 The transmitted and reflected wave equations for normal incidence with a freel y propagating incident wave. ....................................................... 64
4.3 Derivation of wave numbers for the obliquel y incident forced wave case. ................................................................................................... 70
4.4 The angular velocit y and the torsional moment for the obliquel y incident wave case. .............................................................................. 76
4.5 Derivation of the transmitted and reflected waves for obliquel y incident freel y propagating waves. ..................................................................... 79
4.6 Obliquel y incident forced waves ..................................................... 81
4.7 Transmitted bending wave power..................................................... 84
4.8 The power per unit length transmitted by a diffuse bending wave field. .......................................................................................................... 88
4.9 The transmitted power when plate 1 is excited by a diffuse acoustic field. .................................................................................................. 90
4.10 Summary ..................................................................................... 93
Chapter 5 The results for pinned plates. ................................................... 94
Chapter 6 Conclusion ............................................................................ 132
Appendix 1 ........................................................................................... 135
Matlab code ...................................................................................... 135
References ........................................................................................... 139
iv
List of figures
Figure Page Fi g ur e 2 .1 T h e t wo d i me n sio n al ca se. ......................................................................... 9
Fi g ur e 2 .2 : A f i g ur e s ho wi n g t he co - o r d i na te f i g ur e s u sed i n t hi s se ct io n . .................... 21
Fi g ur e 2 .3 Gr ap h ica l d i a gr a m o f eq u at io n ( 2 .2 5 8 ) . ..................................................... 32
Fi g ur e 3 .1 : T he tr a n s mi t ted i n te n s it y d u e to a no r mal l y i n cid e n t fo r ced wav e. .............. 45
Fi g ur e 3 .2 : T he tr a n s mi t te d , r e fle ct ed , i n cid e nt a nd s u m o f i nc id e n t a nd r ef le cted
in te n s it ie s d ue to a no r ma ll y i nc id e n t fo r c ed wav e. ............................................. 47
Fi g ur e 3 .3 : T he no r mal i sed tr a n s mi t ted , r e fl ect e d a nd i nc id e n t so u nd p r e s s ur e s a s a
f u nc tio n o f t h e r a tio r o f t he fo r ced i nc id e nt wa ve n u mb er to t h e fr e el y p r o p ag at i n g
wa v e n u mb er . .................................................................................................. 48
Fi g ur e 3 .4 T h e no r ma li s ed tr a n s mi t ted i nt e ns it y d ue to fo r ced p la ne wa v es i nc id e nt at
an g le s o f i nc id e nc e fr o m 0 to 9 0 d e gr ee s i n 1 5 d egr ee i ncr e me nt s. ........................ 50
Fi g ur e 3 .5 T h e tr a n s mi tt ed i nt e n si t y d ue to a p la ne so u nd wa v e i n cid e n t at a n g le s r a n g i n g
fr o m 0 to 9 0 d e gr e es i n 1 5 d e gr ee i ncr e me n ts . T he r e s ul ts ar e g r ap hed a s a f u n ct io n
o f t he r at io r o f t h e fo r c ed i nc id e n t wa v e n u mb e r to t h e wa v e n u mb er o f a fr ee l y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m. T he r at io o f t he wa ve n u mb er o f a fr eel y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m to t ha t i n th e seco nd med i u m ( α ) i s ½. T h e
r atio o f t h e i mp ed a nc e o f t he c har a cte r i st ic i mp e d an ce o f t he f ir st med i u m to t h at o f
th e seco nd med i u m ( β) i s ½. .............................................................................. 55
Fi g ur e 3 .6 T h e tr a n s mi tt ed i nt e n si t y d ue t o a p la ne so u nd wa v e i n cid e n t at a n g le s r a n g i n g
fr o m 0 to 9 0 d e gr e es i n 1 5 d e gr ee i ncr e me n ts . T he r e s ul ts ar e g r ap hed a s a f u n ct io n
o f t he r at io r o f t h e fo r c ed i nc id e n t wa v e n u mb e r to t h e wa v e n u mb er o f a fr ee l y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m. T he r at io o f t he wa ve n u mb er o f a fr eel y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m to t ha t i n th e seco nd med i u m ( α ) i s ½. T h e
r atio o f t h e i mp ed a nc e o f t he c har a cte r i st ic i mp e d an ce o f t he f ir st med i u m to t h at o f
th e seco nd med i u m ( β) i s 1 . .............................................................................. 56
Fi g ur e 3 .7 T h e tr a n s mi tt ed i nt e n si t y d ue to a p la ne so u nd wa v e i n cid e n t at a n g le s r a n g i n g
fr o m 0 to 9 0 d e gr e es i n 1 5 d e gr ee i ncr e me n ts . T he r e s ul ts ar e g r ap hed a s a f u n ct io n
v
o f t he r at io r o f t h e fo r c ed i nc id e n t wa v e n u mb e r to t h e wa v e n u mb er o f a fr ee l y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m. T he r at io o f t he wa ve n u mb er o f a fr eel y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m to t ha t i n th e seco nd med i u m ( α ) i s ½. T h e
r atio o f t h e c ha r ac ter is ti c i mp ed a nce o f t h e fi r s t med i u m to t h at o f t h e s e co nd
med i u m ( β) i s 2 . .............................................................................................. 57
Fi g ur e 3 .8 T h e tr a n s mi tt ed i nt e n si t y d ue to a p la ne so u nd wa v e i n cid e n t at a n g le s r a n g i n g
fr o m 0 to 9 0 d e gr e es i n 1 5 d e gr ee i ncr e me n ts . T he r e s ul ts ar e g r ap hed a s a f u n ct io n
o f t he r at io r o f t h e fo r c ed i nc id e n t wa v e n u mb e r to t h e wa v e n u mb er o f a fr ee l y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m. T he r at io o f t he wa ve n u mb er o f a fr eel y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m to t ha t i n th e seco nd med i u m ( α ) i s 2 . T he r a tio
o f t he i mp ed a nce o f t he ch ar ac ter i st ic i mp ed a n c e o f t h e fir s t med i u m to th at o f t h e
seco nd med i u m ( β) is 1 / 2 . ................................................................................. 58
Fi g ur e 3 .9 T h e tr a n s mi tt ed i nt e n si t y d ue to a p la ne so u nd wa v e i n cid e n t at a n g le s r a n g i n g
fr o m 0 to 9 0 d e gr e es i n 1 5 d e gr ee i ncr e me n ts . T he r e s ul ts ar e g r ap hed a s a f u n ct io n
o f t he r at io r o f t h e fo r c ed i nc id e n t wa v e n u mb e r to t h e wa v e n u mb er o f a fr ee l y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m. T he r at io o f t he wa ve n u mb er o f a fr eel y
p r o p ag at i n g wa v e i n t h e f ir st me d i u m to t h a t i n th e seco nd med i u m ( α ) i s 2 . T he r a tio
o f t he i mp ed a nce o f t he ch ar ac ter i st ic i mp ed a n c e o f t h e fir s t med i u m to th at o f t h e
seco nd med i u m ( β) is 1 . .................................................................................... 59
Fi g ur e 3 .1 0 T h e tr a n s mi tted i nt e n si t y d ue to a p l an e so u nd wa v e i ncid e nt at a n g le s
r an g i n g fr o m 0 to 9 0 d e gr e e s i n 1 5 d e gr e e i n cr e me n t s. T h e r e s ul t s ar e g r ap h ed a s a
f u nc tio n o f t h e r a tio r o f t he fo r ced i nc id e nt wa ve n u mb er to t h e wa v e n u mb e r o f a
fr e el y p r o p a ga ti n g wa v e i n t h e fir s t med i u m. T h e r at io o f t he wa ve n u m b er o f a
fr e el y p r o p a ga ti n g wa v e i n t h e fir s t med i u m to t ha t i n t he s eco nd me d i u m ( α ) i s 2 .
T he r a tio o f t he i mp ed a nc e o f t he c h ar ac ter i st ic i mp ed a n ce o f t he fir s t med i u m to
th at o f t h e s eco nd me d i u m ( β) i s 2 . .................................................................... 60
Fi g ur e 3 .1 1 T h e tr a n s mi tted i nt e n si t y d ue to a f o r ced d i f f u s e i n cid e n t s o u nd f ie ld . T he
r es u lt s a r e gr ap h ed a s a f u nc tio n o f t h e r a tio r o f t he fo r ced i nc id e nt wa ve n u mb er to
th e wa ve n u mb er o f a fr eel y p r o p a ga ti n g wa ve i n t he f ir st me d i u m. Alp h a i s eq u al to
vi
½. B e ta i s ½, 1 o r 2 . ......................................................................................... 61
Fi g ur e 3 .1 2 T h e tr a n s mi tted i nt e n si t y d ue to a f o r ced d i f f u s e i n cid e n t s o u nd f ie ld . T he
r es u lt s a r e gr ap h ed a s a f u nc tio n o f t h e r a tio r o f t he fo r ced i nc id e nt wa ve n u mb er to
th e wa ve n u mb er o f a fr eel y p r o p a ga ti n g wa ve i n t he f ir st me d i u m. Alp h a i s eq u al to
2 . B eta i s ½, 1 , o r 2 . ........................................................................................ 62
Fi g ur e 4 .1 P l ate 1 a nd P lat e 2 . ................................................................................. 65
Fi g ur e 4 .2 T h e a n g le o f r ef le ct io n eq ua l s t h e a n gl e o f i nc id e nc e fo r a fr eel y p r o p a ga ti n g
wa v e. T he p o s iti v e y- a x is p o i nt s v er t ica ll y o ut o f t he p a ge. ................................. 74
Fi g ur e 4 .3 An i n cid e n t a co u s tic so u nd wa v e. ............................................................. 90
Fi g ur e 4 .4 T h e o c ta nt t h at eq u at io n 4 .1 8 7 is a ve r ag ed o ver . ........................................ 92
Fi g ur e 5 .1 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue to a
fo r ced wa ve i n t h e f ir s t p an el i nc id e nt at a n a n g l e o f i n cid e n ce to t h e no r ma l o f 0 ˚ .
T he r a tio κ o f t he wa ve n u mb e r i n t he se co nd p a ne l to t ha t i n t h e fir s t p a ne l i s ½.
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................10 3
Fi g ur e 5 .2 . T he r ela ti v e tr a n s mi t t ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f 0 ˚ .
T he r a tio κ o f t he wa ve n u mb e r i n t he se co nd p a ne l to t ha t i n t h e fir s t p a ne l i s 1 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................10 4
Fi g ur e 5 .3 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue to a
fo r ced wa ve i n t h e f ir s t p an el i nc id e nt at a n a n g l e o f i n cid e n ce to t h e no r ma l o f 0 ˚ .
T he r a tio κ o f t he wa ve n u mb e r i n t he se co nd p a ne l to t ha t i n t h e fir s t p a ne l i s 2 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................10 5
Fi gu r e 5. 4 Th e r e lati v e t ran s mit ted in t en s ity at th e ju n c tio n o f t wo in fi n it e p an e ls d u e to
a fo rc ed w a ve in th e fir s t p an el in cid en t at an a n gl e o f in c id en ce to th e n or ma l o f
15˚ . Th e ra tio κ o f t h e w av e n u mb e r in th e s ec o n d p an el to th at in th e f ir st p an e l i s
1/ 2. Cu r v e s ar e gi v en fo r th e r ati o ψ eq u a l s ½ , 1 an d 2 . .....................................10 6
Fi g ur e 5 .5 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue to a
fo r ced wa ve i n t h e f ir s t p an el i nc id e nt at a n a n g l e o f i n cid e n ce to t h e no r ma l o f
1 5 ˚ .T he r a tio κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 .
vii
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................10 7
Fi g ur e 5 .6 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue to a
fo r ced wa ve i n t h e f ir s t p an el i nc id e nt at a n a n g l e o f i n cid e n ce to t h e no r ma l o f 1 5 ˚ .
T he r a tio κ o f t he wa ve n u mb e r i n t he se co nd p a ne l to t ha t i n t h e fir s t p a ne l i s 2 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................10 8
Fi g ur e 5 .7 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue to a
fo r ced wa ve i n t h e f ir s t p an el i nc id e nt at a n a n g l e o f i n cid e n ce to t h e no r ma l o f 3 0 ˚ .
T he r a tio κ o f t he wa ve n u mb e r i n t he se co nd p a ne l to t ha t i n t h e fir s t p a ne l i s 1 /2 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................10 9
Fi g ur e 5 .8 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue to a
fo r ced wa ve i n t h e f ir s t p an el i nc id e nt at a n a n g l e o f i n cid e n ce to t h e no r ma l o f 3 0 ˚ .
T he r a tio κ o f t he wa ve n u mb e r i n t he se co nd p a ne l to t ha t i n t h e fir s t p a ne l i s 1 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................11 0
Fi g ur e 5 .9 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue to a
fo r ced wa ve i n t h e f ir s t p an el i nc id e nt at a n a n g l e o f i n cid e n ce to t h e no r ma l o f 3 0 ˚ .
T he r a tio κ o f t he wa ve n u mb e r i n t he se c o nd p a ne l to t ha t i n t h e fir s t p a ne l i s 2 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................11 1
Fi g ur e 5 .1 0 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
4 5 ˚ . T he r at io κ o f t he wa v e n u mb er i n t h e seco nd p a nel to t hat i n t he f i r st p a ne l i s
1 /2 . C ur ve s a r e g i ve n fo r t he r at io ψ eq u al s ½, 1 an d 2 . ......................................11 2
Fi g ur e 5 .1 1 . T he r ela ti v e tr a n s mi t ted i nt e ns it y a t t he j u nc tio n o f t wo i n f in it e p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
4 5 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................11 3
Fi g ur e 5 .1 2 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
4 5 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 2 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................11 4
Fi g ur e 5 .1 3 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
viii
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
6 0 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s
1 /2 . C ur ve s a r e g i ve n fo r t he r at io ψ eq u al s ½, 1 an d 2 . ......................................11 5
Fi g ur e 5 .1 4 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
6 0 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................11 6
Fi g ur e 5 .1 5 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
6 0 ˚ . T he r at io κ o f t he wa v e n u mb er i n t h e s eco nd p a nel to t hat i n t he f i r st p a ne l i s
2 . C ur v es ar e gi ve n fo r t he r at io ψ eq ual s ½, 1 a nd 2 . .........................................11 7
Fi g ur e 5 .1 6 . T he r ela ti v e tr a n s mi t ted i nt e ns it y a t t he j u nc tio n o f t wo i n f in it e p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
7 5 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s
1 /2 . C ur ve s a r e g i ve n fo r t he r at io ψ eq u al s ½, 1 an d 2 . ......................................11 8
Fi g ur e 5 .1 7 . T he r ela ti v e tr a n s mi t ted i nt e ns it y a t t he j u nc tio n o f t wo i n f in it e p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
7 5 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................11 9
Fi g ur e 5 .1 8 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
7 5 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 2 .
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ............................................12 0
Fi g ur e 5 .1 9 . T he r ela ti v e tr a n s mi t ted i nt e ns it y a t t he j u nc tio n o f t wo i n f in it e p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
9 0 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s
1 /2 . C ur ve s a r e g i ve n fo r t he r at io ψ eq u al s ½, 1 an d 2 . ......................................12 1
Fi g ur e 5 .2 0 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct i o n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
9 0 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 .
ix
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2. ............................................12 2
Fi g ur e 5 .2 1 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue to
a fo r ced wa v e i n t he f ir s t p a ne l i n cid e nt at a n a n gl e o f i nc id e nc e to t he n o r mal o f
9 0 ˚ . T he r at io κ o f t he wa v e n u mb er i n t h e seco nd p a nel to t hat i n t he f i r st p a ne l i s
2 . C ur v es ar e gi ve n fo r t he r at io ψ eq ual s ½, 1 a nd 2 . .........................................12 3
Fi g ur e 5 .2 2 T h e i n cid e n t fi eld is a d i f f u se v ib r at io n al f ie ld . T h e i n te gr at io n i s d o ne o ver
all t he p o s sib le a n gl es o f i nc id e nc e. B ec a u se o f s y m me tr y, t he i nt e gr a tio n is o nl y
d o ne fr o m 0 to 9 0 d e gr e es. T he r at io κ o f t he wa ve n u mb er i n t h e seco nd p a nel to
th at i n t he f ir st p a nel i s 1 /2 . C ur ve s a r e g i ve n fo r t he r at io ψ eq u al s ½, 1 an d 2 . ...12 4
Fi g ur e 5 .2 3 T h e i n cid e n t fi eld is a d i f f u s e v ib r at io n al f ie ld . T h e i n te gr at io n i s d o ne o ver
all t he p o s sib le a n gl es o f i nc id e nc e. B ec a u se o f s y m me tr y, t he i nt e gr a tio n is o nl y
d o ne fr o m 0 to 9 0 d e gr e es. T he r at io κ o f t he wa ve n u mb er i n t h e seco nd p a nel to
th at i n t he f ir st p a nel i s 1 . C ur v es ar e g i ve n fo r t he r at io ψ eq ual s ½, 1 a nd 2 . ......12 5
Fi g ur e 5 .2 4 T h e i n cid e n t fi eld is a d i f f u se v ib r at io n al f ie ld . T he i nte g r a tio n is d o n e o ve r
all t he p o s sib le a n gl es o f i nc id e nc e. B ec a u se o f s y m me tr y, t he i nt e gr a tio n is o nl y
d o ne fr o m 0 to 9 0 d e gr e es. T he r at io κ o f t he wa ve n u mb er i n t h e seco nd p a nel to
th at i n t he f ir st p a nel i s 2 . C ur v es ar e gi ve n fo r t he r at io ψ eq ual s ½, 1 a nd 2 . ......12 6
Fi g ur e 5 .2 5 . T he v ib r a ti o na l f ield i n t he 1 st p a n el i s e xc ited b y a d i f f u s e i nc id e n t
aco us ti c fi eld . T he r at io κ o f t h e wa v e n u mb er i n t he se co nd p a ne l to t hat i n t he fir s t
p an el i s 1 /2 . C u r ve s ar e gi v e n fo r t he r at io ψ eq u al s ½, 1 a nd 2 . ..........................12 7
Fi g ur e 5 .2 6 . T he v ib r a ti o na l f ield i n t he 1 st p a n el i s e xc ited b y a d i f f u s e i nc id e n t
aco us ti c fi eld . T he r at io κ o f t h e wa v e n u mb er i n t he f ir st p a nel to t ha t i n t he se co nd
p an el i s 1 . C ur ve s ar e g i ve n fo r t h e r a tio ψ eq ua l s ½, 1 a nd 2 . .............................12 8
Fi g ur e 5 .2 7 . T he v ib r a ti o na l f ield i n t he 1 st p a n el i s e xc ited b y a d i f f u s e i nc id e n t
aco us ti c fi eld . T he r at io κ o f t h e wa v e n u mb er i n t he se co nd p a ne l to t h at i n t he fir s t
p an el i s 2 . C ur ve s ar e g i ve n fo r t h e r a tio ψ eq ua l s ½, 1 a nd 2 . .............................12 9
Fi g ur e 5 .2 8 T h e r e la ti ve i nte n s it y tr a n s mi t ted at a p i n ned j o i n t b e t we e n t wo p a ne l s wh e n
th e t wo p a n el s h a ve t he sa me ma ter ial p r o p er tie s . T he f ir st p a n el i s e x ci t ed o n o ne o f
it s sid e s b y a d i f f u se so u nd f ie ld . T he I r wi n c ur ve s ho ws t h e ca lc u lat io n s mad e i n
th i s t h es i s, wh i le t he Vi llo t & G u i go u - Car ter c u r ve s ho ws t h e ca lc u la tio n s mad e b y
x
Vil lo t a nd G ui go u - C ar te r ( 2 0 0 0 ) . T he x - a x i s var i ab le, r i s t h e r a tio o f t he wa ve
n u mb e r o f t h e d i f f u s e so u nd f ie ld to t he f r ee b e n d in g wa v e n u mb er o f t h e t wo
xi
id e nt ica l p a n el s. T he c r i tic al fr eq ue nc y o cc ur s whe n r eq ua l s o ne. .......................13 0
List of Symbols a a co ns ta n t
a 1 a co n st a nt
a 2 a co n st a nt
B b e nd i n g st i f f ne s s o f t h e p l at e
B 1 b e nd i n g s ti f f n e s s o f t h e p l at e i n med i u m 1
B 2 b e nd i n g s ti f f n e s s o f t h e p l at e i n med i u m 2
B 0 t he ad iab at ic b ul k mo d ul u s o f t he air
c t he p h as e sp ee d o f t he so u nd wa v e i n a f l uid med i u m
c m t he sp eed o f so u nd i n t h e m t h med i u m
c i fr ee l y p r o p a g at in g b e nd i n g wa v e ve lo c i t y o f t h e i t h p lat e
E( z) var ia tio n o f b e nd i n g wa v e i n z -a x i s d ir ect io n
e e xp o ne n tia l f u nc tio n
exp e xp o n e nti al f u nc tio n
f fr eq u e nc y
f c cr it ica l fr eq ue nc y
F x r ea ct io n fo r c e p er u ni t l e n gt h at a b o u n d ar y
I i nt e ns it y o f t h e aco u st ic wa v e
I i i nc id e n t i n te n s it y
I r r e f lec ted i nte n si t y
I t tr a n s mi t ted i nt en s it y
I ( i + r ) to ta l i n te n si t y at x =0
I t f o r c e d fo r c ed tr a n s mi tted i nt e n si t y d ue to a f o r ced i n cid e nt wa ve
I t f r e e tr a n s mi t ted i n te n si t y o f a no r ma ll y i nc id e nt f r ee l y p r o p a g at i n g wa ve
j i s t he sq uar e r o o t o f -1
k wa v e n u mb er
k a a ir b o r ne wa ve n u mb er
k f fo r c ed wa v e n u mb e r
k 1 wa v e n u mb er in med i u m 1
k 2 wa v e n u mb er in med i u m 2
xii
k t x t r a n s mi tt ed wav e n u mb er i n t he x d ir e ctio n
k t y tr a n s mi tt ed wa v e n u mb er i n the y d ir e ct io n
k m wa v e n u mb er i n t h e m th me d iu m
k= (k x,k y,0 ) wa v e n u mb er v ecto r
k t= ( k t x,k t y,0 ) t r a n s mi tt ed wa v e n u mb er v ect o r
k r= ( k r x,k r y,0 ) r e f le c ted wa ve n u mb er v ect o r
k f= ( k f x,k f y,0 ) fo r ced i n cid e n ce wa ve n u m b er vec tor
k N n ea r f ield wa v e n u mb er
k N 1 ne ar f ie ld wa v e n u mb er i n med i u m 1
k N 2 ne ar f ie ld wa v e n u mb er i n med i u m 2
k x i i nc id e nt wa v e n u mb er i n x - a xi s d ir e ct io n
k x r r e fl ected wa v e n u mb er i n x - ax i s d ir ect io n
k x 2 wa ve n u mb er i n x -a x i s d ir e ctio n i n me d i u m 2
m ma s s p er u ni t ar e a o f p lat e
m i ma s s p er u ni t ar e a o f t he ith p lat e
M x z mo me n t p e r u ni t l e n gt h ab o ut t he z - a xi s e xer t ed o n th e b e a m cr o s s
sec tio n al ar ea no r ma l to t he x - a xi s
M z a n g ul ar mo me n t p er u ni t le n gt h ab o ut t he z - a xi s
p aco u st ic p r es s ur e
p f fo r c ed aco u st ic p r e ss ur e
p r r e f l ected aco u s tic p r e ss u r e
p t tr a n s mi tt ed a co us ti c p r e s s ur e
Q x s he a r fo r ce p er u ni t l e n gt h a cti n g o n a p la ne no r ma l to t he x -a x i s
r r at io o f f o r ced i nc id e n t wa v e no . to fr eel y p r o p a ga ti n g wa ve no . i n
th e i n cid e nt me d i a
r a mp lit ud e o f r e fl ect ed wa v e
r r at io o f air b o r n e wa v e no . to wa ve n u mb er i n p l at e 1
2
2
2
θ
2 κθ =
r j a mp l it ud e o f near f ie ld r e f le c ted wa ve
sin
sin
sin
1
θ 2
2 χ a
=i
s 2
t ti me
xiii
t a mp l it ud e o f tr a ns mi tted wa v e
t j a mp li t ud e o f tr an s mi t ted n ear f ield wa v e
U vo l u me velo ci t y p er u ni t vo l u me i ns er t ed i nto t he med i u m a t p o si tio n x
u f fo r ced co mp l e x p ar t icl e ve lo c it y
u co mp le x co nj u ga t e o f t h e p ar tic le v elo ci t y
xu co mp le x p a r t icl e ve lo c it y i n t h e x d ir e ct i o n
fxu fo r ced co mp l e x p ar ti cl e ve lo ci t y ( i n t h e d ir ec tio n o f t he x -a x i s)
rxu r e f lec ted co mp le x p ar t icl e ve lo ci ti e s ( i n t he x -a x is d ir ect io n)
txu tr a n s mi t ted co mp l ex p ar t ic le v elo c it ie s ( i n t he x - a xi s d ir e ct io n)
u co mp le x p ar t ic le ve lo c it y
v y tr a n s v er s e ve l o cit y o f t h e p l ate i n t he d ir ec tio n o f t he y -a x i s
v 1 tr a ns v er s e b e n d in g wa v e i n p la te 1
v 2 tr a ns v er s e b e n d in g wa v e i n p la te 2
v 1 + tr a n s ver se v elo cit y a mp l it ud e o f a b e nd in g wa v e
w c an g ula r cr it ica l fr eq ue nc y
w a n g ular velo ci t y
w z an g ul ar ve lo ci t y o f t he p la te ab o ut t he z -a x is
w z 2 an g u lar v elo ci t y a b o ut t he z -a x i s i n p la te 2
z i mp ed a nce
Z 1 i mp ed a nc e i n med ia 1
Z 2 i mp ed a nc e i n med ia 2
Z i i mp ed a nc e e xp er ie n ced b y a fr e el y p r o p ag at i n g b e nd i n g wa v e
θ f i nc id e nt a n gl e
θ r r e fl ect ed a n g le
θ t tr a n s mi t ted a n g le
η 1 d a mp i n g lo s s f acto r o f p la te 1
ρ c ha n ge i n d e n s i t y fr o m t he a mb ie n t d e n si t y
ρ 0 i s t h e a mb ie n t d en s it y o f t he med i u m i n wh i c h t he wa v e i s tr a v ell i n g
Ω∂ ele me nt al s tr ip o f so l id a n g le
xiv
ρ m a mb ie n t d e n s it y o f t he m t h med i u m
< > a ver a g e
,
,
ZPPu , f
r
2
T he b ar o ver t he se s y mb o ls i nd ica te s t a ki n g t he co mp l e x co nj u ga te
Re r ea l p ar t o f t h e i ma g i nar y n u mb er
κ k 2 /k 1
φ a n gl e to no r m al o f wa ve n u mb er ve cto r o f e xc it i n g aco u s tic p la ne wa v e
χ a r at io o f fo r ced i ncid e nt wa v e n u mb er
2
2
2
ψ
2 κ
2 κ
−
−
+
−
−
+
+
ω a n g ular fr eq ue nc y
1
s
1
s
s
s
j
j
)
)2
(
(
Δ
2 kB 22 2 kB 11
α
k 1 k
2
β
Z 1 Z
2
if
≥ χκ a
uθ
if
χκ < a
κ χ a
π 2 arcsin
xv
ψ
Abstract
T he E ur o p e a n Co o p er at i o n i n Sci e nce a nd T ec h n o lo g y ( CO ST ) Ac tio n F P 0 7 0 2 “Ne t -
Aco u st ic s fo r T i mb e r b a sed Li g ht we i g ht B u ild i n g s a nd E le me nt s ” i s a tt e mp ti n g to
ex te nd t he EN1 2 3 5 4 ser i es o f s ta nd a r d s. T he E ur o p ea n Sta nd ar d s ( E N) C EN ( 2 0 0 0 a) ,
CE N ( 2 0 0 0 b) , C EN ( 2 0 0 0 c) , CEN ( 2 0 0 0 d) , CE N ( 2 0 0 0 e ) , CE N ( 2 0 0 0 f) se r ie s, E N
1 2 3 5 4 g i ve s me t ho d s fo r p r ed ic ti n g t he p r o p a ga t io n o f so u nd a nd v ib r a ti o n i n
b ui ld i n g s. T he f ir st f o ur p ar t s o f t hi s ser ie s ha v e al so b e e n p ub l i s hed a s t he
I n ter na tio n al Or ga n iza ti o n fo r S ta nd ar d iz at io n ( I SO) I S O1 5 7 1 2 ser ie s o f st a nd ar d s
( I SO ( 2 0 0 5 a) , I S O ( 2 0 0 5 b) , I S O ( 2 0 0 5 c) , I SO ( 2 0 0 5 d) ) . T he se se r ie s o f st a nd ar d s a r e
co mp le me n t ed b y t h e I S O 1 0 8 4 8 ser ie s o f st a nd ar d s ( I S O ( 2 0 0 6 a) , I SO ( 2 0 0 6 b) , I S O
( 2 0 0 6) ) , wh i c h sp e ci f ic me t ho d s o f me a s ur i n g t h e fla n k i n g so u nd tr a n s m is s io n i n
b ui ld i n g s.
T hi s r e sea r c h ha s r ai sed t he q ue s tio n o f wh e t her t he v ib r a tio n tr a n s mi s s i o n at a wa ll
j un ct io n d ep e nd s o n ho w t h e wa ll i s e x ci ted ( b y e it h er a so u nd wa v e o r a mec h a ni cal
s ha ke r ) . T h e a i m o f t hi s r es ear c h i s to i n ve s ti ga t e t hi s q u e stio n a nd he n c e co ntr ib ut e to
th e r e v i sio n o f t he s er i e s o f st a nd ar d s. Vi llo t a n d G ui go u - C ar te r ( 2 0 0 0 ) ha v e
co n s id er ed t hi s p r o b le m b ut t he ir eq uat io n s ( 1 0 ) and ( 1 3 ) ap p ear to b e i n er r o r . T h is
r es ear c h wi ll e nd e a vo ur to d er i ve t he co r r ec t eq u atio n s a nd r ep e at Vi llo t and G u i go u -
Car ter ’ s cal c ul at io ns.
T hi s t he s i s s ho ws t h at t he tr a n s mi s s io n o f fo r ce d b e nd i n g wa ve s i s d i f f e r en t fr o m t he
tr a n s mi s sio n o f fr e el y p r o p ag at i n g b e nd i n g wa v es. Ho we v er , V il lo t a nd G ui go u -
Car ter ’ s ( 2 0 0 0) ca lc u lat i o n s, fo r a p i nn ed j u n ct io n b et wee n t wo p a ne ls t h at ar e t h e
sa me , o ver e st i ma te s t h e d i f fer e nce. T he ca se o f a fo r ced wa v e i n a f l uid in cid e nt o n a
p la ne i nt er fac e s ur fa ce wh er e t he p r o p er t ie s o f t he f l u id ma y c ha n ge i s i n ve s ti ga ted
f ir s t. I t i s s ho wn t h at t h e i nt e n si t y p r o p a ga ted t o a nd fr o m t he i nte r fac e s ur fa ce ca n no t
b e ca lc ul at ed sep ar ate l y fo r t he fo r ced i nc id e n t wa v e a nd t h e fr e el y p r o p ag at i n g
r ef le cted wa v e, b e ca u se th e cr o s s ter ms i n t h e i n te n si t y ca lc u lat io n c a n n o t b e c a nce led .
T hi s i mp li es t ha t a tr a n s mi s s io n fa cto r o r co e f f i cie n t ca n no t b e ca lc u lat ed . T hi s i s t h e
xvi
r ea so n fo r t he er r o r i n V illo t a nd G u i go u - Car ter ’ s ( 2 0 0 0 ) eq uat io n ( 1 0 ) .
T he ca lc u la tio n s ar e t h e n e x te nd ed to t he p i n ned j u nct io n b e t we e n t he t wo p a nel s ca se ,
co n s id er ed b y V il lo t a nd G ui go u- C ar te r . I t i s s ho wn t h at t hei r d i f f u se fi el d we i g hti n g
xvii
is al so i n er r o r .
Chapter 1 Introduction
Fla n k i n g so u nd tr a n s mi s sio n i s t h e tr a n s mi s sio n o f so u nd fr o m o ne r o o m to a no t h er
o th er t ha n v ia t he co m m o n wa ll o f t he t wo r o o m s ( E . Ge r r et s e n ( 1 9 8 6 ) , E . Ge r r et se n
( 1 9 7 9) , N i g ht i n gal e ( 1 9 9 5) ) . T he c ur r e n t t h eo r y is o nl y v al id fo r he a v y we i g h t si n g le
lea f wa ll s. Ma n y r es ear c her s h a ve a d d r e ss ed t h i s ar ea o f r e sea r c h, se e t h e p ap er s b y
Vil lo t ( 2 0 0 2) , Ni g h ti n ga le a nd B o s ma n s ( 2 0 0 3) , Da v y, Ma h n, G ui go u - C ar ter , a nd
Vil lo t ( 2 0 1 2) ; ( Ed d y Ge r r et se n, 2 0 0 7 ) , CST C ( 2 0 0 8 ) , Ma h n ( 2 0 0 8 ) , a nd Da v y ( 2 0 0 9) .
Re se ar c her s ar e ab le to me a s ur e t he f la n k i n g tr a n s mi s sio n o f ma n y b ui ld in g s ys t e ms
( B r u n s ko g a nd C h u n g ( 2 0 1 1) , Cr i sp i n, I n gel aer e , Va n Da m me , a nd W u yt s ( 2 0 0 6) a nd
G ui go u - Car ter , V il lo t, a nd Ro la nd ( 2 0 0 6) ) . Li g h t we i g ht b u ild i n g e le me n ts t yp i ca ll y
ha v e cr it ica l fr eq ue nc ie s i n o r ab o v e t h e fr eq u e n c y r a n ge o f i n ter e s t, so t he c ur r e n t
th eo r y d o e s no t ap p l y to t he m. T he E u r o p ea n Co o p er at io n i n S cie n ce a nd T ech no lo g y
( C OST ) Act io n FP 0 7 0 2 “Ne t - Aco us ti cs fo r T i m b er b a sed L i g ht we i g ht B ui ld i n g s a nd
Ele me n t s” h as b ee n at te mp ti n g to e x te nd t he E N 1 2 3 5 4 ser ie s o f s ta nd ar d s ( I SO
( 2 0 0 5 a) , I SO ( 2 0 0 5 b ) , I SO ( 2 0 0 5 c) a nd I S O ( 2 0 0 5 d) ) fo r ca lc u lat i n g t he f la n k i n g so u nd
tr a n s mi s sio n o f si n g le le af hea v y we i g ht wa ll s to li g h t we i g ht wa ll s a nd i n p ar t ic ul ar to
mo r e co mp li cat ed l i g ht we i g h t wal l s. T he r e sea r ch wo r k o f t h is ac tio n h as r ai sed t he
q ue s tio n o f wh e t her t he tr a n s mi s sio n o f vib r at io n fr o m o ne wa ll to a no t h er wa ll
d ep e nd s o n wh e t he r t h e ex ci ted wal l is e xc ited me c ha n ica ll y b y a s ha k e r o r
aco us ti ca ll y b y a so u nd f ield . T he a n s wer i n g o f th i s q ue s tio n wi ll e nab l e t he e x te n s io n
o f EN1 2 3 5 4 to l i g ht we i g ht wa ll s o n a mo r e r a tio na l b a s is . T hi s e xte n s io n is
p ar ti c ul ar l y i mp o r ta nt f o r Au str a li a b e ca u se Au str al ia ha s mu c h mo r e l i g ht we i g ht
co n s tr uct io n t ha n mo s t p ar t s o f E ur o p e.
Vil lo t a nd G ui go u - C ar te r ( 2 0 0 0 ) ha ve co n sid er e d t hi s p r o b le m b u t t h eir eq u at io ns ( 1 0 )
and ( 1 3 ) ap p ear to b e i n er r o r . T he y h a ve p u b li s h ed a no t h er p ap e r o n t h i s s ub j ec t i n
1
wh ic h t he ir me a s ur e me n t me t ho d s ha ve b ee n r ec o n sid er ed G ui go u - C ar te r et a l. ( 2 0 0 6) .
T hi s r e sea r c h wi ll e nd ea vo ur to d er i ve t he co r r e ct eq u at io ns a nd r ep ea t Vil lo t a nd
G ui go u - Car ter ’ s ca lc ul a tio n s.
