
1
INTRODUCTION
Since the late 20th century, there have been many warnings
about the existence of phenol and phenol compounds in the
environment, especially the water environment. Phenol pollutes the
natural water environment due to its presence in many industrial waste
streams such as petrochemical, coke, steel ... [1-3]. Although widely
used in many industries, science has proved that phenols are toxic to
humans and organisms. Thus, phenol pollution in water is becoming a
serious problem for many countries, including Vietnam. Many methods
have been applied to treat phenol in water such as adsorption, biology,
catalytic wet oxidation ... However, it is often necessary to combine two
or more technologies to completely remove phenol from the waste
stream. Recently, catalytic Ozonation Process (COP) or catazon has
emerged as a new strategy for the treatment of persistent organic
substances and has proven very effective in treating wastewater.
contains phenol compounds. This method has many advantages such as
no problems related to chemicals, high efficiency of pollutant
decomposition, fast processing time, simple equipment, easy to install,
no waste sludge and In particular, ozone can be.
Some solid catalysts have been shown to increase the efficiency
of phenol removal in water by catalytic ozonation process such as metal
oxides Mn/Al2O3, MgO, ZnFe2O4, metals on carbon materials such as
AC/Fe2O4, CNT/Fe2O3, CNF/Fe2O3 or minerals such as perovskite,
honeycomb ceramic material ... [6-10]. Carbon nanotubes (CNTS)
materials with the advantages of large surface area, unique structure
have been becoming a new, promising and advanced class of materials
in this field of catalytic synthesis. However, the catalysts based on this
material are mainly applied to remove phenol in water by catalytic wet
oxidation and adsorption method, which is rarely studied to treat phenol
by heterogeneous catalytic ozonation process. FeMgO/carbon nanotube
composite (FeMgO/CNT) and dolomite modified by KOH (M-Dolomit)