Air b o r n e e xc it at io n o f a wa ll wi t h a s i n gle fr eq u en c y o f so u nd a t a s i n gl e a n gl e o f
in cid e nce p r o d uce s a fo r ced b e nd i n g wa v e i n t h e wa ll wi t h a wa ve le n g t h wh ic h i s eq u al
to t he tr ace wa v ele n g t h o f t he i nc id e nt so u nd o n t he wal l. W h e n t h i s fo r ced b e nd i n g
wa v e i s r e f lec ted at t he ed g es o f t h e wa l l, i t p r o d uc es r e so na n t b e nd i n g wa v e s a nd
exp o n e nt ial l y d e ca yi n g ne ar fi eld s. E x ci ta tio n wit h a mec h a ni cal s h a ker p r o d uc e s
r eso n a nt b e n d i n g wa ve s and e xp o ne n tia ll y d ec a y in g near f ie ld s. T h is r e se ar c h wi l l
calc u la te t heo r e ti ca ll y t he d i f fe r e nc e b e t we e n t h e tr a n s mi s s io n o f fo r ced b e nd i n g
wa v e s a nd r e so na n t b e n d in g wa v e s fr o m a n e xc i ted wal l to a wal l co n n e cted to t h e
ex ci ted wal l. Fo r mo s t wa l l s, t h e tr a n s ver se v el o cit y o f t h e r e so na n t b e nd i n g wa v e s i s
lar ger t ha n t he tr a n s ve r s e v elo ci t y o f t he fo r ced b end i n g wa ve s. Vi llo t a nd G ui go u -
Car ter ( 2 0 0 0 ) s u g ge st t h at t h e t r a n s mi s sio n o f fo r ced b e nd i n g wa v e s t hr o u g h t he
j un ct io n c a n b e i g no r ed . I n cid e n t a co us ti c wa v e ex ci tat io n a nd t he mec h an ica ll y
ex ci ted e x ci ta tio n wi ll b e co n sid er ed . Aco u st ic e xc it at io n i nd u ce s fo r c ed an d r e so na n t
b end i n g wa ve s. E xci ta ti o n b y a me c ha ni ca l s ha k er i nd uc es o nl y r e so na nt b e nd i n g
wa v e s. So b y co mp ar i n g t he t wo ca se s o f tr a n s m is s io n o f b e nd i n g wa v e en er g y fr o m
o ne wa ll to a no t her wa ll v ia a co m mo n j u nc tio n , it ca n b e d et er mi n ed i f th e fo r c ed
b end i n g wa ve tr a n s mi s s i o n is s i g ni f ic a nt o r n o t. T he a i m i s to f i nd t h e ve lo ci t y
d i f fer e n ce b et wee n t he t wo wa l ls, wh e n t he wa ll is e xc it ed aco u s tic al l y and
me c ha n ica ll y. W i ll t he v elo c it y d i f fer e nce b e t h e sa me? I t i s s u sp e cted t h at i t wi ll b e
d i f fer e n t b e ca u se i n t h e me c ha n ica l c as e t h er e is o n l y a r e so na nt b e nd i n g wa ve , wh i l e
in t he ai r b o r ne c a se t her e i s b o t h a fo r ced b e nd i n g wa ve a nd r e so n a nt b e nd i n g wa v e.
T he q ue st io n i s b y h o w mu c h wi l l t h e ve lo ci t y t r an s mi s s io n d i f fer ?
T he d er i vat io n o f t he r el ev a nt eq uat io n s i n C r e m er , H ec kl , a nd P e ter s so n ( 2 0 0 5) wi l l
b e s t ud i ed a s wi ll t hei r ex te n sio n to eq uat io n ( 9 ) o f V il lo t a nd G u i go u - Car ter ( 2 0 0 0 ) .
T he d i f f er e nc e b e t we e n th e t r a n s mi s sio n o f fo r c ed a nd r e so n a nt wa ve s wi l l f ir st b e
in v e st i gat ed fo r t he si m p ler c as e o f so u nd wa ve s i n a f l uid me d i u m. T he n t he co r r ec t
2
ver s io ns o f eq u at io ns ( 1 0 ) a nd ( 1 3 ) o f Vi llo t a n d G ui go u - C ar te r ( 2 0 0 0 ) wi l l b e d er i ved
u si n g t he k no wl ed ge g ai ned i n t he so u nd wa ve c ase . T he se co r r e ct ed eq u atio n s wi ll
th e n b e u s ed to p r ed i ct t he d i f fe r e nc e b e t we e n f o r ced b e nd i n g wa v e tr a n s mi s sio n a nd
3
r eso n a nt b e n d i n g wa ve t r an s mi s s io n fr o m a n e x c ited wa ll to a n at ta c hed wa l l.
Chapter 2 Derivation of the fluid media sound equations
2.1 Introduction
T he a i m o f t hi s t he si s is to lo o k at t he tr a n s mi s s io n o f fo r c ed b e nd i n g wav es at a
j un ct io n o f t wo p la te s. I n t hi s c h ap t er t h e si mp le r ca se o f f o r ced wa v es i n a fl u id
med i u m ar e co ns id er ed b eca u se t her e ar e le s s v ar iab le s a nd t he eq ua tio n s ar e sl i g ht l y
si mp ler .
I n t hi s c hap t er , t he c as e o f t he tr a n s mi s s io n o f a fo r ced so u nd wa v e fr o m o n e i n f i ni te
ha l f sp ac e f l uid me d i u m to a no t her is co n sid er ed . F ir s t t he c as e o f no r ma l i nc id e n ce ,
wh e n t he t wo me d ia ar e th e sa me i s co n s id er ed .
I t wo u ld no t b e p o s sib le to ge ne r at e a fo r ced wa ve i n a t hr ee d i me n sio n a l fl u id med i u m
b eca u se a d i st r ib u ted t hr ee d i me n s io na l vo l u me ve lo c it y so ur c e wo u ld b e n eed ed .
Ho we v er t h e co n cep t o f a fo r ced wa v e i s t heo r e t ica ll y p o s sib le a nd mo st d er i va tio n s o f
th e t h r ee d i me n s io nal fl uid wa v e eq u at io n d o i n cl ud e a d i s tr ib u ted t hr ee d i me n sio n al
vo l u me ve lo c it y so ur ce. A p o i n t so ur ce i s u s ua ll y i ntr o d u ced b y ma k i n g th e sp a tia l
d is tr ib u tio n o f t h is vo l u me velo ci t y so ur ce a sp a tia l D ir a c d e lta f u nc tio n .
Fo r ced wa v e s i n a fl u id med i u m, d o e xi s t p r a ct i cal l y i n t he t wo d i me n s i o na l c as e o f t he
air c a vi t y i n a d o ub le wall s ys t e m wh e n t he wid th o f t h e c a vi t y i s s ma ll co mp ar ed to
th e wa ve le n gt h o f so u nd . T he y a l so e x is t p r a ct ic all y i n t he o ne d i me n s io na l c as e o f a
mi cr o p ho ne t ur b u le nc e s cr ee n wh e n t he i nt er nal cr o s s se ct io nal d i me n s io n s o f t he
mi cr o p ho ne t ur b u le nc e s cr ee n t ub e ar e s ma ll co mp a r ed to t h e wa v el e n gt h o f so u nd .
2.2 Normal Incidence with the same media on both sides of the junction
4
T he co mp r es s ib i li t y eq u atio n i s
2
=
p
ρρ = , c
B 0 ρ 0
( 2 .1 )
wh er e ρ i s t he c ha n ge i n d e ns it y f r o m t h e a mb ie nt d e n si t y ( d e n s it y f l uc t ua tio n d u e to
th e so u nd wa v e ) , p i s t h e aco u st ic p r e ss ur e fr o m t he a mb ie n t p r es s ur e . B 0 i s t he
ad iab a ti c b ul k mo d ul u s o f t he air . B 0 i s a me a s u r e o f t h e vo l u me tr ic i nc o mp r es s ib i li t y
0ρ is t he a mb i e nt d e ns it y o f t he med i u m i n wh i c h
o r vo l u me s ti f f n es s o f t h e med i u m.
th e wa ve i s tr a vel i n g. c is t he p h a se sp eed o f t h e so u nd wa ve i n t he ga s e o u s o r liq u id
med i u m. B eca u se t he s e med ia ar e no n -d i sp er si v e , t he gr o up ve lo c it y ( t h e v elo ci t y a t
wh ic h e ner g y i s tr a n sp o r ted ) a nd t he s i g na l ve lo c it y a r e a l so eq ua l to t h e p ha se
ve lo c it y c.
.
2 c =
B 0 ρ 0
( 2 .2 )
Eq u at io n ( 2 .2 ) r ela te s t h e p ha se sp e ed o f t h e so u nd wa ve to t he ad iab at ic b u l k mo d ul u s
and t he d e n si t y o f t h e m ed i u m.
T he co n ti n u it y eq uat io n is
=
+
.
ρ 0
ρ U 0
ρ ∂ ∂ t
∂ u ∂ x
( 2 .3 )
wh er e u i s t he a co us ti c p ar ti cl e ve lo ci t y o f t he s o u nd wa ve i n t he p o si ti v e x -a x is
∂ u ∂ x
is t he gr ad ie nt i n t he x -a x is d ir e ct io n o f t he aco u st ic p ar t ic l e v elo ci t y. d ir ec tio n.
T he aco u s tic p ar tic le v e lo ci t y i s t he v elo cit y o f th e med i u m ca u sed b y t he so u nd wa v e.
U i s t he vo l u me v elo c it y p er u ni t vo l u me i ns er t e d i nto t he me d i u m at p o si tio n x .
A mb ie n t r e fer s to t he cl i ma ti c co nd it io n s o f t h e med i u m b e fo r e it i s d i s t ur b ed b y t h e
aco us ti c wa v e tr a ve ll i n g t hr o u g h i t.
T he fo l lo wi n g t wo e q uat io n s ar e Ne wto n ’ s i ner ti a eq ua tio n s , wh er e t i s t he ti me .
+
=
.0
ρ 0
∂ u ∂ t
∂ p ∂ x
( 2 .4 )
5
Di f f er e nt ia ti n g ( 2 .3 ) wi t h r esp ect to t gi v e s
+
=
)
.
ρ ( 0
ρ 0
2 ρ 2
∂ ∂ t
∂ ∂ t
∂ u ∂ x
∂ U ∂ t
( 2 .5 )
2
∂
Di f f er e nt ia ti n g ( 2 .4 ) wi t h r esp ect to x gi v es
+
=
)
.0
ρ ( 0
p 2
∂ ∂ x
∂ u ∂ t
∂ x
( 2 .6 )
2
Di f f er e nt ia ti n g eq ua tio n ( 2 .1 ) t wi ce wit h r e sp e ct to t g i ve s
=
p 2
2 ρ . 2
1 2 c
∂ ∂ t
∂ ∂ t
( 2 .7 )
2 ∂ ρ 2 t∂
2
2
Us e eq ua tio n ( 2 .7 ) to r e p lace t he val u e o f i n t h e fo llo wi n g eq ua tio n g i ve s
−
−=
.
ρ 0
p 2
∂ p 2 ∂ x
1 2 c
∂ ∂ t
∂ U ∂ t
( 2 .8 )
T hi s i s t he o ne d i me n s io na l wa ve eq uat io n. T o s o lv e t h e o ne d i me n s io na l wa v e
eq u at io n fo r t he fo r ced p r es s ur e , r eq u ir e s t h at it s var iab le s ( p a n d U) ar e d e fi n ed ,
d i f fer e n ti at ed a nd t he n p laced i n to eq ua tio n ( 2 . 8) . T hi s is d o ne b e lo w.
Let t he vo l u me v elo cit y eq u al
−
= UU
exp[
j
ω ( t
)],
f
xk f
( 2 .9 )
and t he aco u st ic p r e ss ur e eq ua l
=
−
p
p
exp[
j
ω ( t
)],
f
xk f
( 2 .1 0 )
wh er e ω i s t he a n g ular f r eq u e nc y.
Fir s tl y p ( eq ua tio n ( 2 .1 0 ) ) wi ll b e d i f f er e n ti at ed t wi ce wi t h r e sp e ct to t a nd x.
6
Di f f er e nt ia ti n g p t wic e wi t h r e sp ec t to x g i ve s
2
=
2 2 ωω −=
p
j
p .
p 2
∂ ∂ t
( 2 .1 1)
Ne xt U is d i f f er e n tia ted wi t h r e sp ec t to t .
ω=
.Uj
∂ U ∂ t
2
2
( 2 .1 2)
p 2
p 2
∂ U ∂ t
∂ ∂ x
∂ ∂ t
, ( eq uat io n ( 2 .1 1) ) , a nd ( eq u at io n ( 2 .1 2) ) i nto t he S ub s ti t ut i n g va l ue s fo r
o ne d i me n s io na l wa v e e q ua tio n ( ( 2 .8 ) ) g i ve s
−
+
−=
(
)
.
p
ωρ U j 0
2 k f
2 ω 2
c
( 2 .1 3)
−
T he u se o f eq uat io n ( 2 .9 ) a nd ( 2 .1 0) to r ep lac e p an d U i n eq u at io n ( 2 .1 3 ) g i ve s
=
p
U
,
f
f
2
k
k
ωρ j 0 2 − f
( 2 .1 4)
wh er e
=
k
ω ,
c
( 2 .1 5)
is t he wa v e n u mb er a nd wh er e ω =2 π f.
T he b o u nd ar y o f t he t wo ha l f i n fi n it e fl u id me d i a i n t he p la ne x=0 .
T he fo r c ed so l ut io n o f t he n o n - ho mo ge neo u s eq ua tio n ( 2 .8 ) i s g i ve n b y eq u at io n ( 2 .1 4)
−
<
0
U
x
f
2
k
k
ωρ j 0 2 − f
wh er e t he f o r ci n g o nl y o cc ur s i n me d i u m 1 wh e r e x<0 . T h u s U f=0 i f x >0 an d
=
.
P f
>
0
x
0
7
( 2 .1 6)
2.3 Media same for x<0 and x>0, normal incidence forced wave
y
Medium 2
Medium 1
Pt
Pi
x
Pr
8
F i gu r e 2 . 1 Th e t wo d i m e n s i o n a l c a s e .
I n t hi s se ct io n t h e s o l ut i o n to t h e ho mo ge no u s v er s io n o f eq u at io n ( 2 .8 ) wi l l b e
calc u la ted . T he r e fle ct e d a nd tr a ns mit ted p r e ss u r es wi ll al so b e ca lc u la t ed . F i na ll y t he
in cid e nt tr a n s mi t ted i nte n si t y wi l l b e ca lc u lat ed .
T o o b tai n t h e co n ti n u it y o f p r e ss ur e a nd aco u st i c p ar t ic le v elo c it y at x= 0 , so l ut io ns o f
th e ho mo ge n eo u s ver sio n o f eq ua tio n ( 2 .8 ) need to b e ad d ed . T he ho mo g en eo us ver sio n
2
2
o f eq uat io n ( 2 .8 ) i s
−
=
.0
p 2
∂ p 2 ∂ x
1 2 c
∂ ∂ t
( 2 .1 7)
T o so l ve t he ab o v e eq u a tio n t he p r es s ur e wi l l b e d e fi ned a nd d i f fer e n ti at ed wi t h
r esp ect to x a nd t. T h e n th e se so l u tio n s wi ll b e r ep lac ed i n to eq u at io n ( 2 .1 7 ) .
T o b egi n t he p r e ss ur e i s d e fi ned to b e
=
−
p
a
exp[
j
ω ( t
mx
)].
( 2 .1 8 )
Eq u at io n ( 2 .1 8) i s d i f f er en ti ated t wic e wi t h r e sp ect to x a nd t a nd t he r e s ul t s ar e p ut
in to eq u at io n ( 2 .1 7) to g iv e
−
+
=
.0
2 am
a
2 ω 2
c
( 2 .1 9)
ω
I f a i s no t eq ua l to zer o th e n eq u at io n ( 2 .1 9) ma y b e r ear r a n ged to g i ve
±=
±=
m
.k
c
( 2 .2 0)
T he r e s ul t o f eq uat io n ( 2 .2 0) i s p ut i n to eq ua tio n ( 2 .1 8 ) to g i ve t he so l u tio n. T h us t he
−
+
j ([
ω t
kx
)]
j ([
ω t
kx
ge n er a l so l ut io n o f t he h o mo ge n eo u s eq ua tio n i s
=
+
p
.)]
ea 1
ea 2
( 2 .2 1 )
He nce t he so l ut io n fo r t he ca se o f t he o nl y i nc id en t wa ve b ei n g a fo r c ed in cid e nt wa ve
9
in t he fir s t med i u m is
−
+
+
<
]
exp[
)]
[ exp
)
0
p
j
ω ( t
j
ω ( t
kx
x
f
xk f
p r
=
.
p
−
>
exp[
)]
0
j
ω ( t
kx
x
p t
( 2 .2 2)
f
−
−
+
≤
)]
exp[
)]
0
j
j
ω ( t
kx
x
exp[
ω t (
xk f
pk f ω
kp r ω
T hu s,
=
.
ρ u 0
−
≥
exp[
)]
0
j
ω ( t
kx
x
p t
k ω
( 2 .2 3)
At x=0 a nd t =0 wi t h t he sa me med i u m o n b o t h s id e s, t h e co n ti n u it y o f p r es s ur e gi ve s
=
+
=
p
p
f
p r
p .t
( 2 .2 4 )
Us i n g eq u at io n ( 2 .2 3) , t he co nt i n ui t y o f t he p ar t icl e ve lo ci t y a t x =0 a nd t=0 g i ve s
=
−
=
.
u
p
p
p
f
r
t
k f ωρ 0
k ωρ 0
k ωρ 0
( 2 .2 5)
T o fi nd t he tr a n s mi tt ed p r es s ur e t he ab o ve eq uat io n i s mu l t ip l ied b y ρ 0ω
−
=
pk f
f
kp r
kp .t
( 2 .2 6 )
+
k
k
f
t he tr a ns mi t ted p r e ss ur e i s
=
p
.
p
t
f
2
k
( 2 .2 7)
−
k
k
Re ar r a n g i n g t h is gi ve s
=
p
.
p r
f
f 2
k
( 2 .2 8)
10
T he to ta l i n te n si t y p r o p ag ated i n t he p o s it i ve x d ir ec tio n i f x <0 i s
I
Re
) u(p. .
ri+
= )
(
( 2 .2 9 )
I ( i + r ) is t he to tal i nt e n si t y, R e i s t he r eal p ar t o f th e co mp le x n u mb er , p i s t h e p r e s s ur e
and u is t h e co mp le x p ar t i cle v elo c it y. T he to t al p r es s ur e o n t h e x <0 s id e i s
=
−
+
+
p
p
exp[
j
ω ( t
)]
[ exp
j
ω ( t
kx
].)
f
xk f
p r
( 2 .3 0 )
Fr o m eq u at io n ( 2 .2 5) t h e co mp l e x p ar ti cle velo c it y is gi ve n b y
=
−
−
−
−
+
exp[
)]
exp[
)].
u
p
j
ω ( t
j
ω ( t
kx
f
xk f
p r
k f ωρ 0
k ωρ 0
( 2 .3 1)
T he b ar o v er t h e u i n eq ua tio n ( 2 .3 1) i n d ic ate s t he o p er a tio n o f ta k i n g t he co mp l e x
co nj u ga te ( c ha n gi n g t he si g n o f t h e i ma g i na r y p a r t o f t h e co mp le x n u mb e r ) . T hi s is
al so so met i me s s ho wn wit h a s up er scr ip t *.
I
Re(
up ).
(
−
+
+
×
p
j
p
j
kx
exp[
ω t (
)]
[ exp
ω t (
)
) ]
f
xk f
r
P ut ti n g eq uat io n ( 2 .3 0) and ( 2 .3 1) i nto eq uat io n ( 2 .2 9) gi v es
=
Re
−
−
−
−
+
p
j
p
j
kx
exp[
ω t (
)]
exp[
ω t (
)]
f
xk f
r
k f ωρ 0
k ωρ 0
.
=+ ri ) (
( 2 .3 2)
2
2
2
)
( kk
k
−
p
pk f
f
f
− 2
f 4
k
−
2
k
)
kk (
th i s b e co me s
+
−
p
I
kj (
xk )
[ − exp
(
f
f
=+ ) ri
1 ωρ 0
−
2
)
f k 2 ( k
k
+
+
k
p
( kj
) xk
[ exp
f
f
f
f 2
k
] ]
.
Re
( 2 .3 3)
T hu s t he to ta l i nte n s it y ha s b ee n c al c ula ted .
2.4 The total intensity when x=0 (at the junction of the two
media)
11
I n t hi s se ct io n t h e to ta l in te n s it y is ca lc u lat ed a t t he j u nct io n o f t he p la t es ( x=0 ) .
2
2
−
−
−
p
k
k
k
4
kk (
)
kkk (2
)
kk (2
)
f
Eq u at io n ( 2 .3 3) i s co n si d er ed a g ai n. E q uat io n ( 2 .3 3 ) ca n b e wr it te n as
−
−
+
I
k
(
=+ ) ri
f
2 kk 2
2
f kk 22
f kk 22
k
k
4
f 4
f ωρ 0
.
( 2 .3 4)
2
2
+
+
p
k
k
kk
2
f
T hu s
I
(
=+ ) ri
k
2 f 4
f ωρ 0
.
( 2 .3 5)
=
ω ,
k
Us i n g t h e fo llo wi n g r ela tio n s hip s
ω
=
c = , kc ω ,
c
k
( 2 .3 6)
2
2
+
p
(
)
k
gi v e s
f
,
I
=+ ri )
(
k 2
c
4
k
f ρ 0
( 2 .3 7)
2
2
p
k
f
and t h u s t h e to ta l i n te n s it y a t t he j u nct io n o f t he t wo med i a i s
I
.
(
=+ ) ri
2
c
k
f ρ 0
+ k
( 2 .3 8)
2.5 The transmitted intensity (I t(x)) when x>0
I n t hi s se ct io n t h e tr a ns mi t ted i nte n s it y i s ca lc u lat ed .
12
T he tr a ns mi tted i n te n si t y is gi ve n b y
Re( up .
).
It =
( 2 .3 9 )
T he p r e s s ur e i s gi v e n b y
=
−
p
exp[
j
ω ( t
kx
)].
p t
( 2 .4 0 )
T he co mp le x co nj u ga te o f t he co mp l e x p ar tic le ve lo c it y i s gi v e n b y
=
−
−
u
exp[
j
ω ( t
kx
)].
p t
k ωρ 0
( 2 .4 1)
No w eq uat io n ( 2 .4 0) a n d ( 2 .4 1) ar e p ut i nto eq u atio n ( 2 .3 9) . T h i s gi v es
=
−
−
−
I
j
kx
j
kx
exp[
ω t (
)]
exp[
ω t (
)].
t
p t
p t
k ωρ 0
( 2 .4 2)
2
Eq u at io n ( 2 .4 2) i s s i mp l i fied d o wn to
I
t =
p t
k . ωρ 0
( 2 .4 3)
+
k
k
f
Fr o m eq u at io n ( 2 .2 7)
=
p
p
.
t
f
k
2
2
2
k
f
( 2 .4 4)
I
.
c
k
2
p f = t ρ 0
+ k
( 2 .4 5)
2.6 The intensity carried by the reflected wave (x<0) if
propagating alone.
I n t hi s se ct io n t h e r e f lec ted i n te n s it y is ca lc u lat e d .
T he i n te n si t y o f t he r e fl ected wa v e i n t he x <0 r e gio n i s
.).( up
I r =
( 2 .4 6 )
13
T he va l ue u sed fo r p i s t he s a me as eq ua tio n ( 2 .3 0 ) .
=
−
+
+
p
p
exp[
j
ω ( t
)]
[ exp
j
ω ( t
kx
].)
f
xk f
p r
( 2 .4 7 )
T he va l ue u sed fo r t he c o mp le x p a r t icl e ve lo ci t y u i s t h e sa me a s eq ua tio n ( 2 .3 1)
=
−
−
−
−
+
u
p
j
j
kx
exp[
ω t (
)]
exp[
ω t (
)].
f
xk f
p r
k f ωρ 0
k ωρ 0
( 2 .4 8)
2
2
f
k
−
−
−
+
exp[
( kj
pp f r
f
T he r e f lec ted i nt e ns it y ( I r) i s t he sa me a s t he i nc id e nt i nt e n si t y ( I i)
pk pk f r ωρωρωρ 0
0
=
Re
I
r
+
+
+
exp[
( kj
]) xk
pp f r
f
0 k f ωρ 0
]) xk .
( 2 .4 9)
0=fp
2
I n t hi s ca se t he i ncid e nt fo r ced wa ve i s no t b ei n g c o ns id er e d , t h u s
−=
I
.
r
pk r ωρ 0
2
2
−
(
k
)
2
( 2 .5 0)
=
.
p
p r
f
k 2
k
f 4
( 2 .5 1)
2
2
p
k
f
U s i n g t h e r e lat io n s hi p i n eq ua tio n ( 2 .3 6) it i s fo u nd t ha t
−=
.
I
r
2
c
k
f ρ 0
− k
( 2 .5 2)
2.7 Media different for x<0 and x>0. A normally incident forced
wave is firstly considered. The transmitted intensity and the
incident and reflected intensity is found.
I n t hi s se ct io n t h e med ia ar e d i f fer e n t o n b o t h si d es o f t he j u nc tio n. T he co mp le x
14
p ar ti cl e ve lo ci t y i s ca lc ul at ed . T h e r e f lec ted a n d tr a n s mi tt ed p r e s s ur e s ar e c alc u la ted .
T he n t h e tr a ns mi tted i nt en s it y is ca lc u lat ed . Fi n all y t he i nc id e n t i n te n si t y is
calc u la ted .
No te t ha t I r i s ne g at i ve b eca u se t he r e fl ect ed i n t en s it y is p r o p a ga ti n g i n th e ne g at i ve x -
ax i s d ir ect io n r at her t ha n i n t h e p o si ti ve x -a x i s d ir ec tio n. I f ρ 1 a nd c 1 a p p l y fo r x <0 a nd
ρ 2 a nd c 2 ap p l y fo r x>0 , th e n we d e f i ne t he i mp e d an ce s o f t he t wo med i a to b e
=
=
ρ
ρ
Z
and ,
Z
1
c 11
2
c 22
( 2 .5 3 )
and t he wa v e n u mb er s t o b e
=
=
k and
k 1
2
ω c
ω c 1
2
−
+
+
<
)
exp[
)]
0
ω ( t
p
j
j
ω ( t
x
( 2 .5 4)
[ exp
xk f
f
p r
xk 1
=
.
p
−
>
exp[
)]
0
j
ω ( t
x
p t
xk 2
T he p r e s s ur e i n t h e t wo med ia i s gi v e n b y ] ( 2 .5 5)
−
−
+
<
exp[
)]
exp[
)]
0
j
ω ( t
j
ω ( t
x
xk f
xk 1
pk r 1 ωρ 1
pk f f ωρ 1
Af te r mu c h s ub st it u tio n,
=
.
u
−
>
exp[
)]
0
j
ω ( t
x
xk 2
pk t 2 ωρ 2
( 2 .5 6)
T o fi nd t he tr a n s mi tt ed p r es s ur e , eq ua tio n ( 2 .2 4 ) i s co n sid er ed as it ap p lie s at x=0 a nd
t=0 . Eq uat io n ( 2 .2 4) i s
=
+
=
p
p
f
p r
p t
( 2 .5 7 )
k
2
Al so u si n g t he v er sio n o f eq uat io n ( 2 .2 5) wi t h t h e ap p r o p r i at e wa v e n u m b er s g i ve s
=
−
u
p
.
f
p t
k 1 = p r ωρωρ
k f ωρ 1
1
2
( 2 .5 8)
15
T he co mp le x p ar t icl e ve lo ci t y c a n no w b e e xp r e s sed a s
=
−
=
u
p
.
f
p r
p t
k ρ
ρ
f ck 111
k 1 ρ ck 111
k 2 ck 222
( 2 .5 9)
+
(
k
)
k 1
f
T he tr a n s mi t ted p r e s s ur e i s
=
p
.
p t
f
Z 2 +
Z
k 1
Z 1
2
( 2 .6 0)
k
p
f
f
T o fi nd t he r e fle ct ed p r e s s ur e,
−
=
.
p t Z
k 1
Z 1
P r Z 1
2
( 2 .6 1)
−
)
(
Re ar r a n g i n g t h is eq ua tio n g i ve s t h e r e f le cted p r e s s ur e a s
=
p
.
p
r
f
1 )
Zk 1 + Z
Zk f 2 ( Zk 1
2
1
( 2 .6 2)
T r ans mi tted i n te n si t y a t x=0 i s
Re( up .
).
It =
( 2 .6 3 )
2
gi v e s
=
−
−
−
I
j
j
exp[
ω t (
)]
exp[
ω t (
)]
xk 2
xk 2
t
p t Z
2
Re
.
( 2 .6 4)
2
T her e f o r e eq u at io n ( 2 . 6 4) r ed uce s d o wn to
=
I
t
p t Z
2
Re
.
( 2 .6 5)
2
2
2
+
(
k
)
2
f
k 1
Fr o m eq u at io n ( 2 .6 0)
=
.
p
p t
f
2
Z 2 + Z
)
(
k 1
2
Z 1
( 2 .6 6)
16
T he tr a ns mi tted i n te n si t y is fo u nd to b e
2
2
+
(
k
)
k 1
f
=
I
.
p
t
f
2
Z 2 + Z
)
(
2
Z 1
k 1
( 2 .6 7)
T o tal i n te n si t y a t x =0 i s
I
Re(
up .
).
=+ ) ri
(
2
k
f
−
−
+
exp[
k
]) x
p
( kj 1
f
f
f Zk 11
pp r Z 1
( 2 .6 8 )
I
(
=+ ) ri
2
k
f
+
+
−
k
exp[
x ])
kj ( 1
f
k 1
pp f r Z 1
p r Z 1
.
Re
( 2 .6 9)
2
2
k
k
f
f
At x=0
−
+
−
I
p
f
=+ ri )
(
f Zk 11
pp r Z 1
k 1
pp f r Z 1
p r Z 1
Re
.
( 2 .7 0)
−
)
(
Fr o m eq u at io n ( 2 .6 2)
=
p
.
p r
f
Zk f 2 Zk ( 1
2
Zk 11 + Z ) 1
2
2
+
k
k 1
f
( 2 .7 1)
I
.
p
=+ ) ri
(
f
2
Z +
)
(
Z
2 Z 1
2
k 1
( 2 .7 2)
He nce t h is i s t h e si mp le st f o r m o f t he to ta l i nte n si t y.
2.8 The acoustic particle velocity in the oblique incidence
case.
17
I n t hi s se ct io n t h e co mp le x p ar ti cl e vel o ci t y i n t he x d i r ec tio n i s ca lc u la ted .
T he t hr ee d i me n sio n al m o me n t u m eq uat io n is
ρ
,
−=∇ p
∂ u m ∂ 0 t
( 2 .7 3)
0mρ is t he a mb i e nt d e n si t y o f t he
wh er e u i s t he ve cto r al a co u s tic p ar t ic le v elo c it y an d
mt h me d i u m. T he x co m p o ne n t o f eq uat io n ( 2 .7 4 ) i s
ρ
−=
.
∂ p ∂ x
∂ u x 0 m ∂ t
( 2 .7 4)
ω t j
T he co mp le x p ar t icl e ve lo ci t y i n t he x d ir ec tio n is g i ve n b y
=
u
.
x
eu 0 x
( 2 .7 5 )
Di f f er e nt ia ti n g wi t h r e s p ect to t gi ve s
ω= uj
.x
∂ u x ∂ t
( 2 .7 6)
P ut ti n g eq uat io n ( 2 .7 6) i nto ( 2 .7 4) g i ve s
ωρ−= j
.
m u 0 x
∂ p ∂ x
( 2 .7 7)
gi ve s
.
ρ−= jk
uc xmmm 0
∂ p ∂ x
( 2 .7 8)
−
)
+ ( ykxkj
x
y
ω t j
T he p r e s s ur e is gi ve n b y
=
.
p
e
ep 0
( 2 .7 9 )
x
T hu s t he co mp le x p ar tic le ve lo c it y i n t h e x d ir e c tio n is
u
p .
x =
1 Z
k k
m
m
( 2 .8 0)
wh er e Z m ca n b e Z 1 o r Z 2, k x ca n b e k 1 x, k r x, o r k f x a nd wi ll ei t her b e r ea l o r i ma g i nar y
18
and k m ca n b e k 1 o r k 2, r d e no te s t he r e f le cted wa v e a nd f t he i nc id e n t fo r ced wa ve.
2.9 Proof of no power flow in a nearfield
I n t hi s se ct io n t h e co mp le x p ar ti cl e vel o ci t y i s c alc u lat ed . T h e n i t i s p r o ved t ha t t h er e
is no p o we r flo w i n a ne ar f ie ld .
W he n to t al i nt er na l r e f l ect io n o cc u r s , a no n -p r o p ag at i n g nea r fie ld is p r o d uc ed i n t he
seco nd med i u m. T h er e i s no p o wer f lo w wi t h a ne ar fi eld . T hi s is p r o ved b elo w fo r a
−=
.
ρ 0
tr a n s mi tt ed nea r fie ld wa ve. Co ns id er
∂ p ∂ x
∂ u ∂ t
( 2 .8 1)
−
jk
−
ty
ω t j
T he so u nd p r e s s ur e i n a ne ar fi eld i s gi v e n b y
=
p
xk tx e
e
.y
ep t
( 2 .8 2 )
−
=
.
∂ p ∂ x
∂ u ∂ t
1 ρ 0
−
jk
y
ty
xk tx
( 2 .8 3)
=
.
−ω t j e
e
ep t
− −
∂ u ∂ t
k tx ρ 0
( 2 .8 4)
Eq u at io n ( 2 .1 7 9 ) i s i n te gr a ted wi t h r e sp ect to t to gi ve t he co mp le x p a r t icl e ve lo ci t y
−
jk
y
−
ty
ω t j
Eq u at io n ( 2 .1 8 1 ) b eco m es
=
u
xk tx e
e
.
ep t
− jk tx ωρ 0
( 2 .8 5)
+
jk
y
−
−
ty
ω t j
T aki n g t he co mp l e x co nj u ga te o f t he p ar t ic le v el o cit y g i ve s
=
u
xk tx e
e
.
ep t
+ jk tx ωρ 0
( 2 .8 6)
19
T he i n te n si t y i s g i ve n b y
I =
Re( up .
).
( 2 .8 7 )
−
+
jk
y
jk
y
−
−
−
ty
ty
ω t j
ω t j
xk tx
xk tx
Eq u at io n ( 2 .1 7 6 ) a nd ( 2 . 1 8 4 ) g i ve s
=
up .
(
e
e
).(
e
e
).
ep t
ep t
+ jk tx ωρ 0
( 2 .8 8)
−
2
xk tx
Af te r so me si mp li f ic at io n t hi s b e co me s
=
up .
.
2 ep t
+ jk tx ωρ 0
( 2 .8 9)
T he r ea l p a r t o f eq ua tio n ( 2 .1 8 7 ) i s z er o b e ca u s e it i s p ur e l y i ma g i nar y. He nc e
=
I
Re(
= up 0).
( 2 .9 0 )
20
T hu s t her e i s no p o wer f lo w fo r a ne ar fi eld .
2.10 Derivation of transmitted and reflected pressures for
oblique incidence.
y
p t
θ r
θ t
x
θ f
p i
p r F i gu r e 2 . 2 : A fi gu r e s h o w i n g t h e c o- o r d i n a t e fi g u r e s u s e d i n t h i s s e c t i o n .
I n t hi s se ct io n t h e s i ne s and co si ne s o f t he tr a n s mi t ted a n g le , t he r e f lec t ed a n gl e a nd
th e t r a n s mi tt ed a n g le ar e cal c ula ted . T he tr a n s mi tted wa v e n u mb er i n t he x a nd y
d ir ec tio n i s ca lc u la te d . T he r e f lec ted wa v e n u m b er i n t he x a nd y d ir ect i o n is
calc u la te d . T he fo r ced wa v e n u mb er i n t h e x a n d y d ir ect io n is ca lc ul at ed . T he
21
tr a n s mi tt ed p r e s s ur e i s c alc u lat ed . Fi n al l y t h e r e f lec ted p r es s ur e i s c al c u lat ed .
k
(
)0,
x k ,
y
T he p l a ne wa ve n u mb er k= lie s i n t he x y p la ne and ma ke s a n a n g le o f θ wi t h
th e x - a xi s. T he p o si tio n var iab le is x =(x , y, z) . T he ti me is t a nd ω is t he an g u lar
ve lo c it y. Θ is t he a n gl e b et we e n k a nd x. T he a x es h a ve to b e r o ta ted so th at t her e i s
no co mp o ne nt o f wa v e n u mb e r i n t he z - a xi s d i r e ctio n. T he p la n e aco u s ti c wa v e var ie s
−
j
ω ( t
xk
cos
θ )
j
ω (
− xkt ).
e
as
−
j
ω ( t
(
+ ykxk
x
y
=
= e ,))
e
( 2 .9 1)
T he co mp o n e nt o f t he f o r ced wa v e n u mb er i n t he y a xi s d ir e ct io n i s
=
k
k
,
y
f
θ sin f
( 2 .9 2 )
wh er e k f is t he ma g ni t ud e o f t h e fo r c ed wa v e n u mb e r a nd θ f is t he i nc id e nt a n gl e. I n t he
y a xi s d ir ec tio n t he fo r c ed i nc id e n t ( f) , r e f lec ted ( r) , a nd t r a n s mi tt ed wa ve n u mb er s
mu s t al l b e t he s a me b ec au se o f t h e co n ti n u it y o f t he a co u st ic p r e s s ur e a n d p ar t icl e
ve lo c it y
=
=
sin
sin
sin
.
k
k
k
f
θ f
r
θ r
t
θ t
( 2 .9 3 )
B eca u se t he r e fle ct ed wav e i s fr ee l y p r o p a ga ti n g , t he r e fl ect ed wa v e n u mb e r i s eq u al to
th e wa ve n u mb er i n med iu m o ne , wh er e t h e wa v e p ha se sp e ed i s c 1
=
=
ω .
k 1
kr
c 1
( 2 .9 4)
B eca u se t he tr a n s mi tt ed wa v e i s fr e el y p r o p a gat i n g , t he tr a n s mi t ted wa ve n u mb er ( k t)
is eq ua l to t he wa v e n u mb e r ( k 2) i n t he s ec o nd med i u m wh er e t h e wa v e p ha se sp eed is
ω
c 2
=
=
.
k
2
kt
c 2
( 2 .9 5)
k
ω
ω
ω
th e co n ti n u it y o f aco u s ti c p r e ss u r e a nd p ar t ic le v elo c it y i s gi v e n b y
=
=
sin
sin
sin
,
θ f
θ r
θ t
f ck 1 1
c 1
c 2
( 2 .9 6)
22
T he wa v e p ha s e sp eed s i n me d i u ms o n e a nd t wo ar e gi v e n b y
ω
=
=
ω ,
and
.
c 1
c 2
k
k 1
2
( 2 .9 7)
k
k
ω
f
=
=
sin
sin
sin
θ t
θ f
θ f
k 1 ω
c 2 c 1
k 1
f kk 1
2
So l v i n g fo r si n θ t g i ve s
k
f
=
sin
.
θ f
k
2
( 2 .9 8)
k
f
So l v i n g fo r si n θ r g i ve s
sin
sin
.
θ = r
θ f
k 1
( 2 .9 9)
Fr o m eq u at io n ( 2 .8 0) , t h e co mp o ne n t s o f t h e fo r ced i n cid e n ce, r e fl ec ted and
cos
f
pk f
θ f
tr a n s mi tt ed co mp le x p ar tic le v elo c it ie s ( i n t h e d ir ec tio n o f t he x -a x i s) ar e g i ve n b y
=
=
,
u
fx
xpk f Zk 11
f Zk 11
( 2 .1 0 0)
p
r
r
θ r
and
=
=
,
u
rx
cos Z
pk rx Zk 1
1
1
( 2 .1 0 1)
p t
θ t
and
=
=
.
u tx
cos Z
pk tx t Zk 2
2
2
( 2 .1 0 2)
T he fo r c ed , r e f le cted a n d tr a n s mi tt ed p r e s s ur e s ar e gi v e n b y
+
=
p
f
p r
.t p
( 2 .1 0 3 )
T he co mp o n e nt s o f t he f o r ced , r e f le ct ed a nd tr a n s mi tt ed co mp le x p ar t ic l e v elo ci tie s i n
th e d i r ec tio n o f t he x -a x is ar e r el ated b y
−
=
cos
cos
cos
,
u
u
f
θ f
r
θ r
u t
θ t
23
( 2 .1 0 4 )
b eca u se t he aco u st ic p a r tic le v elo c it y i s co n ti n u o u s a t t h e j u n ct io n o f t h e t wo med ia
cos
pk f
θ f
θ r
p t
p r
θ t
( x=0 ) . Eq u at io n ( 2 .1 0 4) ca n b e wr i tt e n u si n g eq u atio n s ( 2 .1 0 0) , ( 2 .1 0 1) , ( 2 .1 0 2) a s
=
−
.
cos Z
f Zk 11
cos Z 1
2
( 2 .1 0 5)
2
2
Fr o m t he ma t he mat ica l i d en ti t y,
θ
+
θ
=
cos
sin
,1
( 2 .1 0 6 )
2
T her e fo llo ws
=
−
cos
1
sin
.
θ f
θ f
( 2 .1 0 7 )
k
2
2
Fr o m eq u at io n ( 2 .9 9) ,
=
−
=
−
cos
1
sin
1
sin
.
θ r
θ r
θ f
2 f 2 k 1
( 2 .1 0 8)
k
2
2
=
−
=
−
cos
1
sin
1
sin
θ t
θ t
θ f
k
2 f 2 2
Fr o m eq u at io n s ( 2 .1 0 7) and ( 2 .9 8) co sθ t i s fo u n d to b e
k
2
=
−
1
sin
.
θ f
2 k 1 2 k 2
2 f 2 k 1
( 2 .1 0 9)
T he wa v e n u mb er t h at i s tr a n s mi tt ed t h r o u g h t h e j u nct io n a t a p ar tic u lar an g le to t h e x
2
=
=
−
k
k
k
k
k
,
sin
,
sin
( k
)
t
2 2
ty
tx
2 f
θ f
f
θ f
)
(
and y a x i s i s
k
2 f
2
=
−
k
k
1
sin
,
sin
2
θ f
f
θ f
k k
k
2 1 2 2
2 1
,
( 2 .1 1 0)
and t he wa v e n u mb er t h at i s r e fl ec ted fr o m t he j u nc tio n at a p ar ti c ula r a n gl e to t he x
24
and y a x i s i s
2
=
=
−
k
k
k
k
,
sin
,
sin
( k
)
2 k 1
r
ry
rx
2 f
θ f
f
θ f
)
(
k
2
=
−
k
1
sin
,
sin
k 1
θ f
f
θ f
2 f 2 k 1
,
( 2 .1 1 1)
and t he wa v e n u mb er t h at i s fo r ced o n to t he j u n ctio n o f t h e t wo med ia a t a p a r t ic ul ar
2
=
=
−
,
sin
,
sin
k
k
k
k
k
( k
)
f
fx
fy
2 f
2 f
θ f
f
θ f
)
(
an g le i s
k
f
2
=
−
1
sin
,
sin
k
f
θ f
θ f
k 1
k 1
.
( 2 .1 1 2)
T he z -a xi s co mp o ne n t h as b ee n o mi t ted i n t h e a b o ve eq ua tio n s b e ca u se it is al wa ys
zer o . B e ca u se t he aco u st ic p r e s s ur e i s co n ti n uo u s a t t h e j u n ct io n o f t he t wo med ia
( x=0 ) ,
+
=
p
f
p r
p .t
( 2 .1 1 3 )
k
cos
f
θ f
θ t
θ r
Eq u at io n ( 2 .1 0 5) i s
−
=
p
p
p
.
f
r
t
cos Z
cos Z
Zk 1
1
1
2
rθ
( 2 .1 1 4)
cos Z
1
k
cos
f
θ f
θ t
θ r
θ r
a nd ad d i n g eq u a tio n ( 2 .1 1 4 ) gi v es Mu lt ip l yi n g eq u at io n ( 2 . 1 1 3) b y
=
+
+
.
p
p t
f
cos Z
cos Z
cos Z
Zk 11
1
2
1
( 2 .1 1 5)
+
cos
cos
k
θ r
T hu s t he tr a n s mi tt ed p r e s s ur e a mp l it ud e i s
=
.
p
p t
f
θ f cos
2 cos
f Zk 11
Z 2 + θ t
Zk 1 Zk 1
2
θ r
tθ
( 2 .1 1 6)
cos Z
2
25
a nd s ub tr ac ti n g it fr o m eq ua tio n ( 2 .1 1 4 ) g i ve s Mu lt ip l yi n g eq u at io n ( 2 . 1 1 3) b y
k
cos
f
θ f
θ t
θ t
θ r
=
+
−
p
p
.
f
r
cos Z
cos Z
cos Z
Zk 11
2
1
2
( 2 .1 1 7)
−
cos
cos
T hu s t he r e fle ct ed p r e s s ur e i s
=
p
p
.
r
f
+
θ f cos
cos
[ k f [ Zk 1
2
Z 2 θ r
Zk 11 Zk 11
] θ t ] θ t
( 2 .1 1 8)
2.11 Derivation of total and forced intensity for oblique
incidence. Different Media.
I n t hi s se ct io n t h e to ta l in te n s it y i n t h e fi r s t me d iu m i s cal c ul ated . T he tr a n s mi tt ed
in te n s it y i n t h e seco nd med i u m i s t h e n ca lc u lat ed . T he to t al a nd tr a n s m itt ed i n te n s it y
ar e fo u nd to b e t he sa me .
T he i n cid e n t i nte n s it y i n t he d ir ec tio n o f t h e x - a xi s i s gi v e n b y
=
I
Re(
),
(
+ xri )
pu . x
( 2 .1 1 9 )
is t he co mp l e x co nj u ga te o f wh er e u x i s t he p ar t icl e ve lo c it y i n t h e x d ir e ct i o n, a nd p
th e p r e s s ur e .
T hu s
=
−
+
)(
I
u
u
p
p
[ (Re
] , )
(
+ xri )
f
rx
r
fx
( 2 .1 2 0)
k
T he fo r c ed p ar tic le v elo cit y i s
p
,
u = f
f
f Zk 11
( 2 .1 2 1)
26
and t he f o r ced p ar t ic le v elo c it y i n t h e x d ir e ct io n is
k
p
.
u = fx
f
fx Zk 11
( 2 .1 2 2)
T he r e f lec ted p ar t ic le ve lo ci t y i n t he x d ir ec tio n is
.
u = rx
p r
k rx Zk 11
( 2 .1 2 3)
k
k
=
+
−
−
I
i
pp f
f
pp f
r
pp r
f
pp r
r
fx Zk 1
1
k rx Zk 1
1
k rx Zk 1
1
fx Zk 1
1
Re
T hu s t he i nte n s it y i s
2
p
k
f
fx
rx
r
r
−
=
+
p p
k k
p p
f
fx
f
kZ 11
1
1Re
.
rx
r
−1
( 2 .1 2 4)
k k
p p
fx
f
wil l no w b e co ns id er ed Eq u at io n ( 2 .1 2 4) ca n b e f ur t her s i mp l i fi ed . T he t er m
−
Zk fx
2
Zk tx 1
Fr o m eq u at io n ( 2 .1 1 8)
=
.
p r p
f
+
Zk rx
2
Zk tx 1
k 1 k 2 k 1 k
2
( 2 .1 2 5)
rx
−
Zk rx
2
Zk tx 1
k k
k 1 k
2
rx
He nce
=
.
k k
p r p
fx
f
+
Zk rx
2
Zk tx 1
fx k 1 k
2
( 2 .1 2 6)
rx
r
−
1
k k
p p
fx
f
T hu s
rx
+
1(
)
Zk tx
1
k k
fx
2
=
.
+
Zk rx
Zk tx
2
1
k 1 k k 1 k
2
27
( 2 .1 2 7)
r
+
1
p p
f
−
2
Zk fx
Zk 1 tx
Ev al ua ti n g gi v es
=
,
p r p
f
+
2
Zk rx
Zk tx 1
k 1 k 2 k 1 k
2
( 2 .1 2 8)
b eca u se k f x, Z 2, k 1, k 2, Z 1 ar e al l r e al n u mb er s a n d t he co mp le x co nj u g at e o f a r e al
n u mb e r i s t he r eal n u mb er .
k
2 f
2
T he co mp o n e nt o f t he r e f lec ted wa ve n u mb er i n th e x - a xi s d ir ec tio n
−
=
1
sin
,
k
k
rx
1
θ f
k
2 1
k
sin
θ2 f
( 2 .1 2 9)
2 f 2 k 1
ca n b e gr e ate r th a n 1 , ma k i n g t he ca n b e r ea l o r i ma gi n ar y b eca u se
n u me r ic al v al u e u nd er t he sq u ar e r o o t si g n n e ga ti ve . I n t h i s ca s e t h e sq u ar e r o o t
n u mb e r i s a n i ma g i na r y n u mb e r .
k
2 f
2
T he co mp o n e nt o f t he tr an s mi t ted wa ve n u mb er in t he x -a x i s d ir ec tio n
=
−
1
sin
,
k
k
tx
2
θ f
k
2 2
( 2 .1 3 0)
ca n b e r ea l o r i ma gi n ar y , b eca u se t he val u e u nd e r t he sq uar e r o o t s i g n c a n b e ne ga ti v e,
ma k i n g t he sq uar e r o o t an i ma g i nar y n u mb er .
+
( k
fx
2
r
=
+
1
.
T hu s
p p
1
f
+
Zk rx
2
Zk tx
1
) Zk rx k k
2
( 2 .1 3 1)
28
He nce p ut ti n g eq uat io n s ( 2 .1 2 7) a nd ( 2 .1 3 1 ) to g et her g i ve s
rx
r
r
−
+
p p
k k
p p
f
fx
f
1
1
Z
rx
2
=
+
+
(
k
k
1)((
)
).
fx
rx
Zk tx
1
2
k k
k 1 k
fx
2
+
2
1
Zk rx
Zk tx
k 1 k
2
( 2 .1 3 2)
rx
2
+
1(
)
Zk tx
1
+
p
k
k k
f
fx
( k
fx
fx
2
2
=
I
Re
(
+ xri )
kZ 11
+
+
Zk rx
Zk tx
2
1
Zk rx
Zk tx
2
1
) Zk rx k 1 k
k 1 k k 1 k
2
2
T her e fo r e t he to tal i n te n si t y i n t he fir st med i u m in t he x -a x i s d ir ec tio n is
2
2
+
p
k
f
fx
rx
kZ 2
=
( k
Re
).
tx
2
+
Zk rx
2
2
kZk tx 1
k 1 k
2
( 2 .1 3 3)
T he tr a ns mi tted i n te n si t y i n t h e seco nd med i u m in t he x -a x i s d ir ec tio n is g i ve n b y
Re(
).
I = tx
pu tx
t
( 2 .1 3 4 )
T he p ar tic le v elo ci t y tr a n s mi tt ed i n t he x d ir ec ti o n is gi ve n b y
.
u = tx
p t
k tx Zk 2
2
( 2 .1 3 5)
2
=
)
Re(
I
p
t
tx
k tx kZ 2
2
T hu s
2
p
=
Re(
).
k
tx
t kZ 2
2
( 2 .1 3 6)
+
k
fx
) Zk rx
2
=
.
p
p t
f
Fr o m eq u at io n ( 2 .1 1 6) t he tr a n s mi t ted so u nd p r e s s ur e is
+
Zk tx 1
Zk rx
2
( k 1 k
2
( 2 .1 3 7)
29
T hu s t he mo d u l u s sq uar ed o f t h e tr a ns mi tted so u nd p r es s ur e i s
2
+
2
k
k
Z
2
fx
rx
2 2
=
.
p
p t
f
2
+
2
Zk 1 tx
Zk rx
k 1 k
2
( 2 .1 3 8)
2
2
+
p
k
k
Z
f
fx
rx
2 2
=
I
k
Re(
)
tx
tx
2
kZ 2
2
1
+
Zk rx
Zk tx
1
2
k k
2
T hu s t he tr a n s mi tt ed i n t en s it y ca n b e wr it te n a s
2
2
+
p
k
f
fx
rx
kZ 2
=
k
Re(
).
tx
2
1
+
kZk 1
2
Zk rx
2
tx
k k
2
( 2 .1 3 9)
T hi s i s t he sa me a s t he i nc id e n t i n te n si t y g i ve n b y eq uat io n ( 2 .1 3 3) .
2.12 Diffuse field incidence. Media the same. Analytical calculation of intensity for r less than or equal to 1. I n t hi s se ct io n t h e fo r c e d tr a n s mi tt ed i n te n s it y f o r d i f f u se f ie ld i n cid e n c e i s c alc u la ted
and t he n no r ma liz ed . T h e a ver a ge tr a n s mi tt ed i n te n si t y o ver t he ar ea o f a h e mi sp h er e
o f so lid a n gle 2 π is c a lc ul at ed . T h e a ver a ge fo r c ed tr a n s mi t ted i nt e ns it y is ca lc ul at ed
and t he n no r ma liz ed . T h e t hr e e i n te gr al s i n t h is eq u at io n ar e t h e n e va l ua ted u si n g
Gr ad s ht e yn a nd R yz h i k ( 1 9 8 0) .
T he d i f f u se fi eld i nc id e nc e ca s e ( wh e n t h e med i a ar e t he sa me) is no w c o n sid er ed . T he
let ter r i s d e f i ned to b e th e r a tio o f t h e i n cid e n t fo r ced wa ve n u mb er ( k f) , to t h e fr e el y
p r o p ag at i n g wa v e n u mb er ( k) .
r
.
k f= k
( 2 .1 4 0)
B eca u se t he me d ia ar e t he s a me
=
=
,
k
k
k 1
2
( 2 .1 4 1 )
Z
,
1 Z=
2
( 2 .1 4 2 )
30
and
=
= t θθθ .
r
( 2 .1 4 3 )
Fr o m eq u at io n ( 2 .1 3 9) , th e fo r c ed t r a n s mi tt ed i nt e n si t y d ue to a fo r ced in cid e nt wa ve
2
2
θ
+
p
kZ
k
cos
f
f
θ i
k
Re(
θ )
=
I
tforced
cos 2
cos k
θ
θ
+
kZ
kZ
cos
cos
is
2
k
2
θ
+
cos
cos
θ i
p
f k
=
Re(cos
θ ).
2
f Z
θ
2
cos
( 2 .1 4 4)
Fr o m t he eq u al it y o f t he y a xi s co mp o ne n ts o f t h e wa v e n u mb er s
k
sin
sin
θ ,
f
= θ k i
( 2 .1 4 5 )
k
and
θ
=
=
sin
sin
sin
.
r
θ i
θ i
f k
( 2 .1 4 6)
2
2
2
T he co si n e f u nc tio n s c a n b e ea s il y se e n to b e
θ
=
−
θ
=
−
r
cos
1
sin
1
sin
,
θ i
( 2 .1 4 7)
2
and
=
−
cos
1
sin
.
θ i
θ i
( 2 .1 4 8 )
2
2
2
2
+
−
cos
1
sin
r
r
θ i
θ i
p
T hu s t he fo r ced tr a n s mi t ted i n te n s it y is
2
2
=
−
I
r
Re(
1
sin
),
θ i
tforced
2
2
−
f Z
1(4
sin
)
r
θ i
≥
sin if
θ i
1 r
2
( 2 .1 4 9)
=
2
2
2
I
tforced
+
−
cos
1
sin
r
r
θ i
θ i
p
f
<
.
sin if
θ i
2
2
Z
1 r
−
1(4
sin
)
r
θ i
0
( 2 .1 5 0)
T he tr a ns mi tted i n te n si t y o f a no r ma ll y i nc id e n t ( θ=0 ) f r ee l y p r o p a g at i n g wa ve ( r =1 )
31
wi l l b e us ed to no r ma liz e t he f o r ced tr a n s mi t ted in te n s it y.
2
p
f
=
I
)0
.
tfree
=θ ( i
Z
≥
sin if
θ i
1 r
I
( 2 .1 5 1)
=
2
2
2
+
−
cos
(
1
sin
)
r
r
θ i
θ i
)0
I
tforced = θ ( i
tfree
<
.
sin if
θ i
2
2
1 r
−
1(4
sin
)
r
θ i
0
( 2 .1 5 2)
T he e le me n ta l str ip o f s o lid a n g le b et wee n θ i a n d θ i+d θ i i s g i ve n b y
sin
2
.
idθθπ=Ω∂
i
y
dθi
θi
x
z
F i gu r e 2 . 3 G r a p h i c a l d i a gr a m o f e q u a t i o n ( 2 . 2 5 8) .
( 2 .1 5 3 )
π
T hu s t he s u m o f t he tr a n s mi tt ed i n te n si t y o ve r a l l a n gl e s o f i n cid e nce i s
d
2/ I
sin)
(
.
θθθπ 2 i i
i
t
∫
0
( 2 .1 5 4)
T he ar e a o f a he mi sp h er e o f a so lid a n g le i s 2 π. Di v id e b y 2 π to o b ta i n t he a ver a ge
32
tr a n s mi tt ed i n te n si t y o v er t he so lid a n gl e.
π 2 I
d
sin)
(
θθθπ 2 i i
t
i
∫
0
=
I
.
tforced
π 2
( 2 .1 5 5)
Fr o m eq u at io n ( 2 .1 5 0) t he tr a n s mi t ted i nt e ns it y d ue to a fr ee l y p r o p a gat i n g i ncid e nt
2
p
wa v e i s
=
cos
.
I
tfree
θ i
f Z
( 2 .1 5 6)
2
2
π
2/
p
p
T he a ver a ge v al ue o ver all a n gl es o f i n cid e n ce i s
f
f
=
=
I
d
(
)
cos
sin
.
tfree
θθθ i
i
i
∫
0
Z
Z
2
( 2 .1 5 7)
T he ca se wh e n t he r a tio , r , o f t he fo r ced i nc id e n t wa v e n u mb e r to t he f r e el y
p r o p ag at i n g wa v e n u mb er i s no w co n sid er ed . Fr o m eq uat io n s ( 2 .1 5 0) a n d ( 2 .1 5 5) , t h e
π
2
2
2
2
2
p
+
−
av er a ge o f t h e tr a ns mi tt ed i nt e n si t y d ue to a fo r ced i n cid e n t wa ve i s
r
r
(
cos
1
sin
)
θ i
θ i
=
I
sin
Average (
)
θθ d . i i
tforced
∫
2
2
f Z
−
0
r
14
sin
θ i
( 2 .1 5 8)
P ut
x
,
θ= cos i
( 2 .1 5 9 )
th e n
−=
dx
sin θθd , i
2
2
2
( 2 .1 6 0 )
sin
−= 1
cos
−= 1
x
,
θ i
θ i
2
2
2
2
−
−
1
r
−= 1
r
1(
x
)
θ i
( 2 .1 6 1 )
sin 2
+
−= 1
r
22 xr
.
( 2 .1 6 2)
33
T he i n te gr a l li mi t s c h a n ge to
cos(0) = 1,
( 2 .1 6 3 )
π
and
cos(
= .0)
2
( 2 .1 6 4)
S wa p p i n g t he i nte g r al s l i mi ts b ec a us e o f t he – si n θ co n ver ts t he mi n u s si g n to a p l u s
si g n. T he a ver a g e tr a n s mi t ted i nte n s it y i s no r m ali zed b y d i vid i n g b y t h e a ver a ge
2
1
2
p
+
−
+
I
)
(
rx
(
1(
)
Z
2
=
dx
2
∫
r 2
f Z
tforced I )
(
−
+
tfree
0
222 xr ) 22 xr
r
1(
)
p
f
tr a n s mi tt ed i n te n si t y fo r a fr ee l y p r o p a gat i n g i nc id e nt wa v e.
1
2
+
−
+
rx
(
1(
)
=
dx .
∫
r 2
1 2
−
+
0
222 xr ) 22 xr
r
1(
)
( 2 .1 6 5)
2
+
−
+
(
1(
)
rx
r
222 ) xr
Exp a nd i n g t he to p l i ne o f t he i nt e gr a nd g i ve s
2
2
=
+
−
+
+
−
+
2
1(
)
1((
)
).
22 xr
rx
r
22 xr
r
22 xr
( 2 .1 6 6)
2
2
1
1
1
I
tforced
2
T hu s
=
+
+
−
+
r
22 xr
dxx
1(
)
dx .
∫
∫
∫
x 2
0
0
0
r 2
r 2 2
1 2
I
−
+
tfree
r
22 xr
1(
)
( 2 .1 6 7)
T hes e t hr ee i nt e gr al s wi ll b e e va l ua ted i nd i v id u all y.
P ut
+=
+
aR
bx
,2cx
( 2 .1 6 8 )
2
2
wh er e
=
=
a
−= 1(
r
),
b
,0
c
r
( 2 .1 6 9 )
2
and
=∆
=
−
4
1(4
.
ac
r
2 r )
( 2 .1 7 0 )
2
2
1
T he fir s t i n te gr al
,
∫
x 2
0
r 2
−
+
r
22 xr
1(
)
34
( 2 .1 7 1)
Ca n b e e v al ua te u s i n g i n te gr a l n u mb er 2 .2 6 4 .3 o n p a ge 8 3 o f Gr ad s h te yn an d R yz hi k
2
=
−
+
−
R
)
(
)
(
2
∫
∫
b 3 c 8
x c 2
b 3 2 c 4
dx R
( 1 9 8 0)
2
a c 2 −
)
=
−
−
+
+
−
r
22 xr
)
.
(
)0
1(
)
0(
2
∫
r 2 r
1( 2
2 dxx R x r 2
dx R
( 2 .1 7 2)
1
2
2
=
+
+
=
−
+
+
cR
cx
b
r
22 xr
r
2 xr
2ln(
2
)
2ln(
1(
)
2
)
∫
2
1 c
dx R
r
Fr o m t he i nte gr al 2 .2 6 1 in Gr ad s h te yn a nd R yz h i k ( 1 9 8 0) .
2
−
)
2
2
=
−
+
−
−
+
+
r
22 xr
r
r
22 xr
2 xr
1(
)
2ln(
1(
)
2
).
2
r 3 r
x r 2
1( 2
( 2 .1 7 3)
2
dx
∫
x 2
−
+
r
22 xr
1(
)
P ut ti n g eq uat io n ( 2 .1 7 3 ) i nto eq uat io n ( 2 .1 7 2 ) gi ve s
2
−
)
2
2
=
−
+
−
−
+
+
1(
r
)
22 xr
2ln(
r
1(
r
)
22 xr
2
2 xr
).
2
x 2 r
1( 2
r 3 r
( 2 .1 7 4)
1
2
dx
∫
2
0
−
+
x ) 2
( 1
r
2 xr
Ev al ua ti n g t h is i nt e gr a l b et we e n z er o a nd o ne.
2
2
)
1(
)
=
+
ln(
2
− +
− r r
r r
1( 1(
)
1 2 r
.)
1
( 2 .1 7 5)
1
2
T he seco nd i nt e gr a l i s e as il y e val u at ed .
=
xdx
.
∫
x 2
1 2
1 =
0
0
35
( 2 .1 7 6)
T he t h ir d i n te gr al i s e va lu at ed u si n g i nt e gr al n u mb e r 2.2 6 2 .1 fr o m Gr ad s ht e yn a nd
cx
2(
2
+
=
+
2 xr
dx
2 )r-(1
∫
∫
Rb ) c
+ 4
∆ c 8
dx R
R yz h i k ( 1 9 8 0) .
2
2
2
2
+
−
2 xr
2 xr
2(
)
)
r
1(4
)
=
+
.
r 2
∫
dx 2
2
r
r 2 r
1( 4
− 8
−
+
)
1(
r
2 xr
( 2 .1 7 7)
2
2
2
=
−
+
+
2ln(
1(
)
2
)
r
r
2 xr
xr
∫
dx 2
2
1 r
−
+
r
2 xr
)
1(
No w
2
)
1(
2
2
2
2
2
=
−
+
+
−
+
+
1(
)
2ln(
1(
)
2
).
x
r
2 xr
r
r
2 xr
xr
1 2
`1 2
− r r
( 2 .1 7 8)
2
1
r
1(
)
2
2
2
2
=
−
+
+
−
+
+
dx
r
r
r
r
r
1(
)
2ln(
1(
)
2 r )2
∫
0
− r
1 2
2
1(
)
2
T hu s
−
−
r
r
2ln(
1(
))
1 2 − r r
1 2
2
2
2
2
2
+
−
+
+
r
r
r
r
r
r
1(
)
2
1
2
1(
)
1
=
+
=
+
ln(
)
ln(
2
2
− r
− r
1 2
1 2
−
r −
r
r
r
1
1
2
1
.)
1
( 2 .1 7 9)
2
2
1
1
1
I
tforced
2
2
=
+
+
−
+
xdx
r
2 xr
dx
1(
)
x 2
2
∫
∫
∫
0
0
0
r 2
r 2 2
1 2
I
−
+
tfree
r
2 xr
1(
)
2
2
2
2
+
)
r
r
r
1(
)
1(
)
1(
+
+
=
)
(
ln(
)
ln(
2
) 2
− +
− r
− r
r 2
1 r 2
1( 1(
r r )
r ++ 2
1 2
1 2
−
P ut ti n g t he t hr e e i n te gr a ls to ge t her g i ve s
r
1(
)
1
1
2
2
2
2
)
)
r
r
1(
)
)
1(
−
=
+
ln(
ln(
− +
− +
− r
− r
1( 1(
r r )
r ++ 2
1 4
1( 1(
r r )
1 4
1
r
1
=
.
1 + 2
36
( 2 .1 8 0)
2.13 Diffuse field inci dence. Media the same. r greater than or
equal to 1.
I n t hi s se ct io n eq ua tio n ( 2 .1 6 7) i s e v al ua ted a ga in b ut wi t h d i f f er e n t li m it s o n t he
2
−
in te gr al. Fr o m eq ua tio n ( 2 .1 5 0) , i f r i s gr e ater t ha n o r eq ua l to o ne, t he in te gr al o n l y
sin
1
x
=θ i
−
ne ed s to b e e va l ua te o v e r v al ue s o f x fo r wh i c h is l e ss t ha n o r eq ua l to
1
/1
.
2 x <
r
T his 1 /r. T h u s t h e i n te gr a l o n l y need s to b e e va l uat ed fo r val u es wh e n
2
−
<
1
/1
,
x
r
2
−>
/11
,
x
r
i mp l ie s t h at
2
1
r
>
.
x
− r
( 2 .1 8 1)
2
Average
I
+
−
+
tforced
rx
(
1(
)
22 )
=
T hu s t he no r ma l ized i n t egr al ( eq ua tio n ( 2 .1 6 7) ) b eco me s
dx .
r 2
1 1 ∫ 2
2
Average
I
−
+
tfree
2 xr 2 2 xr
r
1(4
)
r
− 1
r
( 2 .1 8 2)
1
1
1
2
2
2
2
=
+
−
+
1(
)
dx
r
+ dxx
r
2 xr
. dx
T hi s i n te gr a l c a n a g ai n b e sp li t i n to t hr ee i nt e gr al s
∫
∫
∫
x 2
2
1 2
r 2
2
2
2
−
+
1(
)
r
2 xr
r
r
r
− 1
− 1
− 1
r
r
r
( 2 .1 8 3)
Gr ad s ht e yn a nd R yz h i k ( 1 9 8 0) i nt e gr a l n u mb e r 2 .2 6 4 .3 i s u sed to e v al u ate t he
1
2
2
−
)
2
2
2
2
−
+
−
−
+
+
r
r
2 xr
2 xr
r
2 xr
1(
)
2ln(
1(
)
2
)
2
fo llo wi n g t hr ee i n te gr a l s . T he f ir s t i nte gr al i s e q ua l to
r 3 r
x r
1( 2
r 22
2 − 1 r 2
.
37
( 2 .1 8 4)
2
2
1(
)
1
=
+
ln
+
1 4
− 1
− r r
r r
.
1
( 2 .1 8 5)
1
1
2
2
)1
(
=
=
−
xdx
r
r
r
2
∫
r
− 1
− 2 r
x 2
1 2
r 2
2
r
− 1
Ag ai n , t he s eco nd i nt e gr al i s ea si l y e v al ua ted .
r
r
2
2
2
+
r
)1
1
=
=
.
− 2
r
r −= 2
rr ( 2
− r r 2
1 r 2
( 2 .1 8 6)
Us i n g G r ad s hte yn a nd R yz h i k ( 1 9 8 0) i nt e gr a l n u mb e r 2 .2 6 2 .1, t he t hir d i nt e gr a l i s
1
2
)
1(
2
2
2
2
2
−
+
+
−
+
+
x
r
2 xr
r
r
2 xr
xr
1(
)
2ln(
1(
)
2
)
2
− 1
r
− r r
1 2
1 2
1 2
r
eq u al to
2
+
r
r 1(2
)
)
( 1
=
+
ln
2
− r r
1 4
1 4
−
rr
2
1
.
( 2 .1 8 7)
2
2
2
+
1(
)
1
1(
)
1(
)
r
+
+
ln
ln
2
+
1 4
1 4
− 1
1 ++ 4
1 4
− r r
r r
1 2 r
− r r
−
1
r
Co mb i ni n g t he t hr ee i n t egr al s g i ve s t h e a v er a ge d no r ma l ized i n te n si t y a s
=
=
+
1
2 += 4
1 += 2
+ r 2
1 2
1 2 r
1 2 r
1 r
1 r
.
( 2 .1 8 8)
2.14 Diffuse incidence when the media are different. In terms
of Z,k.
I n t hi s se ct io n t h e ca se wh e n t he t wo me d ia ha v e d i f fe r e nt val u es o f Z a nd k, i s
co n s id er ed . T he i nt e gr a t io n t ha t is p er fo r me d n u me r ic al l y to fi nd t he tr a n s mi tt ed
38
in te n s it y o v er a ll a n gle s is d er i v ed . Fr o m eq uat i o n ( 2 .1 3 3 )
2
2
+
p
k
kZ 2
f
fx
rx
=
I
k
Re(
)
t
tx
2
+
2
kZk 1
2
Zk rx
tx
k 1 k
2
2
2
+
p
k
k
f
fx
rx
=
I
k
Re(
).
t
tx
2
1
+
k
k
kZ 2
2
rx
tx
k 1 k
Z Z
2
2
( 2 .1 8 9)
2
+
k
k
fx
rx
IZ 2
=
Re(
)
k
tx
t 2
2
p
f
1
+
k
k
k
rx
tx
2
Z Z
k 1 k
2
2
T hu s
2
+
Re(
)
k
k
fx
rx
k tx k
=
.
2 2
1
+
k
k
rx
tx
Z Z
k 1 k
2
2
( 2 .1 9 0)
2
Fr o m eq u at io n s ( 2 .1 1 0) to ( 2 .1 1 2) ,
=
=
−
k
k
k
k
cos
sin
,
fx
f
θ f
2 f
2 f
θ f
2
( 2 .1 9 1 )
=
=
−
k
k
k
cos
sin
,
rx
r
θ r
2 k 1
2 f
θ f
( 2 .1 9 2)
2
and
=
=
−
cos
sin
.
k
k
k
k
tx
t
θ t
2 2
2 f
θ f
( 2 .1 9 3 )
2
2
−
sin
k
k
2 2
θ f
2
2
−
+
−
sin
sin
k
k
k
2 k 1
2 f
2 f
θ f
2 f
θ f
2 f k
2
Re
IZ 2
=
2
t 2
p
2
2
f
1
−
+
−
sin
sin
k
k
k
2 k 1
2 2
2 f
θ f
2 f
θ f
Z Z
k 1 k
2
2
T hu s
2
k
2
2
+
−
−
cos
sin
1
sin
k
k
2 k 1
f
θ f
2 f
θ f
θ f
k
2 f 2 2
Re
=
.
2
2
2
1
−
+
−
sin
sin
k
k
k
2 k 1
2 2
2 f
θ f
2 f
θ f
Z Z
k 1 k
2
2
( 2 .1 9 4)
39
He nce ,
2
k
k
k
f
2
2
+
−
−
cos
1
sin
Re(
1
sin
)
θ f
θ f
θ f
k
2 f 2 k 1
k 1
2 f 2 2
IZ 2
=
.
t 2
2
p
f
k
2
2
1
−
+
−
1
sin
sin
k
k
2 2
θ f
2 f
θ f
Z Z
1 k
2 f 2 k 1
2
2
( 2 .1 9 5)
k
2
2
No w
−
=
−
sin
1
sin
,
k
k
2 2
2 f
θ f
θ f
1 k
2
2 f 2 k 1
2 k 1 2 k 2
k
k
2
2
( 2 .1 9 6)
−
=
−
1
sin
1
sin
θ f
θ f
k
2 f 2 k 1
2 k 1 2 k 2
2 f 2 2
Re
Re
,
( 2 .1 9 7)
and
k f = r . k 1
( 2 .1 9 8)
2
k
k
k
f
2
2
+
−
−
cos
1
sin
1
sin
θ f
θ f
θ f
k 1
2 f 2 k 1
2 f 2 k 1
2 k 1 2 k 2
Re
IZ 2
T hu s
=
.
t 2
2
p
f
k
k
2
2
1
−
+
−
1
sin
1
sin
θ f
θ f
Z Z
2 f 2 k 1
2
2 f 2 k 1
2 k 1 2 k 2
k
f
( 2 .1 9 9)
=
α
=
β
=
Using
and defining
gives
r
Z 1 Z
k 1 k
k 1
2
2
2
2
2
2
+
−
−
2 2 α
cos
1
sin
1Re
sin
r
r
r
θ f
θ f
θ f
)
(
IZ 2
( 2 .2 0 0)
=
,
2
t 2
2
2
2
p
f
−
−
+ βθ
2 2 α
1
sin
1
sin
r
r
f
θ f
( 2 .2 0 1)
40
Us i n g
2
2
sin
−= 1
cos
,
θ f
θ f
( 2 .2 0 2 )
2
2
2
2
+
−
−
−
−
2 2 α
cos
1Re
r
r
r
( 1
)
( 1
)
θ f
θ f
θ f
)
(
IZ 2
=
t 2
2
2
2
2
p
f
−
−
−
−
2 2 α
1
cos
1
cos
r
r
1 ( 1
( 1
cos ) + βθ
cos )
θ f
f
gi v e s
2
2
2
2
2
2
2
+
−
+
−
cos
1
cos
1Re
cos
r
r
r
r
2 2 + αα r
θ f
θ f
θ f
)
(
=
.
2
2
2
2
2
2
2
−
+
−
+ βθ
1
cos
1
cos
r
r
r
2 2 + αα r
f
θ f
( 2 .2 0 3)
IZ 2
sin
θθ d f f
t 2
∫
π 2 0
p
f
I n te gr a ti n g o v er a ll a n gl es o f i nc id e nc e gi v e s
2
2
2
2
2
2
2
π 2
+
−
+
−
r
r
r
r
2 2 αα + r
cos
1Re
cos
cos
1
θ f
θ f
θ f
)
(
=
sin
.
θθ d f f
2
∫
2
2
2
2
2
2
0
−
+
βθ +
−
r
r
r
2 2 αα + r
1
cos
1
cos
f
θ f
( 2 .2 0 4)
Us i n g
=
−=
cos
and
sin
,
x
dx
θ f
θθ d f f
( 2 .2 0 5 )
and no ti n g t ha t
=
cos(
= 1)0
and
cos(
,0
π ) 2
( 2 .2 0 6)
gi v e s, a f ter r e ver si n g t h e li mi ts i n o r d er to r e mo ve t he mi n u s si g n fr o m d x=- sin θ fd θ f
2
2
2
2
2
2
1
+
−
+
−
rx
r
2 xr
r
2 2 αα + r
x
1
1Re
)
(
th e i n te gr al as
dx .
2
∫
2
2
2
2
2
0
β
−
+
+
−
r
2 xr
r
2 2 αα + r
x
1
1
( 2 .2 0 7)
T hi s i s t he a ct u al i nt e gr atio n t ha t i s p er fo r med n u me r ic al l y to fi nd t he r ela ti ve
tr a n s mi tt ed i n te n si t y o v er al l a n g le s .
2.15 Summary
As t he eq ua tio n s i n t h is ch ap te r ar e q ui te co mp l i cated , i n it ia ll y t he ca se o f no r mal
41
in cid e nce i s co n sid er ed . E v e n i n t he ca se wh er e th e t wo me d ia ei t her s id e o f t h e
j un ct io n ar e t h e sa me , t her e wi l l b e b o t h a tr a ns mi t ted a nd a r e fle ct ed wav e. T h is i s
b eca u se i n t h e fo r c ed wav e ca s e o nl y t he med i u m i n wh ic h t he wa v e i s i nc id e n t wi l l
b e d r i ve n b y t h e fo r c i n g f u n ct io n. Fir s t t h e o ne d i me n sio n al wa ve eq ua ti o n is d er i ved
and so l ved fo r t he ca se wh er e t he wa v e p r o p a g a tio n i n t h e i n cid e n t me d i u m i s fo r c ed .
T hi s i nc l ud e s t he i ner tia eq uat io n wh ic h i s ne ed ed fo r d er i vi n g t he r el at io n s h ip
b et we e n t he p r es s ur e a n d t he p a r t icl e ve lo ci t y.
Ne xt , t he ca se o f a no r m all y i nc id e n t fo r c ed wa v e ( wh e n t he med ia ar e t h e s a me) i s
co n s id er ed . T he tr a n s m itt ed a nd r e fl ec ted so u n d p r es s ur es ar e ca lc ul ate d . T he i ncid e nt
in te n s it y is t he n ca lc u la ted co n s id er i n g b o t h t he i ncid e nt wa v e a nd t he r ef le cted wa v e.
T he tr a ns mi tted i n te n si t y is al so cal c ul ated , a nd fo r f ut ur e us e t h e i n te n si t y o f t he
r ef le cted wa v e i f i t wa s tr a ve li n g alo n e i s a l so c alc u lat ed . T h e n t h e no r ma ll y i nc id e n t
cas e wh e n t h e t wo me d i a ar e d i f fer e nt i s co n sid er ed . T h e sa me ca lc u lat io n s a s
p r ev io u sl y p er fo r med ar e r ep e ated b ut t hi s ti me wi t h d i f f er e n t va l ue s fo r t he me d ia
p r o p er ti e s o n e it h er sid e o f t he j u nc tio n.
T he o b l iq ue i nc id e nc e c ase i s t h e n co n s id er ed . I t i s s ho wn t ha t t he t r a n s mi t ted
ne ar fi eld t ha t i s p r o d u ce d i n t h e ca s e o f to ta l i n t er n al r e fl ec tio n tr a n s mi t s no p o wer .
T he aco u s tic al p ar t ic le ve lo c it y fo r t he o b l iq ue in cid e nt ca se is ca lc u lat ed fo l lo wed b y
th e c alc u la tio n s o f tr a n s mi t ted a nd r e f lec ted p r e s s ur e s. T h e n t h e i n cid e n t a nd r e fle ct ed
in te n s it ie s ar e ca lc u lat e d . T he i ncid e nt i nt e ns it y i ncl ud e s b o t h t he i nc id e nt a nd t he
r ef le cted wa v e.
T he o b l iq ue i nc id e nt val ue s ar e u sed to c al c ula te t he d i f f u se f ield i nc id e nc e ca s e b y
av er a g i n g o ver al l p o ss i b le a n g le s o f i nc id e nc e. W he n t he med i a ar e t h e sa me t h is i s
d o ne b y a na l yt ica l i nte g r atio n . Sep ar at e i n te gr al s need to b e e va l ua ted fo r t he ca se
wh e n t he fo r ced wa ve n u mb e r i s le s s t h a n o r eq ua l to t he fr ee l y p r o p a ga ti n g wa ve
n u mb e r a nd fo r t he ca se wh e n t he fo r ced wa ve n u mb e r i s gr eat er t h a n o r eq ual to t he
fr e el y p r o p a ga ti n g wa v e n u mb er . Fo r t he d i f f us e f ie ld i n cid e n ce ca se wh en t he t wo
42
med ia ar e d i f fer e nt t he e q ua tio n s wh i c h ha ve to b e e va l uat ed n u me r ic al l y a r e d er i ved .
Chapter 3 The fluid media sound results
3.1 Introduction
I n t hi s c hap t er , t he t heo r eti ca l r e s ul t s o b t ai ned i n t he p r e vio u s c h ap te r a r e p r e se n ted a s
gr ap h s so t ha t t h e co n se q ue n ce s c a n b e ea si l y i n ter p r e ted . I n p ar tic u lar , it is s ho wn
th at t he s u m o f t h e i n te n si ti es p r o p a ga ted i n t h e d ir ec tio n no r mal to t he j u nc tio n b y t he
fo r ced i n cid e nt a nd fr e e l y p r o p a ga ti n g r e f lec ted wa ve s ar e no t eq u al to t he tr a n s mi t ted
in te n s it y. T hi s is b eca u s e t he cr o ss ter ms i n t he in te n s it y cal c ul atio n s d o no t va n is h
u nl e ss t he i nc id e n t wa v e is fr ee l y p r o p a g at i n g. I t is s ho wn t hat t he i nt e n s it y i ncid e nt
o n t he j u nct io n is eq ua l to t he tr a ns mi t ted i nt e n s it y i f t h e cr o s s t er ms ar e i ncl ud ed .
W her e i t is p o s s ib le, t he r es u lt s ar e gr ap hed i n d ecib e l s. T h i s i s no t a l wa ys p o ss ib l e
b eca u se so me o f t h e r e s ul t s ar e ze r o o r c h a n ge s ig n . T he r e s ul ts fo r t he si mp ler ca se o f
no r ma l i nc id e nc e ar e p r ese n ted f ir st, fo l lo we d b y t he o b liq ue i nc id e n ce cas e. T h e
r es u lt s fo r t he wh e n t he med ia o n ea c h sid e o f t h e j u nc tio n ar e t he sa me, ar e p r e se n ted
f ir s t, fo llo wed b y t he ca se wh e n t he me d i a ha ve d i f fer e n t i mp ed a n ce s. Fi na ll y f o r
o b liq ue i nc id e nc e t h e c a se wh e n t he i mp ed a nce s and wa v e n u mb er s ( wa v e sp eed s) ar e
d i f fer e n t is p r e se nt ed .
I t s ho uld b e no t ed t ha t a lt ho u g h t he me d ia ar e t h e s a me o n eac h s id e o f t he j u nc tio n, a
d is co nt i n ui t y s ti ll e xi s ts b eca u se t he fo r ci n g f u n ctio n wh i c h ge n er a te s t h e fo r ced
in cid e nce wa v e o p er ate s o n l y i n t he f ir st med i u m a nd no t i n t he se co nd med i u m, o n t he
o th er sid e o f t he j u nct io n.
3.2 Normal incidence, the same media
2
2
p
k
f
f
T he tr a ns mi tted i n te n si t y is
=
(
),
I
)( r
I
r
(
)
t
+ ri
2
Z
k
+ k
=
43
( 3 .1 )
fr o m eq ua tio n s ( 2 .3 8) a nd ( 2 .4 5 ) , wh e r e
Z ρ=
.0c
( 3 .2 )
P ut
r
.
k f= k
( 3 .3 )
2
p
f
Fo r a f o r ced i nc id e nt wa ve t he tr a n s mi t ted i nt e n si t y i s
r
=
(
).
I
r
I
)( r
(
)
t
+ ri
Z
2 =
+ 1 2
( 3 .4 )
2
p
fo r a fr e el y p r o p a ga ti n g wa v e ( r =1 ) , t h e t r a n s mi t ted i n te n s it y is
f
=
=
=
I
I
I
).1(
t
)1()
i
(
+ ri
Z
( 3 .5 )
T he l as t eq u al it y o cc ur s b eca u se t he me d i a ar e t h e s a me a nd he nc e t h er e i s no r e fle ct ed
wa v e wh e n t he i nc id e nt wa v e i s fr e el y p r o p a gat i n g. T he no r ma l ized tr a n s mi tt ed
I
)( r
r
)
+ ri
in te n s it y is
=
.
)1(
( I
)( rI t )1( I
+ 1 2
2 =
(
)
t
+ ri
44
( 3 .6 )
Eq u at io n ( 3 .6 ) i s s ho wn in F i g ur e 3 .1 i n d ec ib el s . T he fr eel y p r o p a ga ti n g ca se is gi ve n
b y r=1 . Fo r t he r i s l es s th a n o ne ca se, t he tr a n s mi t ted i nte n s it y i s l es s t ha n t he
in te n s it y fo r a fr eel y p r o p ag at i n g i n cid e n t wa ve ( r =1 ) .T h is fi g ur e s ho ws t h at
att e n uat io n o f a no r ma ll y i ncid e nt f o r ced wa v e i s a t mo st 6 d B . T h is i s mo r e t h a n t h e
att e n uat io n o f a no r ma ll y i ncid e nt f r ee l y p r o p a g ati n g wa v e. I t s h o uld a l s o b e no ted t ha t
th e gr ap h i s i nd ep e nd e n t o f f r eq ue n c y. I n t he r i s gr e ate r t h a n o ne ca se t he i nt e n si t y o f
th e t r a n s mi tt ed wa v e is gr e at er t h a n t h at fo r t he fr e el y p r o p a ga ti n g ca se wh e n r= 1 .
4
3
2
1
0
-1
-2
) B d ( ) ) 1 ( t I / ) r ( t I ( g 1 0 1
-3
-4
-5
-6 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1
F i gu r e 3 . 1 : Th e t r a n s m i t t e d i n t e n s i t y d u e t o a n o r m a l l y i n c i d e n t fo r c e d w a v e .
r
T he r a tio o f t he tr a n s mi t ted ( o r to t al) i nt e ns it y t o t he tr a n s mi tt ed i n te n s i t y wh e n t he
in cid e nce wa v e i s fr ee l y p r o p a gat i n g go e s to i n f i ni t y wh e n t he wa ve n u m b er r at io ( r)
go e s to i n f i ni t y b e ca u se p o wer t hat t he fo r c i n g f u nc tio n h a s to i nj ec t i n t o t he f ir st
med i u m i n o r d er to g e ne r ate t he fo r ced i nc id e n t wa v e o f co n st a nt a mp l it ud e go e s to
in f i n it y as t he wa v e n u mb e r r a tio go es to i n fi n i t y. I n o t her wo r d s, i t is eas ie st to
ge n er a te a wa v e wi t h t h e fr ee l y p r o p a g at i n g wa ve n u mb er a nd b eco me s har d er to
ge n er a te t he wa ve wh e n it s wa v e n u mb er i s v er y d i f fer e n t fr o m t he fr ee l y p r o p a gat i n g
45
wa v e n u mb er .
2
2
2
p
p
k
f
f
T he i n cid e n t i nte n s it y i n t he ab s e nce o f t he r e f le cted wa ve i s ,
=
=
=
.
r
)( rI i
f k
Z
Z
pk f f ωρ 0
( 3 .7 )
T he r e f lec ted i nt e ns it y i n t he p o si ti v e x d ir e ct io n i n t h e ab se n ce o f t he i nc id e nc e wa v e
2
2
p
f
is, fr o m eq u at io n ( 2 .5 2)
r
−=
.
I
)( r
r
Z
− 1 2
( 3 .8 )
2
p
Fo r t h e fr e el y p r o p a ga ti n g wa ve ( r =1 )
f
=
I
)1(
.
i
Z
( 3 .9 )
T he i n te n si ti es ar e no w no r ma l ized b y d i v id i n g t he m b y t h e i n te n si t y o f t he f r ee l y
p r o p ag at i n g i n cid e nt wa ve
= r .
)( rI i )1( I
i
( 3 .1 0)
2
r
1
Fr o m eq u at io n s ( 3 .8 ) a n d ( 3 .9 ) t h e no r ma li zed r ef le cted i n te n si t y i s
.
I r I
r )( )1(
− 1 −= 2
2 − r −= 2
i
( 3 .1 1)
2
r
Fr o m eq u at io n s ( 3 .4 ) a n d ( 3 .9 ) t h e no r ma li zed tr an s mi t ted i nt e ns it y i s
=
.
rI )( t I )1(
+ 1 2
i
( 3 .1 2)
T hu s t he s u m o f t he i nc i d en t a nd r e fl ec ted i nte n si ti es ( wh e r e p o si ti v e d e no t e s e ner g y
2
+
r )(
1
r
−= r
rI )( i I
− r 2
I )1( 2
b ei n g p r o p a g at ed i n t he p o si ti v e x -a x i s d ir ec tio n ) i s gi v e n b y
i −
−
r
r
r
4
2
1
=
2
−
−
1
r
=
.
+ 4 + 6 r 4
( 3 .1 3)
46
No te t ha t eq u at io n ( 3 .1 3 ) i s no t eq ua l to t he tr a n s mi tt ed i n te n si t y
2
+
+
r
r
1
t
=
,
I I
r )( )1(
2 4
i
( 3 .1 4)
u nl e ss t he i nc id e n t wa v e is fr ee l y p r o p a g at i n g ( r =1 ) . T he se no r ma liz ed i nt e n si tie s ar e
s ho wn i n Fi g ur e 3 .2 .
T hu s t he p o wer p r o p a ga t ed b y t he i nc id e n t a nd r ef le cted wa v es ca n no t b e ca lc ul at ed
sep a r at el y u n le s s t h e i n c id e nt wa v e i s fr ee l y p r o p a g at i n g. T h e ac t ua l i n c id e nt p o wer o n
th e i n cid e nce s id e o f t he j u nct io n p la ne at x eq u a ls 0 ca n o n l y b e ca lc u lat ed a s I ( i + r ) ( r )
and ca n no t b e cal c ul ated as t he s u m o f I i ( r ) a nd I r (r ) u nle s s t he i ncid e nt wa v e i s fr e el y
p r o p ag at i n g.
2.5 Iiforced/Iifree
Irforced/Iifree 2
(Iiforced+Irforced)/Iifree
1.5 Itforced/Iifree
1
) 1 ( i I / ) r ( x I
0.5
0
-0.5 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1
F i gu r e 3 . 2 : Th e t r a n s m i t t e d , r e fl e c t e d , i n c i d e n t a n d s u m o f i n c i d e n t a n d r e f l e c t e d i n t e n s i t i e s
d u e t o a n o r m a l l y i n c i d e n t fo r c e d w a ve .
r
I n Fi g u r e 3 .2 I i f o r c e d /I i f r e e i s t h e no r ma l is ed i n cid en t wa ve i nt e ns it y ca lc u lat ed o n i t s
o wn , i n t he ab se nc e o f t he r e fl ec ted wa ve. I r f o r c e d/I i f r e e is t he no r ma li sed r ef le cted wa v e
in te n s it y p r o p a gat ed i n t he p o s it i ve x d ir ect io n. He nce i t i s al wa ys ne ga t iv e o r zer o . I f
th e se t wo ar e ad d ed to g et her to o b tai n ( I i f o r c e d +I r f o r c e d) /I i f r e e , i t i s no ted t ha t t h i s s u m
47
d oes no t eq u al I t f o r c e d /I i f r e e. T h i s s ho ws t h at t he i nt e n si t y i n t he f ir st med iu m wh i c h
mu s t b e eq u al to t he i nt en s it y i n t h e seco nd me d iu m, c a n no t b e ca lc u la t ed co r r e ct l y b y
co n s id er i n g t he fo r ced i nc id e n t a nd r e fl ect ed wa ve s ep ar a te l y.
T he r a tio s o f t he tr a n s m itt ed a nd r e fl ec ted p r e s s ur e to t he fo r ced i nc id e n t p r e s s ur e ar e
as fo llo ws .
r
Fr o m eq u at io n ( 2 .2 7)
=
.
p t p
1+ 2
f
( 3 .1 5)
r
r
Fr o m eq u at io n ( 2 .2 8)
=
.
p p
1− 2
f
( 3 .1 6)
+
p
p
1
1
r
r
f
r
T he s u m o f t he se t wo eq ua tio n s i s
=
=
+= 1
.
− 2
+ 2
p
p t p
f
f
( 3 .1 7)
T he tr a ns mi tted , r e f lec t ed a nd i n cid e nce p r e ss ur es ar e gr ap hed i n F i g ur e 3 .3 .
1.5
1
f
0.5
p / x p
pr/pf 0 pt/pf
pf/pf
-0.5 0 0.5 1.5 1 2
F i gu r e 3 . 3 : Th e n o r m a l i s e d t r a n s m i t t e d , r e f l e c t e d a n d i n c i d e n t s o u n d p r e s s u r e s a s a fu n c t i o n o f
t h e r a t i o r o f t h e f o r c e d i n c i d e n t w a v e n u mb e r t o t h e f r e e l y p r o p a g a t i n g w a v e n u mb e r .
48
r
Fi g ur e 3 .3 s ho ws t ha t t h e tr a n s mi t ted p r es s ur e i s le s s t h a n o r gr e ate r t h a n t he no r ma l l y
in cid e nt fo r ced p r es s ur e .
3.3 Normal incidence, different media.
Fr o m eq u at io n ( 2 .1 5 6) f o r a no r ma ll y i nc id e n t wav e wh e n t h e t wo med ia ar e d i f f er e n t
2
2
eq u at io ns ( 2 .6 7) a nd ( 2 . 7 2) g i ve s
=
+
r )(
(
r
)1
.
p
rI )( t
= + I ( ri
)
f
2
z 1 +
(
)
z
2
z 1
( 3 .1 8)
2
T hu s
=
I
p
)1(
)1(
,
t
= + I ( ri
)
f
2
z 4 +
)
(
z
2 z 1
2
( 3 .1 9)
2
I
)( r
1
+ ri
)
and
=
=
.
)1(
)( rI t )1( I
( I
+ r 2
t
+ ri
(
)
( 3 .2 0)
Eq u at io n ( 3 .2 0) i s t he s a me a s eq u at io n ( 3 .6 ) . T h u s f i g ur e 3 .1 al so ap p l ie s fo r no r mal
in cid e nce wh e n t he med i a ar e d i f fer e nt.
3.4 Oblique incidence, same media.
Fr o m eq u at io n ( 2 .1 5 6) , t he a ver a ge tr a n s mi tt ed i nt e n si t y fo r t he c as e o f a fr ee l y
2
p
p r o p ag at i n g d i f f u s e i n ci d en t f ield i s
=
I
)1(
,
t
2
f Z
( 3 .2 1)
wh er e p f is t he r ms so u nd p r es s ur e o f t h e i n cid en t d i f f u s e so u nd fi eld . T he va l ue o f
eq u at io n ( 3 .2 1) wi ll b e u sed to no r ma li ze t he o t her val u es .
49
Fr o m eq u at io n ( 2 .1 5 0) a nd ( 3 .2 1 )
2
2
2
+
−
θ
1
θ )
(
cos
r
r
<
θ
sin
1
if
r
2
=
.
−
sin 2 θ
12
r
θ ,( ) rI t )1( I
t
≥
θ
sin
sin
1
if
r
0
( 3 .2 2)
Fr o m eq u at io n ( 2 .1 8 0) a nd ( 2 .1 8 8 ) , t h e no r ma li z ed tr a n s mi t ted i nt e ns it y d ue to
d i f f us el y i nc id e n t fo r c e d so u nd wa ve s wh e n t he med ia ar e t he s a me i s g iv e n b y
=
+ +
< <
> >
≤ 1r if ≥ r if 1.
rI )( t )1( I
t
r 1( 2/) r 2/)/11(
( 3 .2 3)
5 0 degrees 4.5 15 degrees 4 30 degrees 3.5 45 degrees 3 60 degrees
2.5 75 degrees
> ) 1 ( t I < / ) r ( t I
90 degrees 2
diffuse 1.5
1
0.5
0 0 0.5 1.5 1 2
F i gu r e 3 . 4 Th e n o r m a l i s e d t r a n s mi t t e d i n t e n s i t y d u e t o fo r c e d p l a n e w a ve s i n c i d e n t a t a n gl e s
o f i n c i d e n c e fr o m 0 t o 9 0 d e g r e e s i n 1 5 d e gr e e i n c r e m e n t s .
50
r
Eq u at io ns ( 3 .2 2) a nd ( 3 . 2 3) ar e gr ap hed i n fi g ur e 3 .4 . Fo r va l ue s o f r gr eate r t h a n o ne,
to ta l i n ter n al r e fl ect io n is s ee n to o cc ur fo r t h e l ar g er a n g le s. T h e z er o v al ue s o f
in te n s it y wh i c h o cc ur b e ca us e o f to ta l i nte r nal r e f lec tio n ar e no t gr ap h ed in fi g ur e 3 .4.
I t i s i nte r e st i n g to no te t ha t t h e c ur v es te nd to i n f i ni t y a s t h e va l ue o f r f o r wh i c h to ta l
in ter n al r e fl ec tio n o c c ur s i s ap p r o ac h ed fr o m t he d ir ec tio n o f r eq ua l s ze r o , e xcep t fo r
th e 9 0 d e g r ee i nc id e n t c ase . T he d i f f u se f ie ld c u r ve i s eq u al to 0 .5 at r= 0 a nd te nd s to
0 .5 as r te nd s to i n f i n it y . T h us fo r t h e d i f f u s e fi eld i n cid e nce ca se, t he f o r ced
tr a n s mi tt ed i n te n si t y is l es s t ha n o r eq ual to t he fr e el y p r o p a ga ti n g tr a n s mi t ted
in te n s it y b y at mo s t 3 d B . I t s ho uld b e no t ed t h at a ll t he c ur ve s a r e eq u al wh e n r eq u al s
zer o . T h i s i s b e ca u se t h e a n gl e o f i ncid e nce ca n no t r ea ll y b e d e f i ned wh en t he i nc id e n t
fo r ced wa ve n u mb er is e q ua l to zer o . I t s ho u ld b e n o ted t ha t t h e no r ma li zat io n u sed i n
f i g ur e 3 .4 i s d i f f er e n t fr o m t ha t u sed i n fi g ur e 3 . 1.
3.5 Oblique incidence, different impedances, same wave
numbers
Fr o m eq u at io n ( 2 .2 0 3) , t he n o r ma liz ed tr a n s mi tt ed i nt e n si t y, fo r a n o b l i q ue l y i n cid e nt
2
2
2
2
2
2
2
+
−
+
−
θ
θ
θ
r
r
r
2 2 + αα r
r
cos
1
cos
1Re
cos
)
(
p la ne wa ve wh e n t he me d ia ar e d i f f er e n t, is gi ve n b y
=
,
rIZ )( t 2 2
2
2
2
2
2
2
2
p
f
−
+
+
−
θ
βθ
r
r
2 2 + αα r
r
1
cos
1
cos
k
f
1
1
α
β
=
=
=
( 3 .2 4)
r
,
.
k k
k
Z Z
2
2
1
wh er e
I f t he wa ve n u mb er s o f f r eel y p r o p a ga ti n g wa ve s i n t h e t wo med ia ar e t h e s a me ( α =1 ) ,
51
th e n eq u at io n ( 3 .2 4) b ec o me s
2
2
2
2
2
θ
θ
θ
+
−
−
cos
1
sin
1Re
sin
r
r
r
)
(
=
.
)( rIZ 2 t 2
2
2
2
2
p
f
β
θ
+
−
1
1
sin
r
( 3 .2 5)
2
2
2
2
θ
θ
+
−
cos
1
r
r
)
(
β
+
θ
≤
1
sin
1
if r
T hu s
2
=
.
)( rIZ 2 t 2
sin 2 θ
−
12
2
p
f
θ
≥
r
sin
sin
1
if r
0
( 3 .2 6)
T he r i g h t ha nd s id e o f e q ua tio n ( 3 .2 6) i s t he s a me a s t h e r i g h t sid e o f e q ua tio n ( 3 .2 2) .
2
+
≤
β
+
1
1
2
He nce a ver a gi n g o v er a d i f f us e f ield i nc id e nc e g iv e s
=
)( rIZ t 2
≥
2/ ) r
2/
r if r if
.1
( ) r 1 ( + /11
p
2
f
( 3 .2 7)
2
+
1
rIZβ )( 2
t
T hu s
=
.1
2
p
2
f
( 3 .2 8)
2
2
2
θ
θ
+
−
r
r
cos
1
)
(
θ
≤
r if
sin
Di v id i n g eq u at io n ( 3 .2 6 ) b y ( 3 .2 1) gi v e s
2
=
1 .
sin 2 θ
−
12
)( rI t )1( I
t
θ
≥
1
r
sin
r if
sin
0
( 3 .2 9)
+
≤
r
1
Di v id i n g eq u at io n ( 3 .2 7 ) b y ( 3 .2 8) gi v e s
=
≥
2/ ) r
2/
r if r if
.1
rI )( t )1( I
t
( ) 1 ( + /11
( 3 .3 0)
Eq u at io n ( 3 .2 9) i s t he s a me a s eq u at io n ( 3 .2 2) . E q ua tio n ( 3 .3 0) i s t he s a me a s eq u at io n
( 3 .2 3) . H e nc e f i g ur e 3 .4 al so ap p li es wh e n t he wav e n u mb er s o f t he t wo med ia ar e t he
52
sa me e ve n i f t he c har a ct er i st ic i mp ed a n ce s ar e d i f fer e n t.
3.6 Oblique incidence, different wave numbers
Fo r t h e c as e o f d i f fer e n t fr eel y p r o p a ga ti n g wa v e n u mb er s i n t he t wo me d ia, eq u at io n
( 3 .2 4) ap p l ie s. Ho we v er t hi s eq u at io n wi l l b e m ul tip li ed b y t wo b e fo r e gr ap h i n g it to
2
2
2
2
2
2
2
+
−
+
−
θ
θ
θ
2
cos
1
cos
1Re
cos
r
r
r
r
2 2 + αα r
)
(
2
gi v e
=
.
)( rIZ 2 t 2
2
2
2
2
2
2
2
p
f
−
+
−
+ βθ
θ
1
cos
1
cos
r
r
r
2 2 + αα r
( 3 .3 1)
T hi s mea n s t ha t t h e tr a n s mi tt ed i n te n si t y is no r ma li zed b y d i vid i n g it b y h al f t he
in te n s it y o f a p l a ne so u n d wa ve wi t h t he sa me so u nd p r es s ur e a s t h e i n ci d en t p l a ne
so u nd wa v e b u t p r o p a g a ti n g i n t h e seco nd med i u m. T hi s no r ma l iza tio n i s u sed b eca u s e
c a n no t b e ca lc u l ated a nal yt i ca ll y. T he fr eel y p r o p a ga ti n g wa ve n u mb e r s i n t he
t wo me d ia ar e d i f f er e nt , an d t h u s t he i nte gr at io n ne ed s to b e p er fo r med n u me r ic al l y i n
th i s c as e. T h e no r ma li za tio n is gi ve n b y eq ua tio n ( 3 .2 1 ) , e x cep t t ha t i n th i s c as e i t i s
ne ce s sar y to c ho o se wh i ch med i a ’ s i mp ed a nc e to u se b eca u s e t he y ar e no w d i f f er e n t.
2
T he no r ma li zat io n is s i mi la r to t ha t wh i c h ca n b e d ed uced fr o m eq u at io n ( 3 .2 8 ) , e x cep t
1 β+
th at t he f ac to r is no t u se d . T he no r ma l ized tr a n s mi t ted i nte n s it y i s p lo tt ed a s a
f u nc tio n o f t h e r a tio r o f t he fo r ced i nc id e nt wa ve n u mb er to t h e fr e el y p r o p ag at i n g
wa v e n u mb er i n t h e fir s t med i u m f o r a n g le s o f i n cid e nc e i n 1 5 d e gr ee i nc r e me nt s fr o m
0 to 9 0 d e gr ee s. T h e r a ti o o f t he f r ee l y p r o p a g at i n g wa ve n u mb er i n t h e f ir s t med i u m to
th at i n t he se co nd me d i u m ( α ) i s g i ve n t he va l ue s o f ½ o r 2 . T he α eq ua l s 1 c a se is
co v er ed i n t h e p r e v io u s sec tio n . T he r at io o f t he ch ar a cter i st ic i mp ed a n c e o f t h e fir s t
med i u m to t h at o f t h e s e co nd med i u m ( β) i s g i ve n t he va l ue s o f ½ , 1 a nd 2 . T he
r es u lt i n g gr ap h s ar e s ho wn i n f i g ur e 3 .5 t hr o u g h to fi g u r e 3 .1 0.
53
Fr o m eq u at io n ( 2 .2 0 7)
2
2
2
2
2
2
1
+
−
+
−
rx
r
2 xr
r
2 2 αα + r
x
1
Re(
1
)
2
=
dx .
rIZ )( t 2
2
∫
2
2
2
2
2
0
p
f
2 2 βαα
−
+
+
−
+
r
2 xr
r
x
r
1
1
( 3 .3 2)
Eq u at io n ( 3 .3 2) i s gr ap h ed i n f i g ur e 3 .1 1 a nd f i g ur e 3 .1 2 wh e r e it i s no r ma li zed b y
d iv id i n g i t b y whi c h i s t he tr a n s mi t ted i nt e n si t y d ue to a f r ee l y p r o p ag at i n g
in cid e nt d i f f u se f ie ld . T hi s i s t h e s a me no r ma liz atio n a s u sed i n eq ua tio n s ( 3 .3 0) a nd
( 3 .2 3) . T he o n l y d i f fer e nc e i s t ha t i n t hi s ca se t he i nt e gr a tio n s ne ed to b e p er fo r me d
n u me r ic al l y.
T he n u mer ica l i nte g r at i o n s we r e p er fo r med i n Mat lab u si n g t he “ q uad g k” q uad r a t ur e
f u nc tio n to p er fo r m t he in te gr at io ns . W he n to t al i nte r nal r e f lec tio n o cc u r s t he i n te gr al
− /(11
2) αr
54
in eq ua tio n ( 3 .3 2) ne ed s o n l y to b e e v al ua ted f r o m x eq ua l s to x eq u al s 1 .
10
9 15 0
8
45 30 7
6
y t i s n e t n
I
75 60 5
d e s i l
4 90
a m r o N
3
2
1
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
F i gu r e 3 . 5 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a p l a n e s o u n d w a v e i n c i d e n t a t a n g l e s r a n gi n g f r o m
0 t o 9 0 d e gr e e s i n 1 5 d e g r e e i n c r e m e n t s . Th e r e s u l t s a r e g r a p h e d a s a fu n c t i o n o f t h e r a t i o r o f
t h e fo r c e d i n c i d e n t w a v e n u mb e r t o t h e w a v e n u mb e r o f a f r e e l y p r o p a g a t i n g w a v e i n t h e fi r s t
m e d i u m. Th e r a t i o o f t h e w a v e n u mb e r o f a fr e e l y p r o p a g a t i n g w a v e i n t h e fi r s t m e d i u m t o t h a t
i n t h e s e c o n d me d i u m ( α ) i s ½ . Th e r a t i o o f t h e i mp e d a n c e o f t h e c h a r a c t e r i s t i c i mp e d a n c e o f
t h e fi r s t m e d i u m t o t h a t o f t h e s e c o n d me d i u m ( β ) i s ½ .
1 r
I n f i g ur e 3 .5 t h e lo cal m in i ma a nd ma x i ma ar e s ho wn i n t he r a n ge fr o m r i s eq ua l to 0
to 2 . T h er e is a mi n i mu m o f zer o at 9 0 d e gr e e c ur ve . T he 4 5 a nd 6 0 d e g r ee c ur v es ha ve
lo ca l ma x i mu ms . T h e 7 5 an d 9 0 d e gr ee c ur v e s h av e lo cal mi n i mu ms . T h e s lo p e s o f t he
55
0 , 1 5 a nd 3 0 d e gr ee c ur ve s i ncr e a se fr o m 0 to 2 .
8
0 7
15 6 30
5 45
y t i s n e t n
I
60 4
d e s i l
75 3
a m r o N
90 2
1
F i gu r e 3 . 6 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a p l a n e s o u n d w a v e i n c i d e n t a t a n g l e s r a n g i n g f r o m
0 t o 9 0 d e gr e e s i n 1 5 d e g r e e i n c r e m e n t s . Th e r e s u l t s a r e gr a p h e d a s a fu n c t i o n o f t h e r a t i o r o f
t h e fo r c e d i n c i d e n t w a ve n u mb e r t o t h e w a v e n u mb e r o f a f r e e l y p r o p a g a t i n g w a v e i n t h e fi r s t
m e d i u m. Th e r a t i o o f t h e w a v e n u mb e r o f a fr e e l y p r o p a g a t i n g w a v e i n t h e fi r s t m e d i u m t o t h a t
i n t h e s e c o n d me d i u m ( α ) i s ½ . Th e r a t i o o f t h e i mp e d a n c e o f t h e c h a r a c t e r i s t i c i mp e d a n c e o f
t h e fi r s t m e d i u m t o t h a t o f t h e s e c o n d me d i u m ( β ) i s 1 .
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1 r
I n f i g ur e 3 .6 , 0 , 1 5 , a nd 3 0 d e gr ee c ur ve s i ncr e as e fr o m 0 to 2 , a n d t he 6 0 , 7 5 , a nd 9 0
56
d egr ee c ur ve s ha v e a lo c al mi n i ma .
2
1.8
1.6
1.4
1.2
y t i s n e t n
I
0 15 30 45 60 75 90 1
d e s i l
0.8
0.6
a m r o N
0.4
0.2
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
F i gu r e 3 . 7 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a p l a n e s o u n d w a v e i n c i d e n t a t a n g l e s r a n gi n g f r o m
0 t o 9 0 d e gr e e s i n 1 5 d e g r e e i n c r e m e n t s . Th e r e s u l t s a r e gr a p h e d a s a fu n c t i o n o f t h e r a t i o r o f
t h e fo r c e d i n c i d e n t w a ve n u mb e r t o t h e w a v e n u mb e r o f a f r e e l y p r o p a g a t i n g w a v e i n t h e fi r s t
m e d i u m. Th e r a t i o o f t h e w a v e n u mb e r o f a fr e e l y p r o p a g a t i n g w a v e i n t h e fi r s t m e d i u m t o t h a t
i n t h e s e c o n d me d i u m ( α ) i s ½ . Th e r a t i o o f t h e c h a r a c t e r i s t i c i m p e d a n c e o f t h e fi r s t m e d i u m t o
t h a t o f t h e s e c o n d m e d i u m ( β ) i s 2 .
1 r
I n f i g ur e 3 .7 , t h e 0 , 1 5 a nd 3 0 d e gr ee c ur ve s al l ha v e i n cr ea s i n g slo p e s. T he 4 5 , 6 0 , 7 5 ,
and 9 0 d e gr e e c ur v es al l ha v e a lo c al mi n i ma. T he 7 5 a nd 9 0 d e gr ee c ur ve s d i sp la y a
57
lo ca l ma x i ma b et wee n r =1 a nd r=2 . T he 9 0 d e gr ee c ur v es g o e s to zer o a t r =2 .
5
4.5
4
3.5
3 0 15 30 45 60 75 90
y t i s n e t n
I
2.5
d e s i l
2
a m r o N
1.5
1
0.5
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
F i gu r e 3 . 8 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a p l a n e s o u n d w a v e i n c i d e n t a t a n g l e s r a n gi n g f r o m
0 t o 9 0 d e gr e e s i n 1 5 d e g r e e i n c r e m e n t s . Th e r e s u l t s a r e gr a p h e d a s a fu n c t i o n o f t h e r a t i o r o f
t h e fo r c e d i n c i d e n t w a ve n u mb e r t o t h e w a v e n u mb e r o f a f r e e l y p r o p a g a t i n g w a v e i n t h e fi r s t
m e d i u m. Th e r a t i o o f t h e w a v e n u mb e r o f a fr e e l y p r o p a g a t i n g w a v e i n t h e fi r s t m e d i u m t o t h a t
i n t h e s e c o n d me d i u m ( α ) i s 2 . Th e r a t i o o f t h e i mp e d a n c e o f t h e c h a r a c t e r i s t i c i mp e d a n c e o f
t h e fi r s t m e d i u m t o t h a t o f t h e s e c o n d me d i u m ( β ) i s 1 / 2 .
1 r
I n f i g ur e 3 .8 , t h e 0 d e g r ee c ur v e d i sp l a ys a n i nc r ea si n g slo p e. T h e 1 5, 3 0 , 4 5 , 6 0 a nd
7 5 d e gr ee c ur ve s ha v e a lo ca l ma x i mu m a nd t h e n go to z er o . T h e 9 0 d e gr ee c ur v e s lo p e
d ecr ea se s to z er o . T h e 1 5 d e gr ee c ur ve h as i ts p ea k ar o u nd r =1 .7 . T he o th er c ur v e s a ll
ha v e lo wer v al u es o f r f o r t he ir p ea k . T he gr ea t er t he a n gl e, t he lo wer t he r v al u e fo r
58
wh ic h t he p ea k o cc ur s.
4
0 3.5 15 30 3 45 60 75 2.5 90
y t i s n e t n
I
2
d e s i l
1.5
a m r o N
1
0.5
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
F i gu r e 3 . 9 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a p l a n e s o u n d w a v e i n c i d e n t a t a n g l e s r a n gi n g f r o m
0 t o 9 0 d e gr e e s i n 1 5 d e g r e e i n c r e m e n t s . Th e r e s u l t s a r e g r a p h e d a s a fu n c t i o n o f t h e r a t i o r o f
t h e fo r c e d i n c i d e n t w a ve n u mb e r t o t h e w a v e n u mb e r o f a f r e e l y p r o p a g a t i n g w a v e i n t h e fi r s t
m e d i u m. Th e r a t i o o f t h e w a v e n u mb e r o f a fr e e l y p r o p a g a t i n g w a v e i n t h e fi r s t m e d i u m t o t h a t
i n t h e s e c o n d me d i u m ( α ) i s 2 . Th e r a t i o o f t h e i mp e d a n c e o f t h e c h a r a c t e r i s t i c i mp e d a n c e o f
t h e fi r s t m e d i u m t o t h a t o f t h e s e c o n d me d i u m ( β ) i s 1 .
1 r
Fi g ur e 3 .9 is ver y si mi la r to fi g u r e 3 .8 i n it s ap p ear a nc e. Ho we v er t h e p e ak s i n t h e 1 5 ,
3 0 , 4 5 , 6 0 a nd 7 5 d e gr e e cu r ve s ha v e a s ma ll er v al ue o f i n te n si t y. T h e 0 d egr ee c ur ve
d isp la ys a n i ncr ea si n g s l o pe. T he 1 5 , 3 0 , 4 5 , 6 0 and 7 5 d e gr e e c ur v es d i sp l a y a
ma x i mu m a nd t h e n t h e y go to ze r o a s r i n cr ea s es . T he 9 0 d e gr ee c ur ve d ecr ea se s to
zer o . T h e 1 5 d e gr ee c ur ve h a s i t s p ea k ar o u nd r =1 .7 8. T h e o t h er c ur v es ar e a ll ha ve
lo wer val u e s o f r fo r t he ir p ea k . T he g r ea ter t he an g le, t he lo we r t he r va lu e fo r wh i c h
59
th e p e a k o cc u r s.
2
1.8
1.6
1.4
1.2
y t i s n e t n
0 15 30 45 60 75 90
I
1
d e s i l
0.8
0.6
a m r o N
0.4
0.2
F i gu r e 3 . 1 0 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a p l a n e s o u n d w a v e i n c i d e n t a t a n gl e s r a n gi n g
f r o m 0 t o 9 0 d e g r e e s i n 1 5 d e g r e e i n c r e m e n t s . Th e r e s u l t s a r e gr a p h e d a s a fu n c t i o n o f t h e
r a t i o r o f t h e fo r c e d i n c i d e n t wa v e n u mb e r t o t h e w a v e n u mb e r o f a fr e e l y p r o p a g a t i n g w a v e i n
t h e fi r s t m e d i u m. Th e r a t i o o f t h e w a ve n u mb e r o f a f r e e l y p r o p a g a t i n g w a v e i n t h e fi r s t
m e d i u m t o t h a t i n t h e s e c o n d m e d i u m ( α ) i s 2 . Th e r a t i o o f t h e i m p e d a n c e o f t h e c h a r a c t e r i s t i c
i mp e d a n c e o f t h e fi r s t m e d i u m t o t h a t o f t h e s e c o n d m e d i u m ( β ) i s 2 .
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1 r
Fi g ur e 3 .1 0 lo o ks ver y mu c h l i ke f i g ur e 3 .9 . Ag ai n t h e d i f f er e n ce is t ha t t he i nte n s it y
is mu c h lo we r . T he 0 d e gr e e c ur v e d i sp la ys a n i ncr ea si n g s lo p e. T he 1 5 , 3 0 , 4 5 , 6 0 a nd
7 5 d e gr ee c ur ve s d isp la y a ma x i mu m a nd t he n g o to ze r o . T he 9 0 d e gr ee cu r ve
d ecr ea se s to z er o . T h e 1 5 d e gr ee c ur ve h as i ts p ea k ar o u nd r =1 .8 2. T he o th er p e a ks al l
ha v e lo wer v al u es o f r f o r t he ir p ea k s. T he gr ea t er t he a n gl e, t he lo wer t he r v al u e fo r
60
wh ic h t he p ea k o cc ur s.
3
(0.5,0.5) 2.5 (0.5,1)
(0.5,2) 2
1.5
> ) 1 ( t I < / > ) r ( t I <
1
0.5
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1
F i gu r e 3 . 1 1 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a fo r c e d d i f f u s e i n c i d e n t s o u n d f i e l d . Th e r e s u l t s
a r e g r a p h e d a s a fu n c t i o n o f t h e r a t i o r o f t h e fo r c e d i n c i d e n t w a v e n u mb e r t o t h e w a ve n u mb e r
o f a f r e e l y p r o p a g a t i n g w a v e i n t h e f i r s t m e d i u m . A l p h a i s e q u a l t o ½ . B e t a i s ½ , 1 o r 2 .
r
Fo r r=0 t he v al u es i n f i g ur e 3 .1 1 ar e c lo s e to 0 . 5 . T he y i ncr e as e a s r i nc r ea se s wi t h a
sl i g ht mi n i ma at r = 1 . Fo r r gr eat er t h a n 1 , t he v a lu e s ar e gr ea ter t ha n 1 a nd h a ve a
61
ma x i ma j u st b elo w r=2 .
3.5
(2,0.5) 3
(2,1) 2.5 (2,2) 2
1.5
> ) 1 ( t I < / > ) r ( t I <
1
0.5
0 0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2 1
F i gu r e 3 . 1 2 Th e t r a n s m i t t e d i n t e n s i t y d u e t o a fo r c e d d i f f u s e i n c i d e n t s o u n d f i e l d . Th e r e s u l t s
a r e g r a p h e d a s a fu n c t i o n o f t h e r a t i o r o f t h e fo r c e d i n c i d e n t w a v e n u mb e r t o t h e w a ve n u mb e r
o f a f r e e l y p r o p a g a t i n g w a v e i n t h e f i r s t m e d i u m . A l p h a i s e q u a l t o 2 . B e t a i s ½ , 1 , o r 2 .
r
I n f i g ur e 3 .1 2 a ll t he c u r ve s h a ve a ma x i mu m a t ab o ut r = 0 .5 . T h e c ur ve s fo llo w
d i f fer e n t p a t h s b e lo w r = 0 .5 . T he li n es ar e al mo s t t he s a me fo r va l ue s o f r gr e ate r t h a n
0 .5 . T he v al ue s ar e gr ea ter t ha n 1 fo r r le s s t ha n 1 a nd l es s t ha n 1 fo r va lu e s o f r
gr e at er t h a n 1 .
Lo o k i n g b a c k a t t h e ear l ier gr ap h s, na me l y f i g ur e 3 .8 to f i g ur e 3 .1 0 , t he d ecr ea s i n g
va l ue s ab o v e r=0 .5 ar e d ue to to ta l i nte r nal r e fl ect io n o r so me o f t h e a n gl e s o f
in cid e nce. T he b e ha v io r i n fi g u r e 3 .1 2 i s q ua li ta ti ve l y t h e o p p o si te o f wha t hap p e ns
in f i g ur e 3 .1 1. I n f i g ur e 3 .4 , wh i c h is t he alp h a e q ua l s o ne ca se, t he d i f f u se f ie ld va l ue s
62
ha v e a p ea k o f 1 at r = 1 and ar e le s s t h a n o ne wh en r i s l es s t ha n o r gr ea t er t ha n 1 .
3.7 Summary
I n it ial l y t he c as e o f a no r mal l y i n cid e n t wa ve wi th t he s a me med i u m o n eit h er sid e o f t h e
j un ct io n i s co ns id er ed . No te t ha t t r a n s mi s sio n a nd r e fle ct io n o c c ur a t t h e j u nc tio n b eca u s e
th e med i u m i s d r i v e n b y t he fo r ci n g f u n ct io n o n o nl y o ne sid e o f t he j u n ctio n. F i g ur e s
3 .1 -3 .3 d i sp l a y a gr ap h o f i nt e ns it y v er s us t he f o r ced wa v e n u mb er d i v i d ed b y t he fr ee l y
p r o p ag at i n g wa v e n u mb er . Fi g ur e 3 .2 s ho ws t h e r at io o f t he sep ar a tel y calc u la ted
in cid e nt a nd r e f lec ted i n te n si tie s, a nd t h e i n te n s i t y car r ied b y t he co mb i n atio n o f t h e
in cid e nt a nd r e f lec ted wav es . T hi s s ho ws t ha t t h e i nc id e n t i n te n si t y c a n n o t b e c al c ula ted
b y sep ar at el y ca lc ul at i n g t he i nte n s it ie s o f t he f o r ced a nd r e fl ec ted wa v es. F i g ur e 3 .3
s ho ws t he v al ue s o f t he in cid e nt a nd r e f lec ted tr an s mi t ted p r es s ur es . T h en t he ca se o f a
no r ma l l y i n cid e n t wa ve wi t h d i f f er e n t med ia o n eit h er sid e o f t h e j u n ct i o n is co n sid er ed .
Ne xt , t he ca se o f a n o b li q ue i nc id e nc e wa v e i s c o n sid er ed wh e n t he m e d ia o n e it h er sid e
o f t he j u nc tio n ar e t he s a me. A gr ap h o f i n te n si t y v er s u s r is p r o d uced s ho wi n g t he
in cid e nt a n gle s o f 0 , 1 5 , 3 0 , 4 5 , 6 0 , 7 5 , a nd 9 0 d egr ee s. T h e o b l iq ue i nc i d en ce wa ve i s
ag ai n co ns id er ed b ut wi t h d i f fer e nt i mp ed a nce s o n eit h er sid e o f t he j u n ctio n. T he sa me
wa v e n u mb er s ar e o n e it her s id e o f t he j u nc tio n . Aga i n t he o b l iq ue i ncid en ce wa ve ca se i s
co n s id er ed b ut t hi s ti me wi t h d i f f er e n t wa v e n u mb e r s o n ei t her s id e o f t he j u nc tio n.
Fi g ur es 3 .5 -3 .1 2 a r e p r o d uc ed . T h e y s ho w t he n o r mal is ed i n te n si t y ver s u s r. T h e gr ap h s
d isp la y li n es s ho wi n g t h e i nc id e n t a n g le s o f 0 , 1 5 , 3 0 , 4 5 , 6 0 , 7 5 , a nd 9 0 d e gr ee s. T he
gr ap h s s ho w e ve r y p o ss i b le co mb i na tio n o f ( α = ( k 1 / k 2) ) eq ua l to 0 .5 , 1 o r 2 , a nd ( β =
63
( Z 1/ Z 2) ) eq ual to 0 .5 , 1 o r 2 .
Chapter 4 The transmission of bending waves between two panels at a pinned joint.
4.1 Introduction
I n t hi s c hap t er , t he b e nd in g wa v e i n te n s it y tr a n s mi t ted a t t he p i n ned li ne j u nct io n o f t wo
in f i n ite hal f p la te s, wh e n a fo r ced b e nd i n g wa v e is i nc id e n t o n t he li ne j u nc tio n, i s
calc u la ted . T he no r ma l l y i ncid e nt ca se i s co n sid er ed fi r s t, fo llo wed b y t he o b l iq u e
in cid e nt ca se. T he n t he cas e o f a d i f f u se i nc id e n t vib r at io n fi eld i s co n si d er ed . Fi n al l y,
th e c as e wh e n t h e i n cid e nt vib r at io n fi eld i s e xc i ted b y a d i f f u se aco u st ic f ie ld i s st ud ied .
4.2 The transmitted and reflected wave equations for normal
incidence with a freely propagating incident wave.
T wo ha l f i n f i n ite fla t p l ate s l yi n g i n t h e y =0 p l a ne, ar e r i g id l y co n nec te d at a p i n ned
j o int alo n g t he z - a xi s ( s ee fi g ur e 4 . 1 ) . A fr ee l y p r o p ag at i n g tr a n s ver se b end i n g wa ve i n
p lat e o ne mo v i n g i n t h e p o si ti v e x d ir ec tio n i s i n cid e n t no r ma ll y o n t h e z ax i s. Fo ur
th i n g s ne ed to b e fo u nd . W ha t a r e t he r a tio s o f t he a mp l it ud e s o f t h e p r o p ag at i n g
r ef le cted wa v e ( r) , t he n ear fi eld r e fl ect ed wa v e ( r j) , t he p r o p a ga ti n g tr a n s mi tt ed wa v e
( t) a nd t he n ear f ield tr a n s mi tt e d wa v e ( t j) to t he a mp l it ud e o f t h e fr e el y p r o p ag at i n g
in cid e nt wa ve . T he se fo ur u n k no wn s wi l l no w b e fo u nd u si n g mu c h s ub s tit u tio n ,
d i f fer e n ti at io n a nd s i mu lta n eo us eq ua tio n s.
T wo ha l f i n f i n ite p la te s j o ined r i g id l y at a j u n cti o n ar e b e i n g co n s id er ed . T he y ar e
r i gid l y co n ne ct ed a t a p i n j o i n t. T h e p l ate s ma y r o tat e ab o u t t h e p i n j o i n t . Ho we v er
th e y ar e co n st r ai n ed b y th e p i n to h a ve z er o tr a n s ver se v elo ci t y a t t h e j o in t ( t he y
64
ca n no t mo v e up a nd d o wn a t t he j o i n t) . T h e t wo p lat es ar e i n li ne wi t h e ac h o t h er .
P late 1 i s i n t h e ha l f i n f in it e p l a ne y=0 , a nd x i s le s s t h a n o r eq u al to z e r o. P lat e 2 is i n
th e ha l f i n fi n ite p la n e y =0 a nd x i s gr eat er t h a n o r eq ual to zer o . T he t wo p lat e s ar e
y
x
Plate 1
Plate 2
z
F i gu r e 4 . 1 P l a t e 1 a n d P l a t e 2 .
j o ined at x=0 a nd y =0 . P lea se see t he d ia g r a m b elo w.
t
I t i s a s s u me d t h at t he o s cil la tio n s o f t he p la te va r iab l es ha ve a n a n g u lar fr e q ue nc y o f
je ω . T his fac to r wi ll b e o mi tted
ω . T h u s t h eir v ar ia tio n wi t h t i me t i s p r o p o r t io n al to
+1v is
fr o m t he eq ua tio n s. A p l an e b e nd i n g wa v e wi t h t r an s v er s e ve lo ci t y a mp l i tud e
in cid e nt no r mal l y o n t he j u nct io n b e t we e n t he t wo p lat e s ( z -a xi s) fr o m p l ate 1 ( x is le s s
th a n o r eq ual to zer o ) .
T he r a tio s o f t he a mp l it ud e s o f t he p r o p a ga ti n g r ef le cted wa v e, t he ne ar f ield r e f lec ted
wa v e, t he p r o p a ga ti n g tr an s mi t ted wa ve a nd t he ne ar fi eld tr a n s mi t ted wa ve s to t h e
a mp li t ud e o f t h e fo r c ed in cid e nt wa ve s, ar e r, r j, t, t j r e sp e ct i vel y. Also k 1 a nd k 2 ar e
th e fr e el y b e nd i n g p r o p a ga ti n g wa v e n u mb er s o f th e t wo p lat e s. T he to tal ve lo c it ie s v y 1
x
and v y 2 i n p lat e s 1 a nd 2 ar e g i ve n b y eq uat io n 6 .1 4 o f Cr e me r et a l. ( 2 0 0 5) as
-jk 1
xjk 1
xk 1
+
+
≤
v
re
x
x )(
,0
( e
)
y
er j
1
= + v 1
( 4 .1 )
−
−
jk
x
2
xk 2
and
=
+
≥
v
x )(
x
.0
( te
)
+
y
et j
2
v 1
65
( 4 .2 )
At t he j u nct io n o f t he p l ate s ( y =0 , x=0 ) , x is zer o i n eq ua tio n ( 4 .1 ) a nd ( 4 .2 ) a nd t h e
ve lo c it ie s o f t he t wo p la te s b eco me
≤
v
++ r
r
x
)0(
1(
)
0,
y
j
1
= + v 1
( 4 .3 )
and
+
≥
v
t
x
)0(
t (
)
.0
2
= + v 1
y
j
( 4 .4 )
B eca u se t he b o u nd a r y i s p i n ned t he ve lo c it ie s ( v y 1( 0 ) a nd v y 2( 0 ) ) ar e eq u al to zer o at
x=0 . T h u s
1
++ r
r
=+= t
t
.0
j
j
( 4 .5 )
Fr o m Cr e mer e t a l. ( 2 0 0 5) eq uat io n 3 .6 9
=
w
,
z
∂ v y ∂ x
( 4 .6 )
wh er e w z i s t he a n g ula r ve lo c it y o f t he p la te ab o ut t he z a xi s. B y ap p l yi n g e q uat io n
−
xjk 1
xjk 1
xk 1
( 4 .6 ) to eq uat io n s ( 4 .1 ) and ( 4 .2 ) we ha v e t h e fo llo wi n g eq u at io n s
=
−
+
+
≤
w
(
jk
re
)
x
0,
z
v + 1
ejk 1
1
erk j 1
( 4 .7 )
−
−
jk
x
2
xk 2
and
=
−
−
≥
(
)
0.
w
jk
te
x
z
v + 1
2
etk j 2
( 4 .8 )
At x=0 , eq uat io n s ( 4 .7 ) and ( 4 .8 ) b e co me
−
+
+
(
),
w
jk
jk
r
z
= + v 1
1
1
rk 1
j
( 4 .9 )
and
−
−
w
(
jk
t
).
z
= + v 1
2
tk 2
j
( 4 .1 0 )
B eca u se t he t wo p la te s a r e r i g id l y co n nec ted at x =0 t h e a n g u lar ve lo c it y gi v e n b y
eq u at io ns ( 4 .9 ) a nd ( 4 .1 0 ) mu s t b e eq ual . T her e f o r e
−
+
+
−=
−
jk
t
.
jk 1
rjk 1
rk 1
j
2
tk 2
j
( 4 .1 1)
T he a n g u lar mo me n t p er u n it le n g t h ab o u t t h e z ax i s i s g i ve n b y Cr e mer et a l . ( 2 0 0 5)
66
eq u at io n 3 .7 7
∂
z
−=
B
.
M ∂ t
∂ w z ∂ x
var ie s wi t h t i m e t a s e j ω t, eq ua tio n ( 4 .1 2 ) g i ve s t he fo llo wi n g e q ua tio n f o r t h e
( 4 .1 2)
Si n ce M z
an g u lar mo me n t
−=
M
.
z
B ω j
∂ w z ∂ x
( 4 .1 3)
.
−=
M
z
B ω j
∂ w z ∂ x
T he p l ate 1 mo me n t is g iv e n b y
−
xjk 1
xjk 1
xk 1
−=
−
−
+
≤
k
re
x
(
)
when
.0
2 ek 1
2 1
2 erk 1 j
B v + 1 ω j
( 4 .1 4)
−
xk 1
xjk 1
xjk 1
T hu s
+
−
≤
.0
x
= vM + 1 z
2 kB re 11 ω j
2 erkB 11 j ω j
2 ekB 11 ω j
when
( 4 .1 5)
T he p l ate 2 mo me n t is g iv e n b y
−
−
jk
x
2
xk 2
−=
−=
−
+
≤
(
) w
hen
.0
M
x
2 tek 2
z
2 etk 2 j
B ω j
∂ w z ∂ x
B v + 1 ω j
( 4 .1 6)
−
−
xk 2
jk
x
2
2
2
T hu s
−
≥
when
x
.0
= vM + 1 z
2 tekB 2 ω j
2 etkB 2 j ω j
( 4 .1 7)
At t he j u nct io n ( x=0 ) , t h e mo me n ts o f p l ate 1 a n d 2 , gi ve n b y eq ua tio n s ( 4 .1 5) a nd
j
j
( 4 .1 7) ar e eq ua l. H e nce
+
−
=
−
v + 1
v + 1
2 rkB 11 ω j
2 tkB 22 ω j
2 tkB 22 ω j
2 kB 11 ω j
2 rkB 11 ω j
,
67
( 4 .1 8)
−
−=
2 2 − rkBrkB 11 11
2 + tkBtkB 22
2 22
.2 kB 11
j
j
( 4 .1 9 )
−−= 1(
r
)
t and
−= t
.
r
j
j
( 4 .2 0)
No w u si n g eq ua tio n ( 4 .2 0 ) , r j a nd t j ar e r ep la ced i n eq ua tio n ( 4 .1 9) to gi ve
+
−
−=
2
2
.
2 kB 11
2 rkB 11
2 tkB 2 2
2 kB 11
( 4 .2 1 )
2 11kB
Di v id e eq u at io n ( 4 .2 1) b y .
−
−=
+ 21
r
2
t
.1
2 kB 22 2 kB 11
( 4 .2 2)
2 2
De fi n e
=ψ
.2
kB 2 kB 11
( 4 .2 3)
.
Ca n cel i n g o u t t h e 2 ’ s gi ve s
.1−=
r ψ − t
( 4 .2 4 )
T he ab o ve eq ua tio n wi ll b e us ed a s o n e o f t h e si mu l ta n eo u s eq ua tio n s.
Re ar r a n g i n g eq ua tio n ( 4 .1 1 ) g i ve s
+
+
+
=
jk
t
rjk 1
rk 1
2
tk 2
jk .1
j
j
( 4 .2 5 )
S ub s ti t ut i n g eq u at io n ( 4 .2 0 ) i nto t he ab o ve eq ua tio n ( 4 .2 5 ) gi ve s
−
−
+
−
=
jk
t
jk
rjk 1
k 1
rk 1
2
tk 2
.1
( 4 .2 6 )
.
Di v id i n g b y k 1 gi v e s
−
+
−
j
r
j
+= j
(
)1
(
t )
.1
k 2 k 1
k 2 k 1
( 4 .2 7)
κ i s d e f i ned to b e k 2 /k 1
68
T hu s eq uat io n ( 4 .2 7) b e co me s
+− 1(
rj )
+−+ 1(
j
κ ) t
+= 1
j
.
( 4 .2 8 )
j+−1
Di v id i n g ( 4 .2 8 ) b y and mu l t ip l yi n g t h e d e no mi n ato r a nd t he n u mer a to r b y t he
j−−1
j
co mp le x co nj u g ate gi ve s
=
r
+κ t
.
+ 1 +− 1
j
−− 1 −− 1
j j
( 4 .2 9)
and
−=
r
+κ t
.j
( 4 .3 0 )
No w t her e ar e fo ur u n k n o wn s ( t, t j, r , r j) a nd fo u r eq uat io n s to so l ve t he m. T he y wi ll
b e so l ved u s i n g fo ur si m ul ta n eo us eq ua tio n s.
Eq u at io n ( 4 .3 0) mi n u s ( 4 .2 4) i s
t ψκ + t
.1+−= j
( 4 .3 1 )
.
So l v i n g fo r t, t he t r a n s m itt ed wa v e i s
=
,
t
− 1 j ψκ+
( 4 .3 2)
and t he tr a n s mi t ted n ear f ield i s
=
.
t j
+− 1 j ψκ+
( 4 .3 3)
Re ar r a n g i n g eq ua tio n ( 4 .3 0 ) g i ve s u s t he r e fle ct ed wa v e
r
κ−−= j .t
( 4 .3 4 )
S ub s ti t ut i n g t he va l ue o f t t h at h as j u st b ee n fo u nd i n eq ua tio n ( 4 .3 2) i nt o eq uat io n
−
( 4 .3 4) , gi v es
=
−
.
r
+ ψκ ( ) j + ψκ
− κ 1( ) j + ψκ
( 4 .3 5)
.
69
and
−=
.
r
+ ψκ j ψκ +
( 4 .3 6)
T hu s t he r e fle ct ed nea r f ield i s
=
.
rj
+− ψ 1( ) j + ψκ
( 4 .3 7)
4.3 Derivation of wave numbers for the obliquely incident
forced wave case.
I n t hi s se ct io n, t h e wa v e n u mb er eq u at io ns ( ( 6 .1 4 2 b ) , ( 6 .1 42 c) , ( 6 .1 4 2 d ) ) fr o m Cr e me r
et a l . ( 2 0 0 5) a r e d er i ved . E q uat io n ( 6 .1 4 2 a) i s al so p r e se n ted .
A s i n gl e fr eq u e nc y, f r ee l y p r o p a ga ti n g b e nd i n g wa v e i n a p la te sa ti s f ie s t he t wo
d i me n sio n al ho mo g e neo u s b e nd i n g wa v e eq uat io n. Fr o m eq ua tio n ( 3 .1 8 4 a) o f Cr e me r e t
a l. ( 2 0 0 5) , t hi s i s
4
∇
−
=
v
v
,0
y
y
2 ω m B
( 4 .3 8)
wh er e t he eq ua tio n h as b ee n d i f f er e n ti ated wi t h r esp ect to t he ti me t . v y is t he
tr a n s ver se v elo c it y o f t h e p la te i n t h e d i r ec tio n o f t he y a x is i n f i g ur e 4 . 1 . ω i s t he
an g u lar f r eq ue n c y, m i s th e ma s s p e r u ni t ar ea a nd B i s t h e b e nd i n g st i f f ne s s o f t he
p lat e.
As s u me t h at t her e i s a p la ne b e nd i n g wa ve i n t h e p la te. Ro ta te t he x a nd t he z a x e s so
th at t he x -a x is p o i n ts i n th e d i r ec tio n o f p r o p a ga tio n o f t he p la te a nd so t ha t t h e
p r o p er ti e s o f t h e p l a ne b end i n g wa ve d o no t v ar y i n t h e z -a xi s d ir e ct io n. T he n eq ua tio n
4
( 4 .3 8) b eco me s
−
=
v
v
.0
y
y
4
∂ ∂ x
2 ω m B
( 4 .3 9)
70
Let
−
jkx
=
,
xv )( y
ev y
( 4 .4 0 )
wh er e k i s t he wa v e n u m b er o f t h e fr e el y p r o p a g ati n g p la n e b e nd i n g wa v e i n t he p lat e.
2 ω
m
T he n p ut ti n g eq ua tio n ( 4 .4 0) i nto eq ua tio n ( 4 .3 9 ) g i ve s
4
=
k
.
B
( 4 .4 1)
T hu s eq uat io n ( 4 .3 8) ca n b e wr it te n as
=
4 vk
.0
4 −∇ v y
y
( 4 .4 2 )
2
2
Si n ce, i n Car te si a n co -o r d i nat es
2 ≡∇
+
2
,2
∂ ∂ x
∂ ∂ z
( 4 .4 3)
2
2
2
eq u at io n ( 4 .4 2) ca n b e wr i tte n a s
+
−
=
v
4 vk
,0
y
y
2
2
∂ ∂ x
∂ ∂ z
( 4 .4 4)
4
4
4
∂
∂
∂
o r
+
+
−
=
2
.0
4 vk
y
v y 4
2
v y 4
∂ x
v y 2 ∂∂ x z
∂ z
( 4 .4 5)
−
j
xk.
Eq u at io n ( 4 .4 0) b eco me
=
)x(
,
v
y
ev y
( 4 .4 6 )
wh er e,
k
),
( x kk= ,
z
( 4 .4 7 )
and
( zx=
,
).
x
( 4 .4 8 )
−
( + zkxkj z
x
Eq u at io n ( 4 .4 6) ca n b e wr i tte n a s
=
).
),( zxv y
ev y
( 4 .4 9 )
4
P ut ti n g eq uat io n ( 4 .4 9) i nto eq ua tio n ( 4 .4 5) gi v e s
+
+
−
=
k
2
k
k
,0
4 x
2 kk x
2 z
4 z
( 4 .5 0 )
71
o r
2
2
+
=
z
.4
k
k
( k
)
2 x
( 4 .5 1)
T her e fo r e
+
±=
k
k
k
,2
2 x
2 z
( 4 .5 2 )
T hu s
2
±±=
−
k
k
k
x
.2 z
( 4 .5 3)
T her e a r e fo ur p o s sib le va l ue s o f k x.
2
±=
−
k
k
k
x
,2 z
( 4 .5 4)
and
2
±=
+
k
kj
k
x
.2 z
( 4 .5 5)
Fo r a p la n e wa v e wh ic h is o b liq u el y i nc id e n t o n th e j u n ct io n o f t he t wo p lat es at a n
an g le o f θ i r el at i ve to t h e p o s it i ve d ir ec tio n o f t he p o s it i ve x -a xi s f r o m p lat e 1 , wi t h
fo r ced wa ve n u mb er k i,
=
k
k
.
zi
i
θ sin i
( 4 .5 6 )
Al so
=
cos
cos
,
k
k
xi
i
χθ = a
i
k 1
θ i
( 4 .5 7 )
wh er e
.
a =χ
ki 1k
( 4 .5 8)
I n o r d er to ma i nta i n co n ti n ui t y o f a n g ul ar ve lo ci t y a nd a n g u lar mo me n t u m at t he
j un ct io n b e t we e n t he t wo p lat e s, a ll r e fl ect ed a n d tr a n s mi tt ed wa v e s mu s t ha ve t he
−
jk
zi
sa me var iab i li t y i n t h e z -a x i s d ir ec tio n as t he i n cid e nc e wa v e, n a me l y
−
jk
i
θ sin i
=
=
.
( ) zE
e
e
( 4 .5 9 )
T hu s
=
=
=
sin
,
k
k
k
k
z
2
z
z
i
θ i
1
( 4 .6 0 )
72
wh er e 2 , 1 a nd i d e no te th e t r a n s mi tt ed , r e f le cte d a nd i nc id e n ce wa ve s.
Si n ce t h e r e f le cted wa v e s p r o p a g ate o r d e ca y i n th e ne g at i ve x d ir ect io n, t he
2
2
p r o p ag at i n g r e f le cted wav e ha s a k x va l ue g i ve n b y
−
=
+=
−
=
−
k
k
k
k
sin
k
1
sin
.
x
x 1
2 1
2 i
θ i
1
2 χ a
θ i
( 4 .6 1 )
No te t ha t t h i s i s o n l y a p r o p ag at i n g wa v e i f
>
sin
.
k 1
ik
θ i
( 4 .6 2 )
I f
<
sin
,
k 1
ik
θ i
( 4 .6 3 )
th e r e f le cted wa v e b e co me s a no n -p r o p a g at i n g n ear fi eld wa v e.
I f t he i nc id e nc e wa v e is a fr ee l y p r o p a g at i n g wa ve
=
=
k
k
.
i
k 1
r
( 4 .6 4 )
An d θ i wi l l b e d e n o ted b y θ 1.
Eq u at io n ( 4 .6 0) g i ve s
=
=
=
,
k
k
k
2
1
θk sin 1 1
z
z
z
( 4 .6 5 )
and eq ua tio n ( 4 .6 1 ) gi v e s
2
−
=
+=
−
+=
k
k
k
k
1
sin
cos
.
x
x 1
1
θ 1
1
θ 1
( 4 .6 6)
T hu s
−
=
=
.
jk
jk
jk
1
θ cos 1
x
1 x
( 4 .6 7 )
De no t i n g t h e a n g le o f r e f lec tio n r el at i ve to t h e d ir ec tio n o f t he p o s it i ve x- a xi s b y θ r
gi v e s
=
−=
cos
cos
,
θ 1
θ r
k x k 1
( 4 .6 8)
1
and
=
=
sin
sin
.
θ r
θ 1
k z k 1
( 4 .6 9)
He nce
−=r .1θπθ
73
( 4 .7 0 )
I n c i d e n t Wa v e
No t ice t ha t t h e a n g le is in r ad ia n s fo r t he c a se o f a fr e el y p r o p a gat i n g i n cid e n t wa v e .
x
θ i = θ 1 = π - θ r
θ i=θ 1
θ i=θ 1
R e fl e c t e d Wa v e
z
F i gu r e 4 . 2 Th e a n gl e o f r e fl e c t i o n e q u a l s t h e a n g l e o f i n c i d e n c e fo r a f r e e l y p r o p a g a t i n g w a v e . Th e p o s i t i v e y- a xi s p o i n t s ve r t i c a l l y o u t o f t h e p a ge .
θ r=π - θ 1
Fi g ur e 4 .2 s ho ws t ha t t h e r e fl ec ted a n g le d e fi n e d i n t h e u s ual wa y i s eq ua l to t he
in cid e nt a n gle i f t he i nc id e nt wa v e i s a fr e el y p r o p ag at i n g o ne.
T he r e f lec ted d eca yi n g ne ar fi eld so u nd f ie ld ha s
=
+
k
kj
k
x
2 1
,2 zi
( 4 .7 1 )
−=
k
jk
1
N
x
and
.
2
=
1
sin
,
k 1
θ i
2 χ+ a
( 4 .7 2)
a =χ
ki 1k
wh er e . I f t he i nc id e nt wa v e i s fr e el y p r o p a gat i n g
2
+
1
sin
,
1
= k 1
θ 1
kN
( 4 .7 3)
74
T hi s i s eq u at io n ( 6 .1 4 2 c ) o f C r e mer et a l. ( 2 0 0 5 ) .
=
=
−
k
k
k
k
x
x
2
2 2
2 zt
T he p r o p a ga ti n g tr a ns mi tted wa v e ha s
2
=
sin 2
,
k 1
2 χκ − a
θ i
=κ
( 4 .7 4)
k 2 k 1
. T hi s i s eq u atio n ( 6 .1 4 2 b ) o f Cr e me r e t a l. ( 2 0 05 ) . I f t h e i nc id e n t wa ve wh er e
is f r ee l y p r o p a g at i n g,
2
=
=
2 κ
−
,1
and
k
sin
.
χ a
= θθ 1
i
k x
2
1
θ 1
( 4 .7 5)
Si mi l ar l y to t he r e f le cte d wa ve , t h is tr a n s mi t ted wa ve i s o nl y a p r o p a gat in g wa v e i f
>
k
sin
.
2
ik
θ i
( 4 .7 6 )
I f
<
k
sin
,
2
ik
θ i
( 4 .7 7 )
to ta l i n ter n al r e fl ect io n o cc ur s a nd t he tr a n s mi tt ed wa v e b eco me s a no n - p r o p ag at i n g
ne ar fi eld wa v e.
I f t he i nc id e nt wa v e i s a fr eel y p r o p a ga ti n g wa v e a nd i f t h e tr a ns mi tted fr e el y
p r o p ag at i n g wa v e tr a ve l s a t a n a n gl e o f θ 2 , r e la t iv e to t he d ir ect io n o f t h e p o s it i ve x -
ax i s,
=
=
=
k
k
sin
k
k
sin
.
z
2
2
θ 2
z
1
1
θ 1
( 4 .7 8 )
T hi s i s S ne ll s la w a nd e q ua tio n ( 6 .1 4 2 a) o f Cr e me r e t a l. ( 2 0 0 5) . T h e tr an s mi t ted
d eca yi n g near f ie ld wa v e ha s
−=
+
k
kj
k
2 2
x
,2 2z
( 4 .7 9)
=
k
jk
N
2
x
and
2
=
k
sin 2
.
1
2 χκ + a
θ i
( 4 .8 0)
75
I f t he i nc id e nt wa v e i s f r eel y p r o p a ga ti n g,
2
2 κ +
sin
,
kN
2
= k 1
θ 1
( 4 .8 1)
T hi s i s eq u at io n ( 6 .1 4 2 d ) o f C r e mer et a l. ( 2 0 0 5 ) .
4.4 The angular velocity and the torsional moment for the
obliquely incident wave case.
−
jk
x
jk
x
k
x
1
1
1
x
x
N
T he tr a ns v er se b e nd i n g wa v e v elo c it ie s i n p l at e s 1 a nd 2 ar e
=
+
+
≤
,0
v
re
x
)
+
y
er j
1
( )( ezEv 1
( 4 .8 2 )
−
−
jk
x
k
x
x
N
2
2
and
=
+
v
te
( te
),
y
2
zEv )( + 1
( 4 .8 3 )
wh er e v 1 + i s t he r ms v el o cit y o f t h e fo r c ed i n cid en t wa ve. At x=0 , eq ua ti o n s ( 4 .8 2) a nd
( 4 .8 3) ar e zer o b eca u se o f t he p i n ni n g.
=
1
,0
++ r
jr
( 4 .8 4 )
and
t
.0=+ jt
( 4 .8 5 )
T he a n g u lar ve lo c it ie s a b o u t t he z - a xi s i n p l at es 1 a nd 2 ar e
=
,
w z
∂ v y ∂ x
( 4 .8 6)
as g i ve n i n eq u at io n ( 4 . 6) a nd i n eq ua tio n ( 3 .6 9 ) o f C r e mer et a l. ( 2 0 0 5 ) .
−
jk
x
jk
x
k
x
x
x
N
1
1
1
T hu s
=
+
+
≤
jk
e
jk
re
x
,0
( −
)
w z
xi
xr
erk jNr
1
zEv )( + 1
( 4 .8 7 )
−
−
jk
x
k
x
x
N
2
2
and
=
−
≥
jk
te
x
.0
( −
)
w z
x
2
zEv )( + 1
2
etk N j 2
( 4 .8 8 )
76
At x=0 , eq uat io n s ( 4 .8 7) an d ( 4 .8 8) ar e eq u al to eac h o t her b eca u se o f co nt i n ui t y.
T hu s
−
+
+
−=
−
jk
jk
jk
t
.
x 1
r 1 x
rk jN 1
x
2
tk 2 N
j
( 4 .8 9 )
T hi s i s eq u at io n ( 4 .1 1) , wi t h t he fir s t k 1 r ep lac e d wi t h k x 1 , t he s eco nd k 1 r ep l aced wi t h
k x 1, t he t hi r d k 1 r ep laced wi t h k N 1, t he f ir st k 2 r e p laced wi t h k x 2 a nd t he s eco nd k 2
r ep la ced wi t h k N 2.
T he a n g u lar ve lo c it y ab o ut t he x -a x i s i s
−=
w
.
x
∂ v y ∂ z
( 4 .9 0)
Cr e me r e t a l. ( 2 0 0 5) p o i nt s o u t i n sec tio n 6 .7 .2 . 2 t hat t h is gi ve s
vjk=w z
x
y
( 4 .9 1 )
Eq u at io n ( 4 .9 1) me a n s t ha t t h e a n g u lar v elo cit y ab o u t t h e x - a xi s is co mp let el y
d eter mi n ed b y t he val u e s o f t he o t her v ar iab le s.
Si n ce a ll t he k z ’ s ar e t he sa me o n b o t h sid e s o f t he z - a xi s j u nct io n a nd t h e v elo ci tie s v y
o n eac h s id e o f t he j u nc t io n ar e eq ua l a t t h e j u n c tio n, t he w x ’ s ar e a l so e q ua l o n b o t h
sid es o f t h e j u n ct io n ( wher e x =0 a nd y=0 ) .
2
∂
y
Eq u at io n ( 4 .1 3) o f t he p r ev io u s sec tio n ca n b e wr it te n a s
−=
M
z
v .2
B ω j
∂ x
( 4 .9 2)
Fo r a n o b liq u el y i nc id e n t wa v e t h i s ha s to be mo d i fied to ( se e Cr e me r e t a l. ( 2 0 0 5)
2
∂
eq u at io n ( 6 .1 4 4 b ) ) .
−=
+
µ
M
xz
y 2
v y 2
∂ v ∂ x
∂ z
B ω j
,
( 4 .9 3)
wh er e µi s P o i sso n ’ s r at io . T he t er m co n ta i ni n g it a p p ear s b ec a us e t h e P o i s s o n
exp a ns io n a nd co nt r ac ti o n i n t h e x - a xi s d ir ec ti o n d u e to wa v e p r o p a ga t io n i n t he z -a x i s
d ir ec tio n g e ner a te s a mo me n t ab o u t t he z -a x i s.
2
∂
Eq u at io n ( 4 .9 3) b eco me s
µ
−=
−
M
xz
2 vk z
y
v y 2
∂ x
.
B ω j
77
( 4 .9 4 )
Fo r t h e p i n n ed j o i nt ca s e b ei n g co n sid er ed her e, wh e n x=0 , v y=0 . T h u s e q ua tio n ( 4 .9 4)
2
∂
r ed u ce s to
−=
−=
M
)0(
( ) 0
( ).0
xz
v y 2
∂ x
B ω j
∂ w z ∂ x
B ω j
( 4 .9 5)
2
1
B eca u se o f co nt i n ui t y o f M x z a t x =0 ,
=
( ) 0
( ).0
B 2
B 1
∂ w z ∂ x
∂ w z ∂ x
( 4 .9 6)
−
jk
x
jk
x
k
x
1
xi
x
1
N
1
Di f f er e nt ia ti n g eq ua tio n s ( 4 .8 7) a nd ( 4 .8 8) wi t h r esp ect to x gi ve s
=
−
+
≤
k
x
,0
( −
)
zEvB )( +
B 1
11
2 ek xi
2 re 1 x
2 erk 1 jN
∂ w z ∂ x
( 4 .9 7)
−
−
jk
t
k
x
2
x
N
2
2
and
=
+
≥
k
te
x
.0
( −
)
zEvB )( +
B 2
12
2 2 x
2 etk 2 N j
∂ w z ∂ x
( 4 .9 8)
Co mb i ni n g eq uat io n s ( 4 . 9 7) to ( 4 .9 8) g i ve s
−
+
=
+
k
( −
)
( −
).
B 1
2 xi
2 rk x 1
2 rk jN 1
B 2
2 tk x 2
tk 2 N
j
( 4 .9 9 )
2
) µ
) µ
) µ
B
B
B
Cr e me r e t a l. ( 2 0 0 5) eq u atio n ( 6 .1 4 4 a) g i ve s t he to r s io na l mo me n t p e r u n it le n gt h a s
=
−=
−=
M
k
k
.
xx
z
ω z z
( − 1 ω
( − 1 ω
( − 1 ω j
∂ v ∂∂ zx
∂ v y ∂ x
( 4 .1 0 0)
T hi s s ho ws t h at t he to r si o na l mo me n t p er u ni t le n gt h i s co mp le te l y d e ter mi n ed b y t he
va l ue s o f t he o t her v ar i a b le s.
Alt h o u g h no t u sed her e b eca u se t he j o i n t i s p i n n ed , i t i s wo r t h wh i le no ti n g t hat
eq u at io ns , ( 3 .1 48 e) a nd ( 6 .1 4 4 c) o f Cr e mer et a l . ( 2 0 0 5) gi v e t h e s h ear f o r ce p er u n it
zz
−=
−
Q
x
∂ M ∂ z
le n gt h ac ti n g o n a p l a ne no r ma l to t he x - a xi s as
∂
−
=
2 wk z
z
∂ M xz ∂ x 3 v y 3
∂ x
B ω j
78
( 4 .1 0 1)
B eca u se o f t he ap p ear a n ce o f t he t hir d p ar t ia l d e r i vat i ve o f v y wi t h r esp e ct to x , Q x is
ind ep e nd e n t o f t he o t her va r iab le s.
Fr o m eq u at io n ( 6 .1 4 5 ) o f Cr e mer et a l. ( 2 0 0 5) , t he e xt er na l s up p o r t i n g o r r eac tio n
3
3
∂
∂
+
=
+
−
) µ
= QF
( 2
x
v y 3
2
∂ M xx ∂ z
∂ x
v y ∂∂ zx
B ω j
fo r ce p er u ni t l e n gt h at a b o u nd ar y is
3
∂
=
−
−
( 2
) 2 µ wk z z
v y 3
∂ x
B ω j
.
( 4 .1 0 2)
No te t ha t Cr e me r e t a l. ( 2 0 0 5) h a ve t he wr o n g si g n i n fr o n t o f t h e p ar ti al d er i va ti v e o f
th e to r s io na l mo me n t M x x a nd d i f fer e n ti at e i t wi t h r esp ect to x, r a t her t ha n z a s i n t heir
ear l ier ed i tio n s.
4.5 Derivation of the transmitted and reflected waves for
obliquely incident freely propagating waves.
I f t he i nc id e nt wa v e i s f r eel y p r o p a ga ti n g, k x i=k x 1, a nd θ i =θ 1. E q ua tio n s ( 4 .8 9) a nd
( 4 .9 9) b eco me
−
−=
−
jk
( 1
) +− r
jk
t
,
x 1
rk 1 jN
x
2
tk 2 N
j
( 4 .1 0 3 )
and
=
+
( 1
) ++ r
]
[ −
].
[ − kB 1
2 x 1
2 rk jN 1
B 2
2 tk x 2
2 tk N 2
j
( 4 .1 0 4 )
Eq u at io ns ( 4 .8 4) , ( 4 .8 5 ) , ( 4 .1 0 3) a nd ( 4 .1 0 4) a g r ee wi t h eq ua tio n ( 6 .1 4 6 ) o f C r e mer et
a l. ( 2 0 0 5) .
Us i n g eq u at io ns ( 4 .8 4) , ( 4 .8 5) i n eq uat io n s ( 4 .1 0 3) a nd ( 4 .1 0 4) g i ve s
−
+
−
=
+
(
(
jk
k
) r
jk
k
) t
jk
k
x 1
N
1
N
2
x
2
x 1
,1
N
( 4 .1 0 5 )
and
+
−
+
−=
+
k
k
k
) t
).
( kB 1
2 x 1
2 N
1
( ) kBr 2
2 x 2
2 N
2
( kB 1
2 x 1
2 N
1
79
( 4 .1 0 6)
2
2
Fr o m eq u at io n s ( 4 .6 6) a nd ( 4 .7 3 ) .
+
=
=
k
k
++ 1
sin
( cos
)
1
2 k 1
θ 1
θ 1
2 k .2 1
2 1 x
2 N
( 4 .1 0 7 )
2
2
Fr o m eq u at io n s ( 4 .7 5) a nd ( 4 .8 1 )
+
=
−
+
=
k
k
sin
sin
2 κ 2
.
( 2 κ
)
2
2 k 1
2 + κθ 1
θ 1
2 k 1
2 2 x
2 N
( 4 .1 0 8 )
I n ser ti n g eq ua tio n s ( 4 .1 0 7) a nd ( 4 .1 0 8) i nto eq u atio n ( 4 .1 0 6) gi v e s
r ψ − t
,1−=
( 4 .1 0 9 )
wh er e
=
ψ
.2
B 2 = κ 2 B 1
2 kB 22 kB 11
( 4 .1 1 0)
No te t ha t eq u at io n ( 4 .1 0 9) i s t h e s a me a s eq ua ti o n ( 4 .2 4 ) .
Us i n g eq u at io n ( 4 .1 0 9) t o r ep la ce r i n eq ua tio n ( 4 .1 0 5) g i ve s
=
t
2 jk ) −
).
( kj
+ ψ k
1 x ( k
+ ψ k
x
N
N
2
x 1
1
2
( 4 .1 1 1)
x
2
N
2
N
1
Al so
=
r
) ) .
( ψ j k ( kj
− k 1 x ψ + k
) ( + k ( ) − k
+ ψ k ψ + k
2
x 1
N
2
N
1
( 4 .1 1 2)
S ub s ti t ut i n g eq u at io n ( 4 .1 0 9) i nto eq ua tio n ( 4 .8 4 ) g i ve s
rj ψ−= .t
( 4 .1 1 3 )
Co mb i ni n g eq uat io n s ( 4 . 1 1 1) a nd ( 4 .1 1 3) g i ve s
=
r
j
2 )
).
− ψ + k
ψ kj x 1 ( − k
( kj
ψ + k
N
x
N
x 1
2
2
1
( 4 .1 1 4)
Co mb i ni n g eq uat io n s ( 4 . 8 5) a nd ( 4 .1 1 1) g i ve s
=
t
j
+
+
).
− ψ k
jk 2 1 x ( ) − k
( kj
ψ k
x 1
x
2
N
1
N
2
2
( 4 .1 1 5)
=
t
2
2
2
+
+
−
+
2 − κθ
2 κ
j
j cos − ψθψθ cos
θ 1 1
sin
sin
sin
(
1
1
θ 1
) 1 T hi s eq ua tio n i s t h e sa m e a s eq ua tio n ( 6 .1 4 7 a) o f Cr e mer et a l. ( 2 0 0 5 ) a p ar t fr o m a
( 4 .1 1 6)
80
d i f fer e n ce i n si g n wh i c h ar i se s fr o m t he fac t t h a t i n p la te 2 , t he p o s it i ve y -a xi s
d ir ec tio n o f t h is t he s is i s t r a n s fo r med to t he ne g ati v e x - a xi s d i r ec tio n i n Cr e me r e t a l.
( 2 0 0 5 ) b eca u se t h is t he s is co n sid er s a str ai g h t p i n ned j u nc ti o n wh i le Cr e me r e t a l.
2
2
2
−
−
+
+
2 κ
+ ψθ
2 + κθ
sin
1
sin
sin
j
1
( 2 0 0 5 ) co ns id er a r i g ht an g le p i n ned j u nc tio n.
=
.
r
j 2
2
2
+
+
−
θψ cos 1 2 − κ
1 2 − κθ
ψθψθ cos
sin
sin
1
)
(
j
θ 1 θ 1
1
1
1
+ sin Ag ai n t hi s i s t h e sa me a s eq u at io n ( 6 .1 4 7 b ) o f C r e mer e t a l. ( 2 0 0 5 ) .
−
( 4 .1 1 7)
=
.
rj
2
2
2
−
+
+
θψ 2 cos 1 +
j −
2 κ
2 − κθ
j
(
sin
ψθψθ cos
)
sin
sin
1
1
1
θ 1
1
−
2
( 4 .1 1 8)
=
.
t j
2
2
2
−
j −
+
+
2 κ
2 − κθ
j
(
sin
cos ψθψθ cos
)
θ 1 + 1
sin
sin
1
1
1
θ 1
( 4 .1 1 9)
4.6 Obliquely incident forced waves
S ub s ti t ut i n g eq u at io ns ( 4 .6 6) , ( 4 .7 3) , ( 4 .7 5 ) a nd ( 4 .8 1) i n to eq u atio n s ( 4 .1 1 1) , ( 4 .1 1 2) ,
and ( 4 .1 1 4) , g i ve s t h e fo llo wi n g eq u at io n s. P ut ti n g θ 1 eq ua l to zer o r ed u ces t he se
eq u at io ns to t he eq uat io n s ( 4 .3 2) , ( 4 .3 3) , ( 4 .3 6 ) and ( 4 .3 7) .
T he o b l iq ue l y i n cid e n t wa v e i s a s s u med to b e a fo r ced wa ve wi t h a wa v e n u mb er o f k i.
Us i n g eq u at io ns ( 4 .8 4) a nd ( 4 .8 5 ) i n eq ua tio n s ( 4 .8 9) g i ve s
−
+
−
=
+
(
(
jk
k
) r
jk
k
) t
jk
k
x 1
N
1
x
2
N
2
xi
,1
N
( 4 .1 2 0 )
and
+
−
+
−=
+
k
k
k
( ) kBr
) t
).
( kB 1
2 x 1
2 N
1
2
2 x 2
2 N
2
( kB 1
2 xi
2 N
1
( 4 .1 2 1 )
81
Fr o m eq u at io n s ( 4 .6 1) a nd ( 4 .7 2 )
2
2
+
=
−
+
+
=
k
k
k
sin
k
sin
1
2 k 1
2 k 1
2 k .2 1
2 1 x
2 N
2 i
θ i
2 i
θ i
( 4 .1 2 2 )
Fr o m eq u at io n s ( 4 .7 4) a nd ( 4 .8 0 )
+
=
−
+
+
=
k
k
k
k
k
k
2
k
2 κ= 2
,
2
2 2
2 2
2 2
2 k 1
2 2 x
2 N
2 2 z
2 2 z
=κ
( 4 .1 2 3 )
k 2 k 1
wh er e .
2
=
+
+
cos
sin
k
k
k
2 1
2 i
2 θ i
2 i
θ i
Fr o m eq u at io n s ( 4 .5 7) a nd ( 4 .7 2 )
2 xi =
2 1 N +
k
+ k ( 1
k ).
2 1
2 χ a
( 4 .1 2 4)
( +− 1
)
Us i n g eq u at io ns ( 4 .1 2 2) , ( 4 .1 2 3) a nd ( 4 .1 2 4) i n eq u at io n ( 4 .1 2 1) g i ve s
2 χ a
=
.
r
ψ − t
2
( 4 .1 2 5)
,1=aχ
an d eq uat io n ( 4 .1 2 5) a gr e e s wi t h W he n t he i nc id e n t wa v e is f r ee l y p r o p a g at i n g
eq u at io n ( 4 .1 0 9) .
(
jk
2/
)
1
1
S ub s ti t ut i n g eq u at io n ( 4 .1 2 5) i nto eq ua tio n ( 4 .1 2 0 ) g i ve s
=
t
.
1 x +
)( 1 −
+ xi ( ψ
jk )
− (
2 χ a )
k N jk
) ( + − k
k N jk
+ k
x 1
1
N
x
2
2
N
( 4 .1 2 6)
( ψ
(
2/
)
N
1
N
S ub s ti t ut i n g eq u at io n ( 4 .1 2 6) i nto eq ua tio n ( 4 .1 2 5 ) g i ve s
=
r
.
2 x +
jk )
2 χ a )
+ jk k xi ( ψ jk
) − − k
− k ( jk
)( + 1 2 − k
x 1
x
2
N
1
N
2
( 4 .1 2 7)
(
jk
2/
)
1
1
Fr o m eq u at io n s ( 4 .8 5) a nd ( 4 .1 2 6 )
−=
t
.
j
1 x +
)( 1 −
+ xi ( ψ
jk )
− (
2 χ a )
k N jk
) ( + − k
k N jk
+ k
x 1
1
N
x
2
2
N
( 4 .1 2 8)
−
+
−
) 1
x
Fr o m eq u at io n s ( 4 .8 4) a nd ( 4 .1 2 7 )
=
.
r
j
k N −
( ψ j k ( ψ
( )
jk ( +
+ xi jk
) k x 1 − k
− 2 jk
)( 2 χ 2 a ) k
N
x
N
x 1
1
2
2
( 4 .1 2 9)
S ub s ti t ut i n g eq u at io ns ( 4 .5 6) , ( 4 .6 1) , ( 4 .7 2 ) , ( 4 . 7 4) , a nd ( 4 .8 0) i nto eq u atio n s ( 4 .1 2 6) ,
82
( 4 .1 2 7) , ( 4 .1 2 8) , a nd ( 4 . 1 2 9) g i ve s
2
+
+
1
sin
θχ cos j i
a
2 χ a
θ i
)
(
2
2
+
−
−
+
+
1
sin
1
sin
j
) 2/1
2 χ a
θ i
2 χ a
2 χθ a i
)(
(
=
t
,
2
2
ψ
−
−
+
1
sin
1
sin
j
2 χ a
θ i
2 χ a
θ i
)
2
2
2
2
+
+
−
sin
sin
j
2 − χκ a
2 χκθ a
i
θ i
)
( (
( 4 .1 3 0)
2
+
+
cos
1
sin
j
2 χ a
θ i
)
2
2
2
2
and
−
−
+
+
sin
sin
j
) 2/1
2 χκ − a
2 χκθ a
i
2 χθ a i
( (
θχψ i a
=
r
,
2
2
−
−
+
ψ
1
sin
1
sin
j
2 χ a
θ i
2 χ a
θ i
)( )
2
2
2
2
−
+
+
sin
sin
j
2 − χκ a
2 χκθ a
i
θ i
)
( (
( 4 .1 3 1)
2
+
+
1
sin
θχ cos j i
a
2 χ a
θ i
and
)
(
2
2
−
−
+
+
+
1
sin
1
sin
j
) 2/1
2 χ a
θ i
2 χ a
2 χθ a i
)(
(
−=
t
,
j
2
2
−
−
+
ψ
1
sin
1
sin
j
2 χ a
θ i
2 χ a
θ i
( 4 .1 3 2)
)
2
2
2
2
+
−
+
sin
sin
j
2 − χκ a
2 χκθ a
i
θ i
)
( (
2
+
−
−
cos
1
sin
θχψ j a i
2 χ a
θ i
)
(
2
2
2
2
and
+
−
+
−
j
sin
sin
) 2/1
2 χκ − a
2 χκθ a
i
2 χθ a i
(
=
r
,
j
2
2
ψ
−
−
+
sin
1
sin
j
1
2 χ a
θ i
2 χ a
θ i
)( )
2
2
2
2
+
+
−
sin
sin
j
2 χκ − a
2 χκθ a
i
θ i
)
( (
( 4 .1 3 3)
2
2
2
2
Let
=
=
2 = κθ
s
sin
sin
sin
.
2 χ a
θ i
1
θ 2
( 4 .1 3 4 )
2
2
2
2
−
+
+
−
−
+
+
+
j
s
s
s
s
j
1
1
T he n eq ua tio n s ( 4 .1 3 0) , ( 4 .1 3 1) , ( 4 .1 3 2) , a nd ( 4 . 1 3 3) ca n b e wr it te n a s
) 2/1
2 χ a
2 χ a
)(
)
(
(
=
t
,
1 ∆
83
( 4 .1 3 5)
2
2
2
2
2 κ
−
+
+
−
−
+
+
+
1
s
s
s
s
j
) 2/1
2 χψ j a
2 χ a
)
)(
(
(
=
,
r
2 κ ∆
2
2
2
2
−
+
+
−
−
+
+
+
1
1
s
s
s
s
j
j
( 4 .1 3 6)
) 2/1
2 χ a
2 χ a
)(
)
(
(
−=
,
t
j
1 ∆
( 4 .1 37 )
2
2
2
2
2 κ
2 κ
+
−
−
+
+
−
−
+
−
j
s
s
s
s
1
) 2/1
2 χψ j a
2 χ a
)
)(
(
(
and
=
r
,
j
∆
( 4 .1 3 8)
wh er e
2
2
2
2
ψ
2 κ
2 κ
+
=∆
−
−
+
−
−
+
j
j
s
s
s
s
1
1
( 4 .1 3 9)
)
) .
(
(
Eq u at io ns ( 4 .1 2 6) , ( 4 .1 3 0) a nd ( 4 .1 3 5) a gr ee wi t h e q uat io n ( 9 ) o f V il lo t and G u i go u -
Car ter ( 2 0 0 0 ) ap ar t fr o m d i f fer i n g i n s i g n. T h i s d i f fer e n ce i n si g n i s d ue to t h e fa ct
th at t he t wo p la te s ar e i n t he sa me p l a ne i n t h i s th e si s, w h i le i n V il lo t a nd G ui go u -
Car ter ( 2 0 0 0 ) t h e seco n d p lat e ha s b ee n r o tat ed th r o u g h +9 0 d e gr ee s i n o r de r to fo r m a
r i g ht a n gled j u nc tio n . T h u s t h e ve lo c it y i n t h e p o si ti v e y -a x i s d ir ec tio n i n t he se co nd
p lat e b eco me s a v elo cit y i n t h e ne ga ti v e x - a xi s d ir ec tio n i n t he Vi llo t a n d G ui go u -
Car ter ( 2 0 0 0 ) p ap e r . No te t h at t he p o s it i ve d ir ec tio n o f t he x -a x is i n Vi ll o t a nd
G ui go u - Car ter ( 2 0 0 0) f i g ur e 6 a is i nco r r ec t. I t d o es no t co r r e sp o nd to t h e s i g n s o f t h e
exp o n e nt ial e xp o ne n t s i n t hei r eq ua tio n ( 4 ) . Al s o no te t hat o nce t he p o s i ti ve d ir e ct io n
o f t he x -a xi s i s c ha n g ed in t he ir f i g ur e 6 , t h e p o s iti v e d i r ec tio n o f t he z - a xi s al so h as to
b e c ha n ged i n o r d er to ma i nt ai n a r i g ht h a nd ed co -o r d i na te s ys t e m.
2
2
2
−
+
−
+
−
+
−
+
s
j
s
s
1
Eq u at io n ( 4 .1 3 5) ca n b e wr i tte n a s
[
]
=
t
.
2
) 2/1 2
1 2
2
−
ψ
( 2 χ a +
) 2/1 2 κ
+
2 χ a +
( 2 χ a 2 κ
−
+
ψ
−
+
s
s
s
s
j
1
1
)
)
(
(
( 4 .1 4 0)
4.7 Transmitted bending wave power.
84
As wa s s ho wn i n c hap te r s 2 a nd 3 fo r t he aco u st ica l ca s e, i t is no t p o s si b le to ca lc u lat e
th e ne t i n te n s it y i nc id e n t o n a j u nc tio n b y s ep ar ate l y ca lc u la ti n g t he i nt en s it y o f t he
in cid e nt wa ve a nd t he i n te n si t y o f t h e r e f le cted wa v e, wh e n t he i nc id e n t wa ve i s no t
fr e el y p r o p a ga ti n g. T hi s is b ec a us e t h e cr o s s t er ms i n t h e i n te n si t y c alc u lat io n d o no t
ca nce l u nl e ss t he i nc id e nt wa v e i s f r ee l y p r o p a g ati n g. T h u s o nl y t he to t a l i n te n si t y
in cid e nt o n t he j u nc tio n ca n b e cal c ul ated . B ec a u se t hi s is eq ua l to t he t r an s mi t ted
in te n s it y b y e ner g y co ns er v at io n, o n l y t h e tr a ns mi t ted i nte n s it y wi ll b e calc u la ted i n
th i s c h ap ter . O n e o f t he co n seq u e nce s o f no t b ei n g ab le to c al c ula te a m ea ni n g f u l
in cid e nt i nt e ns it y d ue to a fo r ced i nc id e n t wa v e alo ne, i s t h at it i s no t p o s sib le t o
me a ni n g f u ll y d e fi n e a tr an s mi s s io n e f f ic ie nc y a s Vi llo t a nd G ui go u - C ar t er ( 2 0 0 0 ) ha v e
att e mp t ed to d o i n t he ir eq u at io n ( 1 0 ) . T hi s i s o ne o f t h eir t wo er r o r s whi c h ar e
co r r ec ted i n t h i s t h es i s.
T he tr a n s mi t ted b e nd i n g wa ve p o wer p er u n it le n gt h o f t h e p l ate j u nc t io n I i s no w
−
−
jk
x
k
x
2
2
x
N
d er i ved . Fr o m eq ua tio n ( 4 .8 8) t he a n g ul ar ve lo c it y ab o u t t he z -a x i s i n p l ate 2 i s
=
−
jk
te
).
w z
2
( )( − zEv + 1
x
2
etk 2 j N
( 4 .1 4 1 )
−= t
t j
No w
−
−
jk
x
k
x
T hu s
x
N
2
=
−
jk
e
).
+
w z
2
( ) ( − tzEv 1
x
2
ek 2 N
( 4 .1 4 2 )
At t he j u nct io n, x=0 , t h u s,
=
=
+
jk
k
)0
).
xw ( 2 z
( ) ( − tzEv + 1
x
2
N
2
( 4 .1 4 3 )
Fr o m eq u at io n ( 4 .9 4) , t h e mo me n t p er u n it le n g t h a b o ut t he z -a x i s, M x z 2, wh i c h i s
2
∂
ex er t ed acr o s s a l i ne no r ma l to t h e x - a xi s i n p la t e 2 i s
−
−=
µ
M
xz
2 vk z
y
2
v y 2
∂ x
B 2 ω j
.
( 4 .1 4 4)
2
2
B ut t he tr a n s v er s e ve lo c it y v y (x =0 ) i s zer o b ec a u se o f t he p i n ned j o in t. T hu s
=
−=
=
=
(
)
)
x
j
x
0
0
(
).0
( xM xz 2
∂ w z ∂ x
∂ wB z 2 ω ∂ x
=
B 2 ω j
( 4 .1 4 5)
85
Di f f er e nt ia ti n g eq ua tio n ( 4 .1 4 2) , set ti n g x=0 a n d i ns er t i n g i n to eq u at io n ( 4 .1 4 5) , g i ve s
=
=
−
−=
+
)
0
j
k
k
j
k
).
[ −
]
( xM 2 xz
tzEv )( + 1
2 x 2
2 N
2
2 N
( ktzEv )( + 1
2 x 2
2
B 2 ω
B 2 ω
( 4 .1 4 6)
T he tr a ns mi tted b e nd i n g wa ve p o wer ( I ) p er u ni t le n gt h o f t h e p l at e j u n c tio n is t he r ea l
p ar t o f t he p r o d u ct o f t h e a n g ul ar ve lo c it y a nd t he mo me n t b ec a u se t he t r an s v er s e
=
=
=
(
I
Re
x
0
0
2
( ω z
2
2
2
2
2
ve lo c it y o f t he j u nc tio n is zer o .
=
+
+
)
)
t
Re
k
k
k
k
) ( xM 2 xz { ( k
) ) }
( ( k
2
2
2
2
2
v + 1
* 2 x
x
2 N
x
N
2 N
B B 2 − j ωω
) .
2
=
−
( 4 .1 4 7)
sin
,
k
k
k
k
2 2
2 2 x
2 i
θ i
2 2 x
2
Si n ce is al wa ys r e al. T h u s
+
].
I
k
[ Re k
[ 2 kt
]
= + v 1
2 x 2
2 N
2
x
2
B 2 ω
( 4 .1 4 8)
No w
=
−
k
k
k
sin 2
,
2 x 2
2 i
θ i
2 2
( 4 .1 4 9 )
and
=
+
k
k
k
sin 2
.
2 N
2
2 2
2 i
θ i
( 4 .1 5 0 )
T hu s
+
=
k
k
2
.2 2 k 2
2 2 x
2 N
( 4 .1 5 1 )
2
2
i
=
−
k
k
1
sin
x
θ i
2
2
k k
2
Fr o m eq u at io n ( 4 .7 4)
2
2
=
−
k
1
sin
θ i
2
χ a κ
( 4 .1 5 2)
2
2
2
2
I n ser ti n g eq ua tio n s ( 4 .1 5 1) a nd ( 4 .1 5 2) i nto eq u atio n ( 4 .1 4 8) gi v e s
=
−
2
1
sin
I
t
v + 1
θ i
3 kB 22 ω
χ a κ
Re
.
( 4 .1 5 3)
86
No w fr o m t h e ho mo ge n e o u s b e nd i n g wa v e eq uat i o n ( se e eq u atio n ( 4 .4 1) ) ,
4
kB .2 22 ω= m 2
( 4 .1 5 4)
T her e fo r e
=
3 kB 22 ω
ω m 2 . k
2
( 4 .1 5 5)
Si n ce
=
,
c 2
ω k
2
( 4 .1 5 6)
th e fo llo wi n g eq uat io n i s o b t ai n ed .
=
cm .22
3 kB 22 ω
( 4 .1 5 7)
2
2
2
P ut ti n g eq uat io n ( 4 .1 5 7) i nto ( 4 .1 5 3) gi v es
=
−
I
2
1
sin
θ i
v + 1
2 cmt 22
χ a κ
Re
.
( 4 .1 5 8)
2
2
He nce
=
−
2
1
I
v + 1
2 cmt 22
s 2 κ
,
Re
( 4 .1 5 9)
2
2
and
=
−
1
t
s 2 κ
2
I 2 cmv + 1 22
,
Re
( 4 .1 6 0)
T he tr a ns mi tted b e nd i n g wa ve p o wer ( I ) p er u ni t le n gt h o f t h e p l at e j u n c tio n c a n a l so
2
2
=
)
2
Re
( cos
I
t
vcm + 1 22
θ 2
2
2
2
b e d er i v ed fr o m eq ua tio n s ( 3 .8 3 ) , ( 3 .8 4 ) a nd ( 3 . 9 2 ) o f C r e mer et a l. ( 2 0 0 5) .
=
−
2
1
t
vcm + 1 22
s κ
Re
( 4 .1 6 1)
+1v
is t h e wh er e m 2 i s t h e ma s s o f p lat e 2 , c 2 is t he b e nd i n g wa ve sp eed i n p l ate 2 and
87
r o o t me a n s q uar e v elo ci t y o f t he f o r ced i nc id e n t b end i n g wa ve. No te t hat t he f acto r o f
2 d o es no t ap p ear i n Cr e me r e t a l.( 2 0 0 5 ) b ec a us e t he y ar e u s i n g p ea k wa ve a mp l it ud e
in s tead o f r o o t mea n sq u ar e ( r ms ) a mp l it ud e a s i s b e i n g u sed h er e.
4.8 The power per unit length transmitted by a diffuse bending
wave field.
T he p o we r p er u n it le n g th tr a ns mi t ted to p lat e 2 b y a d i f f u s e b e nd i n g wa ve f ie ld i n
p lat e 1 wi l l no w b e cal c ul at ed . T h is p o we r i s p r o p o r tio na l to t h e i n te gr a l o f eq u at io n
( 4 .1 6 1) o ver t he i ncid e n t a n gl e θ i fr o m 0 r ad i a ns to π /2 r ad ia n s o r t he mi ni mu m a n g le
at wh ic h to t al i nt er na l r ef le ct io n o cc ur s wh e n t h e r ea l f u nc tio n i n eq u at i o n ( 4 .1 6 1 ) i s
2
eq u al to z er o . T h i s o cc u r s wh e n
−
≤
1
.0
s 2 κ
( 4 .1 6 2)
2
2
T hi s mea n s t ha t
≥
2 κ
sin
= s
.
2 χ a
θ i
( 4 .1 6 3 )
Re ar r a n g i n g gi v es,
sin
,
κ θ ≥ i χ a
( 4 .1 6 4)
and
≥
arcsin
θ i
κ χ a
.
( 4 .1 6 5)
if
≥ χκ a
T hu s t he up p er l i mi t o f t he i nt e gr a l i s
=
.
θ u
if
χκ < a
κ χ a
π 2 arcsin
( 4 .1 6 6)
He nce t he b e nd i n g wa v e i nte n s it y tr a n s mi t ted b y a n i nc id e n t d i f f u s e fo r c ed b e nd i n g
88
wa v e f ie ld i n p la te 1 i s p r o p o r tio na l to
2
θ
2
−
tu∫
0
s 2 κ
θ d .
1 Re
89
( 4 .1 6 7)
4.9 The transmitted power when plate 1 is excited by a diffuse acoustic field.
φ
y
θ
Plate 1
Plate 2
x
z
F i gu r e 4 . 3 An i n c i d e n t a c o u s t i c s o u n d wa v e .
Fr o m eq u at io n ( 1 2 ) o f V illo t a nd G u i go u - Car ter ( 2 0 0 0) , t he wa v e i mp ed a nc e o f p lat e 1
is
=
−
+
z
)
4 k 1
.4 η kB 111
2 i
B ( 1 k ω j
( 4 .1 6 8)
wh er e B 1 i s t he b e nd i n g st i f f ne s s o f p la te 1 , k 1 i s t he wa ve n u mb er o f p la te 1 fo r a n
k
k = i
φsina
an g u lar f r eq ue n c y o f ω , η 1 i s t h e i n s it u d a mp i n g lo s s f ac to r o f p lat e 1 a n d
is t he wa v e n u mb er o f t he p la n e wa v e fo r ced b y an ai r b o r ne p la ne wa v e o f wa ve
to t he no r mal to p lat e 1 . T h e n u mb e r k a wh i c h is i nc i d en t o n p lat e 1 a t a n a n g le o f
ϕ d a mp i n g lo s s ter m h a s b ee n ad d ed to t he Vi llo t and G u i go u - Car t er ( 2 0 0 0 ) eq uat io n.
I f t he r ms a mp l it ud e o f t he i nc id e n t a ir b o r ne d i f f u se so u nd f ie ld a t t h e p l ate s ur f ace i s
90
1 , t he n f r o m eq ua tio n ( 1 1 ) o f V il lo t a nd G u i go u - Car ter ( 2 0 0 0 ) ,
2 ω
2 =+ v 1
2
−
+
k
k
)
24 1
η 1
4 i
8 i
{ ( 2 kB 1
}
1
=
2
2
−
+
) 1
2 χη 1 a
{ ( 2 4 χω m 1 a
}8
( 4 .1 6 9)
2
2
−
t
1
T hu s
s 2 κ
=
,
4
8
2 ω
2
−
+
φ
φ
2 IB 1 cm 22
sin
sin
2 η k
( k
)
24 k 1
4 a
8 a
( 4 .1 7 0)
2
2
=
s
2 χ a
and
sin 2
2
sin
k
2 a
=
.
θ i θφ sin i 2 k 1
( 4 .1 7 1)
Fo r a d i f f u se f ie ld a co us tic i nc id e n t wa v e eq u at i o n ( 4 .1 7 1 ) ha s to b e a v e r ag ed o ver
2
2
π π
−
φ
1
sin
t
ϕ and θ i.
2
2
s 2 κ
Av
2
4
8
∫ ∫
φθ . dd i φ
Re φ −
+
2
sin
sin
2 η k
( k
)
2 IB 1 cm 22
4 k 1
4 a
8 a
0
0
2 = πω
91
( 4 .1 7 2)
y
φ=0
φ
θ i
x
φ=0,
z
φ=0 θ i=0
F i gu r e 4 . 4 Th e o c t a n t t h a t e q u a t i o n 4 . 1 8 7 i s a v e r a g e d o ve r .
d b li nt . m c alc u la te s t h e v al ue s o f t he i nt e gr a l t h at is p r o p o r t io na l to t he p o wer p e r u ni t
le n gt h tr a n s mi t ted t hr o u g h t he j u nct io n wh e n p l ate 1 i s e x ci ted b y a d i f f u se aco u st ic
so u nd f ield ( s ee ap p e nd i x 1 ) . T he i nt e gr a l i s co n d uc ted o n l y fr o m 0 to π/ 2 wh i c h i s t he
so l id a n g le o f t he o ct a nt o v er wh i c h t he i nt e gr at i o n is mad e . No te t ha t t h e a n g ul ar
we i g h ti n g i s d i f f er e n t fr o m t ha t u sed i n eq ua tio n ( 1 3 ) b y V il lo t a nd G u i g o u- Car ter
( 2 0 0 0 ) . I n t h e no t at io n o f t hi s t he si s, Vi llo t a nd G ui go u - Car ter e va l uat e an i nt e gr a l o f
π
k
a
th e fo r m.
F
θ ,(
dk
.
dkk ) i
i
θ i
i
∫
∫
0
2 0
( 4 .1 7 3)
Si n ce
=
φ
=
k
k
dk
k
sin
,
cos
φ .
i
a
a
i
( 4 .1 7 4 )
ππ
2
2
T hu s t hei r i n te gr a l b e co me s
φθφφ
F
k
k
θ ,(
sin
φ )
sin
cos
a
2 a
dd i
∫∫
0
0
92
( 4 .1 7 5)
T he k a sq ua r ed a nd t he 2 /π ar e j u s t co n st a nt s wh i ch ca n b e co r r ect ed fo r b ut t he co sφ
is i nco r r ec t b ec a us e t h e fo r ced b e nd i n g wa ve v el o cit y d ep e nd s o n t he i nc id e nt
aco us ti c p o we r .
4.10 Summary
T he r e f lec ted wa v e a mp l it ud e s ( r) , t he r e fl ec ted ne ar fi eld wa ve a mp li t ud es ( r j ) , t h e
tr a n s mo t ted wa ve a mp li t ud e s ( t) , a nd t h e tr a ns mi tted n ear f ie ld ( t j) wa ve s ar e d er i ved .
T hes e wa v e a mp l it ud e s ar e c alc u la ted fo r t he s it ua tio n o f no r ma l i n cid e n ce. T h e n t h e
wa v e n u mb er eq u at io ns fr o m C r eme r et a l . ( 2 0 0 5 ) ar e d e r i ved fo r t h e o b liq ue l y
in cid e nt fr ee l y p r o p a g at in g wa v e c as e. Ne xt , t h e an g u lar velo ci t y a nd t h e to r sio n al
mo me n t i n t h e x d ir e ct io n a r e d e ter mi n ed b y v al ue s i n t h e y a nd z d ir ec ti o n s. T h i s i s
s ho wn f o r t h e o b l iq ue l y in cid e nt wa ve ca se . T he n t he d e r i va tio n o f t h e t r an s mi t ted
and r e fl ec ted wa ve a mp l it ud e f o r t h e o b l iq ue l y i nc id e n t fo r c ed wa v e is g iv e n. T h es e
a mp li t ud e s ar e u sed to c alc u lat e t h e tr a n s mi tt ed b end i n g wa ve i nt e ns it y. T he n t h e
in te n s it y tr a n s mi t ted b y a d i f f u se b e nd i n g wa v e f ield i s c alc u la ted . F i nal l y, t h e
tr a n s mi tt ed i n te n si t y wh en p la te 1 i s e x ci ted b y a d i f f u se aco u st ic f ie ld i s d er i ved .
93
T hi s fi n al cal c ul atio n was t he ma i n ai m o f t h i s t he s is .
Chapter 5 The results for pinned plates.
I n t hi s c hap t er , gr ap h s o f t he r ela ti v e t r a n s mi tt e d i nte n s it y at t he j u nc tio n o f t wo s e mi -
f i ni te i n t h e p l a ne p lat es wi ll b e p r e se n ted . As e xp l ai n ed i n c hap ter s 2 a nd 3 , a nd i n
sec tio n 4 .6 i t is no t p o s s ib le to c al c ula te mea n i n g f u l i n te n si ti es fo r t h e i nc id e n t a nd
r ef le cted wa v e s u nl es s t he i nc id e n t wa v e is fr ee l y p r o p a gat i n g. O nl y t he to ta l i n te n s it y,
wh ic h i s i n cid e nt o n t he j u nct io n c a n b e mea n i n g f u ll y cal c ul ated a nd t h i s i s eq ua l to
th e t r a n s mi tt ed i n te n si t y . T h us o nl y t he tr a n s mi t ted i n te n s it y is co n sid er ed i n t hi s
ch ap te r .
As i n t he p r e vio u s c h ap t er t he p la te s wi ll b e a s s u med to h a ve b e nd i n g st i f f ne s se s B i
and fr ee l y p r o p a g at i n g wa v e n u mb er s k i wh e r e i =1 o r 2 . T h e r a tio o f t he fr eel y
p r o p ag at i n g wa v e n u mb er s i s
=κ
.
k 2 k 1
( 5 .1 )
T he var iab l e ψ is d e f i ne d to b e
ψ
=
=
.2 κ
2 kB 22 2 kB 11
B 2 B 1
( 5 .2 )
T he i n te n si t y o f a fr e el y p r o p a gat i n g p la ne b e nd in g wa v e wi t h tr a ns v er s e v elo ci t y v i i n
2
th e i t h p lat e i s ( s ee Cr e me r e t a l. ( 2 0 0 5) a nd se ctio n 4 .7 )
2
,
I = i
vcm i i i
( 5 .3 )
wh er e m i is t he ma s s p er u n it ar ea a nd c i i s t he f r eel y p r o p a ga ti n g b e nd i n g wa ve
94
ve lo c it y o f t he i t h p l ate. T hu s
Z
2=
i
cm i i
( 5 .4 )
ca n b e i nt er p r e ted a s t he i mp ed a n ce e xp er ie nc ed b y a fr ee l y p r o p a gat i n g b end i n g wa ve.
Fo r a f r ee l y p r o p a g a t i n g b e nd i n g wa ve C r e mer e t a l. ( 2 0 0 5)
4 ω=i ,2
B i k m i
( 5 .5 )
and
=
c ,i
ω k
i
( 5 .6 )
wh er e ω i s t he a n g ular f r eq u e nc y.
Eq u at io ns ( 5 .4 ) , ( 5 .5 ) a n d ( 5 .6 ) a nd g i ve
=
=
.
kB i
2 i
2 cm i i
cZ i i 2
( 5 .7 )
2
2
He nce ψ c a n b e wr i tt e n as
ψ
=
=
=
1 κ
Z Z
k 1 k
Z Z
cZ 22 cZ 11
1
2
1
( 5 .8 )
T hu s ψ ca n b e i n ter p r ete d as t he r at io o f t he “f r e el y p r o p a g at i n g b e nd i n g wa ve
i mp ed a n ce s” d i vid ed t h e r at io o f t h e fr e el y p r o p ag at i n g wa v e n u mb er s .
T he fo r c ed i n cid e n t wa v e wi ll b e i n p l ate 1 a nd ha v e a fo r ced wa ve n u m b er o f k i. I t
wi l l b e i nc id e n t a t a n a n gl e o f θ i to t h e no r ma l t o t he li ne j u nc tio n b et wee n t h e t wo
se mi - f i n it e i n p la n e p l at es. T he va r iab le χ a i s t h e r at io o f t he fo r ced b e n d in g wa v e
n u mb e r o f t h e i n cid e nt wa v e to t h e fr e el y p r o p a ga ti n g wa v e n u mb er i n p lat e 1 .
.
a =χ
ki 1k
95
( 5 .9 )
T he fr e el y p r o p a gat i n g wa v e ca se i s gi ve n b y χ a eq u al s 1 . F ir st gr ap h s o f t he r ela ti v e
tr a n s mi tt ed i n te n si t y ( r e lat i ve p o wer p er u ni t le n gt h o f t h e j u n ct io n) wi l l b e gi ve n .
Eq u at io n ( 4 .1 6 0) wi ll b e gr ap hed .
2
2
2
T hi s eq ua tio n i s
=
−
t
1
sin
θ i
χ a κ
2
I 2 cmv + 22 1
Re
.
( 5 .1 0)
T hu s it ca n b e s ee n t ha t th e t r a n s mi tt ed i n te n si t y is ei t her no r ma liz ed b y o r i s r e lat i ve
to t he i n te n si t y o f a fr ee l y p r o p a ga ti n g p la n e b e nd i n g wa v e . T h i s r e f er e nc e wa v e ha s
th e sa me tr a ns v er se b e n d in g wa v e ve l o c it y as t h e i nc id e n t wa v e b u t i s p r o p ag at i n g i n
p lat e 2 a t a tr a n s mi t ted an g le o f ο0 r elat i ve to t h e no r ma l o f t he li n e j u n ct i o n.
T he tr a ns mi tted i n te n si t y h as b ee n f ur t her no r m ali zed b y d i vid i n g i t b y th e t r a n s mi tt ed
in te n s it y fo r t he fr ee l y p r o p ag at i n g i n cid e nt wa v e ca se ( χ a=1 ) . T hi s i s no t p o s s ib l e i n
all t he se gr ap h s b e ca u se so me ti me s t h e tr a ns mi tt ed i nt e n si t y fo r t he fr eel y p r o p a gat i n g
in cid e nt wa ve ca se i s z e r o . I n t h es e ca s es t he tr a n s mi tt ed i n te n si t y is no r ma li zed b y
d iv id i n g i t b y i t s ma x i m u m v al ue . T h is f u r t he r n o r mal iza tio n ma ke s t he cur v e s i n eac h
f i g ur e ne ar l y o ver la y e a ch o t her .
I t ca n b e see n i m me d i at el y t h at t he r el at i ve tr a n s mi tt ed i n te n si t y is zer o wh e n
.
χ ≥ a
κ θ sin i
( 5 .1 1)
I n t hi s ca se to ta l i nter n a l r e f lec tio n o cc ur s. T he mi n i mu m v al u e o f χ a fo r wh i c h to tal
iθ ar e gi v e n i n t he fo l lo wi n g tab l e 5 .1 .
96
in ter n al r e fl ec tio n o c c ur s a s a f u nc tio n o f κ a nd
κ=1/2
κ=1
κ=2
ο
∞
θ 0=i
ο
1.93
3.86
7.73
θ 15=i
ο
1
2
4
θ 30=i
ο
0.707
1.41
2.83
θ 45=i
ο
0.577
1.15
2.31
θ 60=i
ο
0.518
1.04
2.07
θ 75=i
ο
0.5
1
2
θ 90=i
T ab le 5 .1 T he mi n i mu m va l ue o f χ a fo r wh i c h to t al i n ter n al r e fl ect io n o c cur s fo r
d i f fer e n t va l ue s o f κ a nd θ i.
T he r o o t mea n sq u ar e co mp le x a mp l it ud e o f t h e fr e el y p r o p a ga ti n g tr a n s mi t ted wa ve i n
p lat e 2 d i v id ed b y t he r o o t mea n sq u ar e co mp l e x a mp l it ud e o f t h e fo r c ed i ncid e nt wa v e
2
−
1
sin
j
2 χ a
θ i
2
+
+
+
+
1
sin
) 2/1
θχ cos j i
a
2 χ a
θ i
( 2 χ a
)
(
2
−
+
1
sin
2 χ a
θ i
in p la te 1 i s t. Fr o m eq u atio n ( 4 .1 3 0)
=
t
.
2
2
−
−
+
ψ
1
sin
1
sin
j
2 χ a
θ i
2 χ a
θ i
)
2
2
2
2
+
−
+
sin
sin
j
2 − χκ a
2 χκθ a
i
θ i
)
( (
( 5 .1 2)
T he o nl y o n e o f t he ter ms i n t h e n u mer ato r o f t he r i g h t ha nd si d e o f eq ua tio n ( 5 .1 2)
97
th at ca n p o s sib l y b e co m e zer o i s
j
1
sin
.
2 θχ− a i
( 5 .1 3 )
Eq u at io n ( 5 .1 3) i s zer o wh e n
.
χ = a
1 θ sin i
( 5 .1 4)
I t ca n b e see n fr o m eq u a tio n s ( 4 .6 2) a nd ( 4 .6 3) , th at t he v al u e o f χ a gi ve n b y eq uat io n
( 5 .1 4) i s t h e ma x i mu m v al ue o f χ a fo r wh i c h t he r ef le cted p r o p a ga ti n g wav e i s ac t u al l y
a wa v e. Fo r va l ue s o f χ a gr eat er t h a n t h at g i ve n b y eq uat io n ( 5 .1 4) t he p r o p ag at i n g
r ef le cted wa v e b e co me s a n o n -p r o p a ga ti n g n ear f ield wa v e.
2
At t he va l ue o f χ a g i ve n b y eq uat io n ( 5 .1 4) it i s l ik el y t ha t t h e gr ap h s wi l l e x hib it a
.
t
lo ca l mi n i mu m b eca u se th e gr ap h s ar e p r o p o r tio na l to Ho we v er t h i s lo c al mi n i mu m
wi l l no t b e o b se r ved i f v al ue s o f χ a gi ve n b y eq u atio n ( 5 .1 4) ar e gr e ate r th a n o r eq ual
to t he val u e o f χ a gi v e n b y t he eq u al s si g n i n eq ua tio n ( 5 .1 1) . T h i s wi l l hap p e n wh e n κ
is eq ua l to o r le s s t ha n o ne. T hi s i s b ec a u se t h e r eal f u n ct io n i n eq ua tio n ( 5 .1 0) ma ke s
th e r e la ti v e tr a ns mit ted in te n s it y zer o i n t h e r e g io n o f t h e va l ue o f χ a wher e a lo c al
mi n i mu m wo u ld p r o b ab l y h a ve o c c ur r ed . T he v a lu e s o f χ a f o r wh i c h t he lo ca l mi n i mu m
98
wi l l p r o b ab l y o cc ur a r e gi v e n i n tab le 5 . 2 .
κ>1
ο
θ 0=i
ο
3.86
θ 15=i
ο
2
θ 30=i
ο
1.41
θ 45=i
ο
1.15
θ 60=i
ο
1.04
θ 75=i
ο
1
θ 90=i
T ab le 5 .2 Val u es o f χ a f o r wh i c h a lo ca l mi n i mu m i n t h e t r a n s mi tt ed i n te n si t y wi l l
p r o b ab l y o c c ur fo r d i f fe r en t va l ue s o f θ i.
Ap ar t fr o m t he mo d u li o f t he ter m g i ve n b y eq ua tio n ( 5 .1 3 ) , a ll t he mo d u li o f t he ter ms
in t he n u mer ato r o f eq ua tio n ( 5 .1 2 ) i nc r ea se a s χ a i ncr ea se s. T h u s ap ar t f r o m t he
p o s sib le lo ca l mi n i mu m and t he u lt i ma te d r i vi n g to ze r o ( e xc ep t f o r θ i =0 ) b y t he r ea l
f u nc tio n i n eq uat io n ( 5 . 1 0) , t he g r ap h s ar e e xp e cted to b e i ncr ea si n g f u nc tio n s o f χ a.
Fi g ur es 5 .1 to 5 . 3 s ho w th e r e la ti v e tr a ns mit ted in te n s it y at 0 ˚ f o r κ eq u al s ½, 1 a nd 2
r esp ect i ve l y. E ac h ne x t se t o f t h r ee f i g ur e s s ho ws t he s a me gr ap hs fo r t he ca se wh e n θ i
ha s b ee n i ncr e as ed b y 1 5 ˚ . T hi s tr e nd is co nt i n u ed u nti l θ i eq u al s 9 0 ˚ .
Fi g ur es 5 .1 to 5 . 2 1 s ho w a wid e var iet y o f b e ha vio u r . E xc ep t f o r t h e no r mal i nc id e nc e
cas e, to ta l i nter n al r e fl e ctio n o cc ur s fo r s ma l ler va l ue s o f χ a a s κ d ecr e a s es a nd θ
in cr e as es . O n mo s t o f t h e g r ap h s t h e c ur v es fo r d i f fer e n t va l ue s o f ψ ar e al mo st
id e nt ica l. T he se c u r ve s ar e o nl y s i g ni f ic a nt l y d i f fe r e nt o n t h e κ eq ual s 2 gr ap hs , fo r t he
lar ger v al u es o f χ a a nd θ . T he vo l u me o f χ a fo r whi c h a mi n i mu m o c c ur s i n so me o f t h e
99
gr ap h s i s we l l p r ed ict ed b y v al ue s g i ve n i n t ab l e 5 .2 .
T he r e lat i ve b e nd i n g i nt en s it y ( p o wer p er u n it l e n gt h o f t h e j u n ct io n) t r a n s mi tt ed b y a
fo r ced d i f f u s e f ield i n p lat e 1 wi l l no w b e cal c u lat ed . T h is i s d o ne b y i n te gr a ti n g
eq u at io n ( 5 .1 0) o v er a n g le s o f i n cid e nce θ i r a n g i n g fr o m 0 r ad ia n s up to th e a n g le at
wh ic h to t al i nt er na l r e f l e ct io n o cc u r s o r π /2 r ad i an s ( 9 0 ˚ ) i f to t al i nt er na l r e f lec tio n
if
≥ χκ a
d o es no t o c c ur . T h u s t he up p er l i mi t o f i nt e gr a ti o n θ u is g i ve n b y eq ua ti o n ( 4 .1 6 6 )
=
.
θ u
if
χκ < a
κ χ a
π 2 arcsin
( 5 .1 5)
2
θ
2
2
He nce t he r e lat i ve i nt e n si t y i s p r o p o r t io nal to e q ua tio n ( 4 .1 6 5)
−
tu
Re
1
sin
.
i
∫
0
χ a κ
θθ d i
( 5 .1 6)
Eq u at io n ( 5 .1 6) wi ll al wa ys g i ve no n - zer o r es u lt s. T h u s t he r es u lt o f eq u atio n ( 5 .1 6)
wi l l b e f ur t h er no r ma li z ed b y d i v id i n g it b y t he r es u lt fo r a fr eel y p r o p a ga ti n g i nc id e n t
wa v e ( χ a=1 ) . T he se r e s u lt s wi l l t he n b e co n ver te d to d ec ib e l s a nd gr ap he d i n fi g u r e s
5 .2 2 to 5 . 2 4 . T he no r ma liz ed c ur v es i n t he se f i g ur e s o v er l a y ea c h o t h er ex cep t wh e n χ a
is g r ea ter t ha n o n e i n t h e κ eq u al s t wo ca se, s ho wn i n f i g ur e 5 . 2 4 . T h i s o ut co me ca n b e
p r ed ic ted fr o m t h e r e s ul ts s ho wn i n fi g ur es 5 . 1 t o 5 . 2 1 .
Ex cep t fo r t h e lo ca l mi n i mu m i n t he κ=1 /2 r e s u lt s s ho wn i n f i g ur e 5 .2 2 , t he c ur ve s a r e
in cr e as i n g f u nc tio n s o f χ a. T he lo c al mi n i mu m i n t he κ =1 /2 ca se ap p ear s to b e a n
in ter ac tio n b et wee n t he in cr e as i n g na t ur e o f t he r ela ti v e tr a ns mi s sio n as a f u nct io n o f
χ a fo r a n g le s o f i nc id e nc e clo se to no r ma l i nc id e nc e a nd t he d ecr e as e i n th e a n g le at
wh ic h to t al i nt er na l r e f l ec t io n o cc u r s a s a f u n ct i o n o f χ a.
Ne xt it i s a s s u med t ha t t he b e nd i n g wa v e fi eld i n p lat e 1 is fo r ced b y a n i ncid e nce
d i f f us e a co us ti c fi eld . T he f o r ced b e nd i n g wa v e n u mb e r k i wi l l var y f r o m k a, wh er e k a
100
is t he v al u e o f t h e wa v e n u mb e r o f t h e d i f f u s e so u nd f ie ld . T he var iab l e r is d e fi n ed to
b e t he r at io o f t he air b o r ne wa v e n u mb e r k a to t he f r ee l y p r o p a g at i n g wav e n u mb er k 1
in p la te 1 .
r
.
k a= 1k
( 5 .1 7)
I n t hi s ca se t he r e la ti v e tr a n s mi tt ed b e nd i n g wa v e i nt e n si t y i s p r o p o r tio n al to eq ua tio n
2
2
2
π π
φ
−
t
1
sin
sin
θ i
( 4 .1 7 2) .
2
2
χ a κ
φθ dd .
4
8
∫ ∫
φ
η
φ
−
+
Re sin
sin
( k
)
4 a
82 k a
4 k 1
0
0
( 5 .1 8)
T he 2 / π fr o m eq uat io n ( 4 .1 7 2) h a s b ee n d r o p p ed b eca u se eq ua tio n ( 5 .2 4 ) wi ll b e
no r ma l ized b y d i v id i n g i t b y i t s va l u e fo r t he f r e el y p r o p a g at i n g i n cid e n ce wa v e c a se
wh e n χ a eq ua l s o ne. No t e t ha t t h e a n g u lar we i g h ti n g is d i f f er e nt fr o m t h at u sed i n
eq u at io n ( 1 3) o f b y V il l o t a nd G ui go u - C ar te r ( 2 0 0 0 ) .
Af te r no r ma li zat io n, t he va l ue o f eq ua tio n ( 5 .1 8 ) wi ll b e co n v er ted to d e cib e ls b e fo r e
b ei n g gr ap h ed i n fi g ur es 5 .2 5 to 5 . 2 7 wh er e t h e cur v e s i n eac h f i g ur e o v er la y eac h
o th er . T h i s i s b eca u se t h e c ur ve s i n fi g u r e s 5 .1 t o 5 .2 1 o ver l a y e ac h o t he r , ap ar t fr o m
th e κ =2 ca s e wh e n t h e v al ue s o f χ a ar e gr e ater t h an o ne. Fi g ur e s 5 .2 5 to 5 . 2 7 d i f fer
fr o m f i g ur e s 5 .2 2 to 5 . 2 4 b eca u se a we i g h t ed a v er a ge o f t he tr a n s mi t ted in te n s it y h as
b ee n t a ke n o ve r b y va l u es o f χ a fr o m zer o to r.
Fo r va l ue s o f r gr eat er t ha n o ne t h i s a v er a ge i s d o mi nat ed b y va l ue s o f χ a clo se to o n e.
I n t hi s ca se:
≈φ
sin
.
ka
1k
( 5 .1 9 )
B eca u se t he d a mp i n g lo s s fa cto r η i s s mal l ( 0 .0 3 ) , t he d e no mi n ato r o f t h e i nt e gr a nd i n
eq u at io n ( 5 .1 8) i s c lo s e to zer o wh e n eq ua tio n ( 5 .2 4 ) ap p l ie s. T h i s me a n s t h at t he
101
in te gr ad ha s a s h a r p ma xi mu m a t χ a =1 . T h e e f f e ct i s t ha t t h e i n te gr al is r ela ti v el y
co n s ta nt fo r r gr e ater t h an o r eq ua l to o ne. B eca u se t he i nt e gr al i s no r m ali zed b y
d iv id i n g b y i t s va l ue wh en r eq ua ls o ne, t he no r ma li zed i nt e gr al i s c lo se to o ne wh i c h
is 0 d B wh e n r i s gr e at e r t ha n o n e.
W he n r i s l es s t ha n o n e, t he c u r ve s fo l lo w t he g en er a l b e ha v io r o f f i g ur es 5 . 2 2 to 5 . 2 4 .
T hat is , t h e y ar e i n cr ea s in g f u nc tio n s o f r e xcep t fo r a lo c al mi n i mu m i n t he κ =1 /2
102
cas e.
6
5
ψ=1/2
ψ=1
y t i s n e t n
I
4
ψ=2
d e t t i
3
2
l
1
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1 χa
F i gu r e 5 . 1 Th e r e l a t i v e t r a n s mi t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n f i n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 0 ˚ . Th e r a t i o κ
o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e f i r s t p a n e l i s ½ . C u r ve s a r e gi ve n f o r t h e
r a t i o ψ e q u a l s ½ , 1 a n d 2 .
103
6
5
ψ=1/2
y t i s n e t n
I
4
ψ=1
d e t t i
3
2
ψ=2
l
1
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1 χa
F i gu r e 5 . 2 . Th e r e l a t i ve t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n fi n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 0 ˚ . Th e r a t i o κ
o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e f i r s t p a n e l i s 1 . C u r v e s a r e gi ve n fo r t h e
r a t i o ψ e q u a l s ½ , 1 a n d 2 .
104
6
5
ψ=1/2
ψ=1
y t i s n e t n
I
4
ψ=2
d e t t i
3
2
l
1
m s n a r T e v i t a e R
0
0
0.5
1.5
1
2
χa
F i gu r e 5 . 3 Th e r e l a t i v e t r a n s mi t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n f i n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 0 ˚ . Th e r a t i o κ
o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e f i r s t p a n e l i s 2 . C u r v e s a r e gi ve n fo r t h e
r a t i o ψ e q u a l s ½ , 1 a n d 2 .
105
2.5
2
ψ=1/2 ψ=1 ψ=2
y t i s n e t n
I
1.5
d e t t i
1
0.5
l
m s n a r T e v i t a e R
0
0
0.5
1.5
2
χa 1
Fi g ur e 5 .4 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
1 5 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 /2 .
106
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 .
5
4.5 ψ=1/2 4
y t i s n e t n
3.5 ψ=1
I
3
d e t t i
2.5 ψ=2
2
1.5
1
l
m s n a r T e v i t a e R
0.5
0 0 0.5 1.5 1 2
χa
Fi g ur e 5 .5 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
1 5 ˚ .T he r a tio κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 .
107
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 .
6
5
ψ=1/2
ψ=1
y t i s n e t n
4
I
ψ=2
d e t t i
3
2
1
l
m s n a r T e v i t a e R
0
0
0.5
1
1.5
2
χa
Fi g ur e 5 .6 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
1 5 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 2 .
108
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 .
1.2
1
ψ=1/2
y t i s n e t n
ψ=1
I
0.8
ψ=2
d e t t i
0.6
0.4
l
0.2
m s n a r T e v i t a e R
0
0
0.5
1.5
1
2
χa
F i gu r e 5 . 7 Th e r e l a t i v e t r a n s mi t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n f i n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 3 0 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 / 2 . C u r v e s a r e gi ve n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
109
1.8
1.6
ψ=1/2
1.4
ψ=1
y t i s n e t n
ψ=2
I
1.2
d e t t i
1
0.8
0.6
l
0.4
m s n a r T e v i t a e R
0.2
0
0
0.5
1.5
1
2
χa
F i gu r e 5 . 8 Th e r e l a t i v e t r a n s mi t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n f i n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 3 0 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 . C u r v e s a r e g i v e n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
110
3
2.5
ψ=1/2
ψ=1
y t i s n e t n
I
2
ψ=2
d e t t i
1.5
1
l
0.5
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1
χa
Fi g ur e 5 .9 T h e r e la ti ve t r an s mi t ted i nt e ns it y at t he j u nc tio n o f t wo i n f i ni te p a n el s d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
3 0 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 2 .
111
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 .
1.2
1
y t i s n e t n
I
0.8
ψ=1/2
d e t t i
0.6
ψ=1
0.4
ψ=2
l
0.2
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1 χa
Fi g ur e 5 .1 0 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
4 5 ˚ . T he r at io κ o f t he wa v e n u mb er i n t h e seco nd p a nel to t hat i n t he f i r st p a ne l i s
112
1 /2 . C ur ve s a r e g i ve n fo r t he r at io ψ eq u al s ½, 1 an d 2 .
1.2
1
ψ=1/2
y t i s n e t n
I
0.8
ψ=1
d e t t i
0.6
0.4
ψ=2
l
0.2
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1 χa
Fi g ur e 5 .1 1 . T he r ela ti v e tr a n s mi t ted i nt e ns it y a t t he j u nc tio n o f t wo i n f in it e p a n el s
d ue to a fo r ced wa v e i n th e f ir s t p a n el i nc id e n t a t a n a n g le o f i n cid e n ce t o t he no r ma l
o f 4 5 ˚ . T he r at io κ o f t h e wa v e n u mb er i n t he se co nd p a ne l to t ha t i n t he f ir st p a nel i s
113
1 . C ur v es ar e gi ve n fo r t he r at io ψ eq ual s ½, 1 a nd 2 .
9
8
7
ψ=1/2
ψ=1
y t i s n e t n
6
I
5
ψ=2
d e t t i
4
3
2
l
m s n a r T e v i t a e R
1
0
0
0.5
1.5
1
2
χa
F i gu r e 5 . 1 2 Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n fi n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 4 5 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 2 . C u r v e s a r e g i v e n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
114
1.2
1
ψ=1/2
0.8
ψ=1
y t i s n e t n
I
ψ=2
d e t t i
0.6
0.4
0.2
l
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1 χa
F i gu r e 5 . 1 3 Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n fi n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 6 0 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 / 2 . C u r v e s a r e gi ve n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
115
1.8
1.6
1.4
ψ=1/2
1.2
ψ=1
y t i s n e t n
I
1
ψ=2
d e t t i
0.8
0.6
0.4
0.2
l
m s n a r T e v i t a e R
0
0
0.5
1.5
1
2
χa
Fi g ur e 5 .1 4 T h e r e la ti ve tr a n s mi tt ed i n te n s it y at th e j u n ct io n o f t wo i n fi n ite p a ne ls d ue
to a fo r ced wa ve i n t he f ir s t p a n el i nc id e nt at a n an g le o f i nc id e n ce to t h e n o r ma l o f
6 0 ˚ . T he r at io κ o f t he wav e n u mb er i n t he se co n d p a nel to t hat i n t he f ir st p a ne l i s 1 .
116
C ur ve s ar e g i ve n fo r t he r at io ψ eq u al s ½, 1 a nd 2 .
16
14
12
ψ=1/2 ψ=1 ψ=2
y t i s n e t n
I
10
d e t t i
8
6
4
l
m s n a r T e v i t a e R
2
0
0
0.5
1.5
2
1 χa
F i gu r e 5 . 1 5 Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n fi n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 6 0 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 2 . C u r v e s a r e g i v e n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
117
1.2
1
ψ=1/2
y t i s n e t n
0.8
I
ψ=1
d e t t i
0.6
0.4
ψ=2
l
0.2
m s n a r T e v i t a e R
0
0
0.5
1.5
1
2
χa
F i gu r e 5 . 1 6 . Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n f i n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 7 5 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 / 2 . C u r v e s a r e gi ve n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
118
9
8
7
ψ=1/2 ψ=1 ψ=2
y t i s n e t n
6
I
5
d e t t i
4
3
2
l
1
m s n a r T e v i t a e R
0
0
0.5
1.5
1
2
χa
F i gu r e 5 . 1 7 . Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n f i n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 7 5 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 . C u r v e s a r e g i v e n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
119
45
40
35
30
ψ=1/2
ψ=1
y t i s n e t n
I
25
ψ=2
d e t t i
20
15
10
5
l
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1 χa
F i gu r e 5 . 1 8 Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n fi n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 7 5 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 2 . C u r v e s a r e g i v e n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
120
1.2
1
ψ=1/2
y t i s n e t n
I
0.8
ψ=1
ψ=2
d e t t i
0.6
0.4
l
0.2
m s n a r T e v i t a e R
0
0
0.5
1.5
1
2
χa
F i gu r e 5 . 1 9 . Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n f i n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 9 0 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 / 2 . C u r v e s a r e gi ve n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
121
1.2
1
ψ=1/2
y t i s n e t n
ψ=1
I
0.8
ψ=2
d e t t i
0.6
0.4
l
0.2
m s n a r T e v i t a e R
0
0
0.5
1.5
2
1 χa
F i gu r e 5 . 2 0 Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n fi n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 9 0 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 . C u r v e s a r e g i v e n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
122
1.2
1
0.8
ψ=1/2
ψ=1
y t i s n e t n
I
0.6
ψ=2
d e t t i
0.4
0.2
l
0
m s n a r T e v i t a e R
0
0.5
1.5
2
1 χa
F i gu r e 5 . 2 1 Th e r e l a t i v e t r a n s m i t t e d i n t e n s i t y a t t h e j u n c t i o n o f t wo i n fi n i t e p a n e l s d u e t o a
fo r c e d w a ve i n t h e f i r s t p a n e l i n c i d e n t a t a n a n gl e o f i n c i d e n c e t o t h e n o r m a l o f 9 0 ˚ . Th e r a t i o
κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 2 . C u r v e s a r e g i v e n fo r
t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
123
5
ψ=1/2
4
ψ=1
3
) B d ( y t i s n e t n
ψ=2
I
2
d e t t i
1
0
-1
l
-2
m s n a r T e v i t a e R
-3
0
0.5
1.5
2
1 χa
F i gu r e 5 . 2 2 Th e i n c i d e n t f i e l d i s a d i f f u s e vi b r a t i o n a l fi e l d . Th e i n t e gr a t i o n i s d o n e o v e r a l l
t h e p o s s i b l e a n gl e s o f i n c i d e n c e . B e c a u s e o f s ym m e t r y, t h e i n t e g r a t i o n i s o n l y d o n e fr o m 0 t o
9 0 d e gr e e s . Th e r a t i o κ o f t h e w a ve n u m b e r i n t h e s e c o n d p a n e l t o t h a t i n t h e f i r s t p a n e l i s 1 / 2 .
C u r v e s a r e gi v e n fo r t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
124
6
4
ψ=1/2
ψ=1
2
ψ=2
) B d ( y t i s n e t n
I
d e t t i
0
-2
l
-4
m s n a r T e v i t a e R
-6
0
0.5
1.5
2
1
2.5
χa
F i gu r e 5 . 2 3 Th e i n c i d e n t f i e l d i s a d i f f u s e vi b r a t i o n a l fi e l d . Th e i n t e gr a t i o n i s d o n e o v e r a l l
t h e p o s s i b l e a n gl e s o f i n c i d e n c e . B e c a u s e o f s ym m e t r y, t h e i n t e g r a t i o n i s o n l y d o n e fr o m 0 t o
9 0 d e gr e e s . Th e r a t i o κ o f t h e w a ve n u m b e r i n t h e s e c o n d p a n e l t o t h a t i n t h e f i r s t p a n e l i s 1 .
C u r v e s a r e gi v e n fo r t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
125
8
ψ=1/2
6
ψ=1
4
) B d ( y t i s n e t n
I
ψ=2
2
d e t t i
0
-2
l
-4
m s n a r T e v i t a e R
-6
0
0.5
1.5
2
1 χa
F i gu r e 5 . 2 4 Th e i n c i d e n t f i e l d i s a d i f f u s e vi b r a t i o n a l fi e l d . Th e i n t e g r a t i o n i s d o n e o v e r a l l
t h e p o s s i b l e a n gl e s o f i n c i d e n c e . B e c a u s e o f s ym m e t r y, t h e i n t e g r a t i o n i s o n l y d o n e fr o m 0 t o
9 0 d e gr e e s . Th e r a t i o κ o f t h e w a ve n u m b e r i n t h e s e c o n d p a n e l t o t h a t i n t he f i r s t p a n e l i s 2 .
C u r v e s a r e gi v e n fo r t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
126
0.5
ψ = 1/2
0
ψ = 1
ψ = 2
-0.5
) B d ( y t i s n e t n
I
-1
d e t t i
-1.5
-2
l
-2.5
m s n a r T e v i t a e R
-3
0
0.5
1
1.5
2
r
F i gu r e 5 . 2 5 . Th e vi b r a t i o n a l fi e l d i n t h e 1 s t p a n e l i s e x c i t e d b y a d i f f u s e i n c i d e n t a c o u s t i c
fi e l d . Th e r a t i o κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 1 / 2 .
C u r v e s a r e gi v e n fo r t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
127
0.5
-0.5
-1.5
) B d ( y t i s n e t n
I
ψ=1/2
d e t t i
-2.5
ψ=1
-3.5
ψ=2
-4.5
l
m s n a r T e v i t a e R
-5.5
0
0.5
1
1.5
2
r
F i gu r e 5 . 2 6 . Th e vi b r a t i o n a l fi e l d i n t h e 1 s t p a n e l i s e x c i t e d b y a d i f f u s e i n c i d e n t a c o u s t i c
fi e l d . Th e r a t i o κ o f t h e w a v e n u mb e r i n t h e f i r s t p a n e l t o t h a t i n t h e s e c o n d p a n e l i s 1 . C u r v e s
a r e g i v e n fo r t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
128
1
ψ=1/2
0
ψ=1
-1
ψ=2
) B d ( y t i s n e t n
I
-2
d e t t i
-3
-4
l
-5
m s n a r T e v i t a e R
-6
0
0.5
1.5
2
1 r
F i gu r e 5 . 2 7 . Th e vi b r a t i o n a l fi e l d i n t h e 1 s t p a n e l i s e x c i t e d b y a d i f f u s e i n c i d e n t a c o u s t i c
fi e l d . Th e r a t i o κ o f t h e w a v e n u mb e r i n t h e s e c o n d p a n e l t o t h a t i n t h e fi r s t p a n e l i s 2 . C u r v e s
a r e g i v e n fo r t h e r a t i o ψ e q u a l s ½ , 1 a n d 2 .
129
2
0
-2
-4
) B d ( y t i s n e t n
I
-6
d e t t i
-8
Villot & Guigou-Carter
-10
-12
l
m s n a r T e v i t a e R
Irwin
-14
F i gu r e 5 . 2 8 Th e r e l a t i v e i n t e n s i t y t r a n s m i t t e d a t a p i n n e d j o i n t b e t w e e n t wo p a n e l s wh e n t h e
t wo p a n e l s h a ve t h e s a m e m a t e r i a l p r o p e r t i e s . Th e fi r s t p a n e l i s e xc i t e d o n o n e o f i t s s i d e s b y a
d i f fu s e s o u n d fi e l d . Th e I r w i n c u r v e s h o w s t h e c a l c u l a t i o n s m a d e i n t h i s t h e s i s , wh i l e t h e
V i l l o t & Gu i go u - C a r t e r c u r v e s h o w s t h e c a l c u l a t i o n s ma d e b y V i l l o t a n d G u i go u - C a r t e r
( 2 0 0 0 ) . Th e x - a xi s va r i a b l e , r i s t h e r a t i o o f t h e w a v e n u mb e r o f t h e d i f fu s e s o u n d fi e l d t o t h e
f r e e b e n d i n g w a v e n u mb e r o f t h e t w o i d e n t i c a l p a n e l s . Th e c r i t i c a l f r e q u e n c y o c c u r s wh e n r
e q u a l s o n e .
-16 0 0.2 0.4 0.6 1 1.2 1.4 1.6 1.8 2 0.8 r
T he cr it ica l fr eq u e nc y o cc ur s wh e n r i s eq u al to o ne . Ab o v e t h e cr it ica l f r eq u e nc y,
wh er e r i s gr e ater t ha n o r eq ual to o n e, t h e t wo c ur ve s a gr ee we ll wi t h ea ch o t her .
B elo w t he cr i ti cal fr eq u en c y t h e r e la ti ve tr a n s m itt ed i n te n s it y is mu c h g r eat er t h a n t h at
calc u la ted b y Vi llo t a nd G ui go u - C ar te r ( 2 0 0 0 ) . He nce i t i s no t a s o b v io u s a s cla i med
b y Vi llo t a nd G ui go u - C a r ter ( 2 0 0 0 ) t ha t t h e i n te n si t y tr a n s mi tt ed b y t h e fo r ced wa ve
ca n b e i g no r ed r el at i ve t o t hat tr a ns mi t ted b y r e s o na n t wa ve s.
T he p r o d uc tio n o f fi g ur e 5 .2 8 wa s t he ma i n ai m o f t hi s t he si s. T he id e nt i f ica tio n o f t wo
er r o r s i n Vi llo t a nd G ui go u - Car ter ’ s ( 2 0 0 0 ) ca lc ul at io n s me a nt t ha t i t was i mp o r t a nt to
130
co r r ec t t h eir ca lc ul at io n s. T h i s ha s b e e n a c hie v e d i n fi g u r e 5 .2 8 a nd l ar g e d i f fe r e nc es
b et we e n t he co r r ec ted c alc u lat io n s a nd Vi llo t a nd G ui go u - C ar te r ’s ( 2 0 0 0 ) cal c ul at io ns
ha v e b ee n id e n ti f ied b el o w t h e cr it ica l fr eq u e nc y.
Fr o m eq u at io n ( 4 .4 1) , t h e b e nd i n g wa v e n u mb er o f p la te 1 is
=
.
2 k 1
2 ω m 1 B 1
( 5 .2 0)
T he a ir b o r ne wa ve n u mb er i s
=
ka
ω . c
( 5 .2 1)
T he cr it ica l a n g u lar fr eq ue n c y o f p lat e 1 ω c 1 o r t he cr i ti ca l fr eq u e nc y f c 1 o f p la te 1
o cc ur s wh e n
ka =
.1k
( 5 .2 2 )
a
T her e fo r e , a f ter mu c h m an ip ul at i uo n i t i s fo u nd th at,
=
=
=
.
r
k k
f f
1
ω ω c 1
c 1
( 5 .2 3)
T hu s r fo r Vi llo t a nd G u igo u - C ar t er ’ s ( 2 0 0 0 ) f i g ur e 7 i s cal c ula ted b y ta ki n g t he
sq uar e r o o t o f t h e r a tio o f t he fr eq ue nc y d i v id ed b y t he cr i ti cal fr eq ue n c y. I n V il lo t
and G u i go u - Car t er ’ s ( 2 0 0 0 ) f i g ur e 7 , t h e cr it ica l fr eq ue nc y i s wh e r e t he i r fo r ced c ur ve
sto p s d ecr e as i n g wi t h i n cr ea si n g f r eq ue n c y a nd b eco me s a l mo st c o n sta n t ab o ve 3 .4
k Hz.
2
c
2
2
I t s ho uld al so b e no ted t ha t
κ
=
=
=
.
f f
k k 1
ω c ω c 1
c 1
131
( 5 .2 4)
Chapter 6 Conclusion
I t ha s b e e n s ho wn i n t h i s t h e si s t h at t he tr a n s mi s sio n o f f o r ced wa v es at an i n ter fa ce
b et we e n t wo me d i a i s d i f fe r e nt fr o m t he tr a n s mi s sio n o f f r ee l y p r o p a g at i n g wa ve s. T he
Vil lo t a nd G ui go u - C ar te r ( 2 0 0 0 ) eq ua tio n f o r t h e a mp l it ud e o f t he tr a n s mi t ted b e nd i n g
wa v e at a p i n n ed j u n ct io n b et wee n t wo p a ne ls d u e to a fo r ced i nc id e n t wav e i s co r r ec t.
Ho we v er , t hei r e xp r e s si o n fo r t he tr a n s mi t te d b end i n g wa ve i nt e ns it y i s no t co r r ect .
T hi s i s b e ca u se it i s no t p o s sib le to d e f i ne a tr a n s mi s sio n fac to r fo r f o r c ed i nc id e n t
wa v e s as Vi llo t a nd G u i go u - Car ter ( 2 0 0 0) ha v e att e mp t ed to d o .
T her e ap p ear to b e t wo er r o r s i n Vi llo t a nd G ui go u - Car ter ’ s ( 2 0 0 0 ) p ap er . T he f ir st
er r o r i s b eca u se it i s no t p o s sib le to ca lc u la te t h e e ner g y i nc id e n t o n a j u nc tio n b y j u st
co n s id er i n g t he i nc id e n t wa ve a nd i g n o r i n g t he r ef le cted wa v e. T h e i n ter act io n o f t he
in cid e nt a nd r e f lec ted wav es mu s t b e co n sid er ed . T hi s i s b eca u s e t he cr o s s t er ms
b et we e n t he tr a n s ver se v elo c it y o f o ne o f t he wa ve s wi t h t h e tr a n s ver se f o r ce o f t he
o th er wa ve i s no t zer o . T hi s i s d i f fer e n t fr o m t h e ca se wh e n t he i nc id e n t wa ve s ar e
fr e el y p r o p a ga ti n g a nd t he se cr o s s t er ms ar e zer o .
T he seco nd er r o r is d ue to t he we i g ht i n g o ve r t h e d ir e ct io n o f t he i ncid e nt wa v e u sed
b y Vi llo t a nd G ui go u - C a r ter ( 2 0 0 0 ) . T hi s i s i n co r r ect b eca u s e i t ha s a s a co s θ ter m t h at
s ho uld no t b e t he r e. T h e co s θ t er m co me s fr o m t he d i f fe r e nt ia l o f t he fo r ce d wa v e
n u mb e r i n t he p a ne l, wh ic h ap p ear s i n t he ir i nt e gr a l s.
B eca u se o f t he se t wo er r o r s, Vi llo t a nd G ui go u - Car ter ’ s ( 2 0 0 0) n u mer ic all y ca lc ul at ed
gr ap h o f t h e tr a n s mi s sio n lo s s i s i n co r r ec t. I t s h o ws t ha t t h e a tt e n uat io n o f t he fo r ced
wa v e ca n b e 1 6 d B o r mo r e t ha n t he at te n u a tio n o f t he fr ee l y p r o p a ga ti n g wa v e. T he
calc u la tio n s i n t h i s t h es i s s ho w t ha t t h e ma x i mu m e xtr a a tte n u at io n fo r t he s a me
132
si t ua tio n is le s s t ha n 6 d B .
B eca u se o f t he co mp l e x na t ur e o f t he p r o b l e m b e in g co n sid er ed i n t h i s t h es is , i n it ial l y
th e si t ua tio n o f fo r ced aco us ti ca l wa v e s p r o p a g ati n g f r o m a h al f i n f i ni t e fl u id med i u m
to a no t h er ha l f i n fi n it e f lu id me d i u m wa s co ns id er ed . T h e no r ma ll y i nc i d en t c as e wa s
co n s id er ed f ir st . T he n t h e o b liq u e i n cid e nce ca se wa s co n s id er ed . F i na ll y t he d i f f u se
f ield i nc id e n c e c as e wa s co ns id er ed . I f t he wa ve sp e ed i n t he t wo med ia is t he s a me, a
ver y s i mp l e fo r mu l a fo r th e r a tio o f t h e e ne r g y t r an s mi t ted b y t he f o r ced d i f f u se f ield
wa v e s to t h at tr a n s mi t te d b y t he f r ee l y p r o p a g at in g wa v e s wa s ca lc u lat e d . U si n g
1
r
an al yt ic al i nt e gr a tio n, t hi s e ner g y r at io wa s fo u nd to b e ( eq ua tio n ( 2 .1 8 0) a nd ( 2 .1 8 8) ) :
≤
r
,1
+ 2
( 6 .1 )
and
≥
+
1
.1
r
1 2
1 r
( 6 .2 )
I n t he se fo r mu la e, r is t he r at io o f t he wa ve n u mb e r o f t h e fo r c ed i n cid en t a co us ti ca l
wa v e to t h e wa ve n u mb e r o f a fr eel y p r o p a ga ti n g wa ve .
W he n t he wa v e sp eed was d i f fer e nt ( i n t he t wo d i f fer e n t i n fi n ite hal f m ed ia) , i t wa s
ne ce s sar y to u se n u me r i cal i nt e gr a tio n o v er t h e an g le o f i nc id e n ce to ca l cu la te t he
d i f f us e f ield tr a n s mi t ted en er g y . T h i s t h e si s p r o vid e s gr ap h s s ho wi n g t h e r at io o f t he
tr a n s mi tt ed i n te n si t y fo r a fo r ced i nc id e n t wa v e to t ha t fo r a fr e el y p r o p ag at i n g
in cid e nt wa ve .
T he n, t h e c as e o f t wo h a l f i n f i ni te p la te s co n n ec ted b y a p i n ned j o i nt wa s co n s id er ed.
T he p i n n ed j o i nt wa s co n sid er ed b e ca u se t hi s i s a r ea so nab le ap p r o xi ma t io n fo r t wo
ha l f i n fi n ite p la te s co n n ected at r i g h t a n g le s a t l o w fr eq u e nci es . B ec a us e, fo r t h is
p in n ed j o i nt ca se , t h e a n gl e b e t we e n t he p lat e s ma k e s no d i f f er e n ce, t hi s t h e si s
co n s id er s t h e c as e wh e n t he p lat e s ar e i n t he sa me p la n e. Ag ai n b ec a us e o f t h e
133
co mp le x it y, no r ma l i n ci d e n ce wa s co n s id er ed f i r st , fo l lo we d b y t h e o b l i q ue i nc id e nc e
cas e. T wo d i f fer e n t d i f f u se f ie ld ca s es wer e co n sid er ed . F ir s tl y, ca lc u lat io n s wer e
mad e fo r t he ca se o f a si n gl e fo r c ed wa ve n u mb e r d i f f u se i ncid e nt b e nd i n g wa ve fie ld
in t he fir s t p l ate . I n t h e seco nd ca se , t he d i f f u se in cid e nt b e nd i n g wa ve f ield i n t he
f ir s t p lat e i s e xci ted b y a d i f f u se air b o r n e so u nd f ie ld o n o ne s id e o f t he f ir st p la te .
T he fo r c ed wa v e n u mb er i n t h e fir s t p l at e d ep e n d s o n t he a n g le o f i nc id en ce o f t he
fo r ci n g a co u st ic wa ve to t he no r ma l to t he p lat e.
Fo r t h e c as e wh e n t h e wav e i n t he f ir st p la te i s e xc it ed b y a d i f f u se air b o r ne so u nd
wa v e as s ta ted ab o v e, t h e tr a n s mi s s io n o f t he fo r ced wa v e c a n b e up to 6 d B le ss t ha n
th e t r a n s mi s sio n o f t h e f r eel y p r o p a ga ti n g wa ve . T hu s t he as s u mp tio n t h at i s o f te n
mad e, wh e n p r ed ic ti n g f la n ki n g tr a n s mi s s io n u si n g t he me t ho d s i n t h e E N1 2 3 5 4
st a nd ar d , t ha t t h e e ne r g y tr a n s mi tt ed b y t he fo r ced wa v e c a n b e i g no r ed , i s no t
ne ce s sar i l y co r r ec t. T h i s is b ec a us e t h e e x tr a at t en u at io n o f t he fo r ced b end i n g wa ve
co mp ar ed to t hat o f t h e fr e el y p r o p a ga ti n g i nc id en t wa ve s is no t as lar g e as t ha t
p r ed ic ted b y Vi llo t a nd G ui go u - Car ter ( 2 0 0 0) . O f co ur s e, i n ma n y ca se s th e e n er g y o f
th e fo r c ed b e nd i n g wa ve s wi l l b e mu c h le s s t h a n t he e n er g y o f t he fr ee l y p r o p a gat i n g
wa v e s, b u t t h at i ss u e i s no t co n sid er ed i n t h i s t h es is .
T he r e se ar c h co nd u ct ed in t h is t he s is co uld b e e xt e nd ed b y co n sid e r i n g j u nc tio n t yp e s
o th er t ha n p i n ned j u nct i o n s. U n fo r t u n ate l y t he e q ua tio n s wi ll b eco me e v en mo r e
134
co mp li ca ted t ha n t ho s e p r es e nted i n t hi s t he si s.
Appendix 1
Matlab code function z = squareroot( x, r, alpha) ralpha=r.*alpha; r2alpha2=ralpha.*ralpha; z=sqrt(1-r2alpha2.*(1-x.*x)); end T hi s f u nc tio n cal c ul ate s t he sq uar er o o t ter ms u s ed i n t he i nte g r al f u nct i o n func tio n y = In te gral (r, alp ha, be ta ) ralp ha= r.* alp ha ; if r alp ha< =1 low er= 0; else low er= sqr t( 1- 1./( ral pha .*r al ph a)); end y=qu adg k(@ p,l ow er ,1); fun cti on z= p( x) te mp1 =s qu arer oot (x, r,1 ); te mp2 =s qu arer oot (x, r,a lp ha ); z= abs (r .* x+te mp1 ).^ 2.* re al (tem p2) ; z= z./ ab s( temp 1+t emp 2.* be ta ).^2 ; end end T hi s f u nc tio n cal c ul ate s t he r ela ti v e tr a n s mi tted i nte n s it y fo r a d i f f u se i nc id e n t so u nd f ield i n t he aco u st ic c a s e a s a f u n ct io n o f t he r a t io r o f t h e fo r c ed wa v e n u mb e r to t he fr e el y p r o p a ga ti n g wa v e n u mb er a nd t he r at io s a lp h a a nd b et a. Alp ha i s t he wa v e n u mb e r i n med i u m o ne d iv id ed b y t he wa v e n u m b er i n me d i u m t wo . B e ta is t he i mp ed a n ce o f med i u m o ne d i vid ed b y t he i mp ed an ce o f med i u m t wo . func tio n r = tr an smit (al pha ,be ta ) lowe r=0 ; uppe r=2 ; numb er= 101 ; step =(u ppe r- l ow er )./( num ber -1) ; r=ze ros (nu mbe r, 3) ; r(1: num ber ,1) =l ow er:s tep :up per ; for m=1 :nu mbe r r(m ,2) =In te gr al(r (m, 1), alp ha ,b eta) ; if r(m ,1) <= 1 r( m,3 )= (1 +r(m ,1) )./ 2; els e r( m,3 )= (1 +1./ r(m ,1) )./ 2; end end r(1: num ber ,2) =r (1 :num ber ,2) ./I nt eg ral( 1,a lph a,b et a) ; plot (r( 1:n umb er ,1 ),r( 1:n umb er, 2) ,r (1:n umb er, 1), r( 1: numb er, 3)) end T hi s f u nc tio n cal c ul ate s an d gr ap h s t he o u tp ut o f t he i nt e gr al f u nc tio n at 1 0 1 eq ual l y sp ac ed va l ue s o f r fr o m 0 to 2 . T h e va l ue s ar e n o r mal ized b y t he val u e o f t he i nt e gr al f u nc tio n fo r r eq u al s 1 . T he r i s eq u al to t he fo r ced wa v e n u mb er d i v id e d b y t he wa v e n u mb e r i n med i u m o ne. T he va l ue s ar e ca lc u lat e d fo r t he gi ve n v al u es o f alp ha a nd b eta. Alp h a i s t he wa v e n u mb e r i n med i u m o ne d iv id ed b y t he wa v e n u m b er i n me d i u m t wo . B eta i s t h e i mp ed a nc e o f me d i u m o n e d i v i d ed b y t he i mp ed a nc e o f med i u m t wo .
135
136
func tio n t = ta u ( ps i, kap pa, c hi a, t het a) sin2 =si n(t het a) .^ 2; cost het a=s qrt (1 -s in2) ; chia 2=c hia .*c hi a; chia 2si n2= chi a2 .* sin2 ; kapp a2= kap pa. *k ap pa; x=ch ia2 sin 2./ ka pp a2; y1=s qrt (1- chi a2 si n2); y2=s qrt (1+ chi a2 si n2); y3=s qrt (1- x); y4=s qrt (1+ x); t=1i .*c hia .*c os th eta+ y2+ (1i .*y 1- y2 ).*( 1+c hia 2). /2 ; b=ps i.* (1i .*y 1- y2 )+ka ppa .*( 1i. *y 3- y4); t=t. /b; t=ab s(t ).^ 2.* re al (y3) ; end T hi s f u nc tio n cal c ul ate s t he r ela ti v e tr a n s mi tted i nte n s it y fo r t h e ca se o f a p i n ned j un ct io n b e t we e n t wo p a ne l s fo r a wa v e i n cid e nt at a n a n gl e o f t he ta to t he n o r ma l to th e j u n ct io n. T h e c alc u l atio n i s p er fo r med fo r t h e g i v e n v al u es o f p si, k a p p a a nd c h i a. W her e p si i s t h e r a tio o f t he b e nd i n g st i f f ne s s o f p lat e t wo mu l t ip l ied b y t he sq uar e o f th e wa ve n u mb er i n p l at e t wo , to t he b e nd i n g s ti f f n es s o f p la te o n e b y t h e sq u ar e o f t he wa v e n u mb er o f p la te o n e. T he k ap p a ter m i s t h e wa ve n u mb er i n p l at e t wo d i v i d ed b y th e wa ve n u mb er i n p l at e o ne. T h e t er m c h ia i s t he wa v e n u mb er o f a fo r ced i n cid e n t wa v e d i vid ed b y t h e wa ve n u mb er o f a fr e el y p r o p ag at i n g wa v e n u mb er in p la te o n e. func tio n c hia = p anel (ps i, kap pa , thet a) lowe r=0 ; uppe r=2 ; numb er= 101 ; step =(u ppe r-l ow er )./( num ber -1) ; chia =ze ros (nu mb er ,2); chia (1: num ber ,1 )= lowe r:s tep :up pe r; for m=1 :nu mbe r chi a(m ,2) =t au ( p si, ka ppa , ch ia(m ,1) , t het a) ; end chia (1: num ber ,2 )= chia (1: num ber ,2 ). /tau ( psi , k ap pa , 1, thet a); plot (ch ia( 1:n um be r,1) ,ch ia( 1:n um be r,2) ) end T hi s f u nc tio n gr ap hs t he no r ma l ized o utp u t va l u es o f ta u a s a f u n ct io n o f c hia . T he ter m c hia i s t h e wa v e n u mb e r o f a f o r ced i nc id e n t wa v e d i v id ed b y t he wav e n u mb er o f a fr ee l y p r o p a g at i n g wa ve n u mb er i n p l at e o ne. T he va l ue s ar e no r ma li z ed b y d i v id i n g b y t he o u tp ut o f ta u fo r th e fr e el y p r o p a ga ti n g c ase wh e n c hi a eq u al s 1 . func tio n y = in tt au(p si, ka ppa , ch ia) [m,n ]=s ize (ch ia ); for i= 1:m fo r j =1: n i f k app a>= ch ia (i,j ); upp er= pi. /2 ; e lse upp er= asi n( ka ppa. /ch ia( i,j )) ; e nd y =qu adg k(@ p, 0, uppe r); en d end fun cti on z=p (t he ta) z= tau ( psi , ka ppa, ch ia( i,j ), t heta ); end end
137
T hi s f u nc tio n cal c ul ate s t he r ela ti v e tr a n s mi tted i nte n s it y fo r t h e ca se o f a d i f f u se b end i n g wa ve f ie ld i n t h e fir st p a ne l b y i nte gr at i n g ta u o ve r t h e a n g le o f in cid e nce. func tio n c hia = i ntpa nel (ps i, ka pp a) lowe r=0 ; uppe r=2 ; numb er= 101 ; step =(u ppe r- l ow er )./( num ber -1) ; chia =ze ros (nu mb er ,2); chia (1: num ber ,1 )= lowe r:s tep :up pe r; for m=1 :nu mbe r chi a(m ,2) =i nt tau( psi , k app a, c hia( m,1 )); end chia (1: num ber ,2 )= 10*l og1 0(c hia (1 :n umbe r,2 )./ int ta u( psi, ka ppa , 1)); plot (ch ia( 1:n um be r,1) ,ch ia( 1:n um be r,2) ) end T hi s f u nc tio n gr ap hs t he no r ma l ized o utp u t o f i n tta u a s a f u n ct io n o f c h i a fo r 1 0 1 eq u al l y sp ac ed va l ue s fr o m 0 to 2 . T he no r ma l iz atio n i s p er for med b y d i vid i n g b y t he va l ue o f i n ta u fo r t he f r eel y p r o p a ga ti n g ca se whe n c hi a eq ua l s o ne. T h e ter m c h ia is th e wa ve n u mb er o f a fo r ced i n cid e nt wa ve d i v id ed b y t he wa v e n u mb e r o f a fr e el y p r o p ag at i n g wa v e n u mb er i n p la te o ne . function y = dblint( psi, kappa, r, neta ) a=quadgk(@p,0,pi/2); function z=p(phi) sinphi=sin(phi); chia=r.*sinphi; temp=(chia.^4-1).^2+neta.^2.*chia.^8; z=inttau(psi, kappa, chia).*sinphi./temp; end b=quadgk(@q,0,pi/2); function z=q(phi) sinphi=sin(phi); chia=r.*sinphi; temp=(chia.^4-1).^2+neta.^2.*chia.^8; z=(pi./2).*sinphi./temp; end y=a/b; end T hi s f u nc tio n cal c ul ate s t he r ela ti v e tr a n s mi tted i nte n s it y fo r t h e ca se whe n t he in cid e nt b e nd i n g wa ve f ield i s fo r c ed b y a d i f f u se f ie ld aco u s ti c wa v e. I t p er fo r ms a d o ub le i n te gr al ( o v er a n gl e o f i nc id e nc e a nd azi mu t h al a n gl e) b y i nt e gr a ti n g t he o u tp ut o f i nt ta u. T he va l ue s ar e cal c ula ted f o r t h e gi v e n an g le s o f t he r at io s p si, ka p p a, r a nd ne ta ( t he d a mp i n g lo s s f acto r o f t he fir s t p a ne l) . W he r e p si i s t h e r a tio o f t he b e nd i n g st i f f ne s s o f p la te t wo m ul tip li ed b y t he sq uar e o f t he wa ve n u mb er i n p l ate t wo , to t he b end i n g st i f f ne s s o f p la t e o ne b y t he sq uar e o f t he wa v e n u mb er o f p l ate o n e. T he kap p a t er m is t he wa v e n u mb e r i n p la te t wo d i vi d ed b y t he wa v e n u mb e r i n p l ate o ne. T he r i s eq u al to t he fo r ced wa v e n u mb er d i v id e d b y t he wa v e n u mb er i n med i u m o n e. T he ne ta ter m i s t h e i n s it u d a mp i n g lo ss f ac to r o f p la te o ne , i t ha s t he v al ue 0 .0 0 3 . func tio n f = gr ap hdbl int (ps i, ka pp a, n eta ) lowe r=0 ; uppe r=2 ; numb er= 101 ; step =(u ppe r- l ow er )./( num ber -1) ; f=ze ros (nu mbe r, 2) ; f(1: num ber ,1) =l ow er:s tep :up per ; for m=1 :nu mbe r
138
f(m ,2) =db li nt (psi , k app a, sq rt (f(m ,1) ), net a) ; end f(1: num ber ,2) =1 0. *log 10( f(1 :nu mb er ,2). /db lin t(p si , kapp a, 1, neta )); plot (f( 1:n umb er ,1 ),f( 1:n umb er, 2) ) end T hi s f u nc tio n no r ma l ize s t h e o utp u t o f d b li n t b y d i vid i n g i t b y t he o u tp u t o f d b l i nt fo r th e c as e wh e n r eq u al s o ne. T he r i s eq ua l to t h e fo r ced wa ve n u mb er d i vid ed b y t h e wa v e n u mb er i n med i u m o n e.
References
Brunskog, J., & Chung, H. (2011). "Non-diffuseness of vibration fields in
ribbed plates". Journal of the Acoustical Society of America, 129,
1336-1343.
CEN. (2000a). "CEN EN12354-1:2000(E)-Building acoustics-Estimation of
acoustic performance in buildings from the performance of elements-
Part 1: Airborne sound between rooms" (pp. 1- 20). Brussels, Belgium:
European Committee for Standardization.
CEN. (2000b). "CEN EN12354 -2:2000(E)-Building acoustics-Estimation of
acoustic performance in buildings from the performance of elements-
Part 2: Impact sound insulation between rooms" (pp. 1-20). Brussels,
Belgium: European Committee for Standardization.
CEN. (2000c). "CEN EN12354-3:2000(E)-Building acoustics-Estimation of
acoustic performance in buildings from the performance of elements-
Part 3: Airborne sound insulation against outdoor sound" (pp. 1- 20).
Brussels, Belgium: European Committee for Standardization.
CEN. (2000d). "CEN EN12354-4:2000(E)-Building acoustics-Estimation of
acoustic performance in buildings from the performance of elements-
Part 4: Transmission of indoor sound to the outside" (pp. 1-20).
Brussels, Belgium: European Committee for Standardization.
CEN. (2000e). "CEN EN12354-5:2000(E)-Building acoustics-Estimation of
acoustic performance in buildings from the performance of elements-
Part 5: Sound levels due to the service equipment" (pp. 1-20). Brussels,
Belgium: European Committiee for Standardization.
139
CEN. (2000f). "CEN EN12354-6:2000(E)-Building acoustics-Estimation of
acoustic performance in buildings from the performance of elements-
Part 6: Sound absoption in enclosed spaces" (pp. 1- 20). Brussels,
Belgium: European Committee for Standardization.
Cremer, L, Heckl, M, & Petersson, B.A.T. (2005). Structure -Borne Sound.
Berlin, Germany: Springer.
Crispin, C., Ingelaere, B., Van Damme, M., & Wuyts, D. (2006). "The
vibration reduction index Kij: Laboratory measurements for rigid
junctions and for junctions with flexible interlayers,". Journal of
Building Acoustics, 13, 99 -112.
CSTC. (2008). Détails de construction pour améliorer l’isolationaux bruits
aériens pour les constructions légères: Laboratoire acoustique, Centre
Scientifique et Technique de la Construction (CSTC), Limelette,
Belgium.
Dav y, John. (2009). The directivit y of the sound radiation from panels and
openings. Journal of the Acoustical Society of America, 125, 3795 -
3805.
Davy, John.L, Mahn, J.P, Guigou- Carter, Catherine, & Villot, Michel. (2012).
The prediction of flanking sound transmission below the critical
frequency. Journal of the Acoustical Society of America, 132(4), 12.
doi: 10.1121/1.4746945
Gerretsen, E. (1979). Calculation of the sound transmission between
dwellings by partitions and flanking structures. Applied Acoustics , 413-
433.
140
Gerretsen, E. (1986). Calculation of Airborne and Impact Sound Insulation
Between Dwellings. Applied Acoustics, 19, 245-264.
Gerretsen, Edd y. (2007). Some aspects to improve sound insulation
prediction models for lightweight elements. Paper presented at the
Inter-noise 2007
Istanbul, Turkey.
Gradshteyn, I.S, & Ryzhik, I.M. (1980). Table of Integrals, Series, and
Products (A. Jeffrey Ed. 4th edition ed.). United States of America:
Academic Press.
Guigou-Carter, Catherine, Villot, Michel, & Roland, Wetta. (2006).
Prediction Method Adapted to Wood Frame Lightweight Constructions.
Journal of Building Acoustics, 13, 173 -188.
ISO. (2005a). "ISO 15712-1:2005(E) Building acoustics-Estimation of
acoustic performance of buildings from the performance of elements-
Part 1: Airborne sound insulation between rooms" (pp. 1-59). Geneva,
Switzerland: International Organization for standardization.
ISO. (2005b). "ISO 15712-2:2005(E) Building acoustics-Estimation of
acoustic performance of buildings from the performance of elements-
Part 2: Impact sound insulation between rooms" (pp. 30). Geneva,
Switzerland: International Organization for standardization.
ISO. (2005c). "ISO 15712-3:2005(E) Building acoustics-Estimation of the
acoustic performance of buildings from the performance of elements-
Part 3: Airborne sound insulation against outdoor sound" (pp. 1- 31).
Geneva, Switzerland: International Organization for Standardization.
141
ISO. (2005d). "ISO 15712-4:2005(E) Building acoustics-Estimation of
acoustic performance of buildings from the performance of elements-
Part 4: Transmission of indoor sound to the outside (pp. 1-28). Geneva,
Switzerland: International organization for standardization
ISO. (2006). "ISO 10848-2:2006(E)-Acoustics-Laboratory measurement of
the flanking transmission of airborne and impact sound between
adjoining rooms-Part2: Application to light elements when the junction
has a substantial influence- Technical Corrigendum 1". Geneva,
Switzerland: International Organization for Standardization.
ISO. (2006a). "ISO 10848-1:2006(E)-Acoustics-Laboratory measurement of
the flanking transmission of airborne and impact sound between
adjoining rooms-Part1:Frame document" (pp. 1- 30). Geneva,
Switzerland: International Organization for Standardization.
ISO. (2006b). "ISO 10848-2:2006(E)-Acoustics-Laboratory measurement of
the flanking transmission of airborne and impact sound between
adjoining rooms- Part2: Application to light elements when the
junction has a small influence" (pp. 1 -16). Geneva, Switzerland:
International Organization for Standardization.
Mahn, Jeffrey P. (2008). Prediction of Flanking Noise Transmission in
Lightweight Building Constructions: A Theoretical and Experimental
Evaluation of the Application of EN12354- 1. (PhD Research Thesis),
Universit y of Canterbury, Christchurch, New Zealand.
Nightingale, T.R.T. (1995). Application of the CEN draft building acoustics
prediction model to a lightweight double leaf construction. Applied
Acoustics, 46, 265 -284.
142
Nightingale, T.R.T, & Bosmans, I. (2003). Expressions for first-order
flanking paths in homogeneous isotropic and lightl y damped buildings.
Acta Acoustica, 89, 110-122.
Pavasovic, Vladimir. (2006). The radiation of sound from surfaces at grazing
angles of incidence (Master of Applied Science Research), RMIT
Universit y, Melbourne. Retrieved from
http://adt.lib.rmit.edu.au/adt/public/adt-VIT20060911.115939
Villot, Michel. (2002). Modeling flanking transmissions in lightweight
constructions. Paper presented at the Forum Acustica 2002, Seville
Spain.
Villot, Michel, & Guigou-Carter, Catherine. (2000). Contribution of forced
and resonant vibration in sound transmission through partitions and in
vibration transmission through plate junctions. Paper presented at the
NOVEM 2000. Noise and Vibration, Emerging Methods, Lyon, France.
143