
v1.0018112205
BÀI 3
HỆ PHƯƠNG TRÌNH ĐẠI SỐ
TUYẾN TÍNH
1

v1.0018112205
TÌNH HUỐNG KHỞI ĐỘNG
Mô hình input –output Leontief (cân đối liên ngành)
Xét mô hình đầu vào –đầu ra Leontief với ma trận đầu vào:
Ta có hệ phương trình: x–Ax= d.
Tình huống: Biết véctơ cầu d = (10, 5, 6) T (x100 tỷ đồng). Xác định mức sản xuất đầu ra của từng ngành x.
Giải quyết:
Ta có : x–Ax= d
(E - A)x= d
x= (E - A)-1 d= [24,84 ; 20,68 ; 18,36] T (x100 tỷ đồng).
2
0 2 0 3 0 2
0 4 0 1 0 2
0 1 0 3 0 2
, , ,
A , , ,
, , ,

v1.0018112205
MỤC TIÊU BÀI HỌC
•Nắm được khái niệm về các loại hệ phương trình đại số tuyến tính;
•Nắm được phương pháp giải hệ phương trình có số phương trình và số ẩn bằng nhau theo phương pháp
Cramer và phương pháp Gauss;
•Nắm được phương pháp giải hệ phương trình thuần nhất;hệ phương trình đại số tuyến tính tổng quát;
•Giải được các bài toán về hệ phương trình đại số tuyến tính, theo cách tự luận và theo trắc nghiệm.
3

v1.0018112205
CẤU TRÚC NỘI DUNG
4
3.1 Dạng của hệ phương trình đại số tuyến tính
Giải hệ phương trình đại số tuyến tính
3.2
3.3 Hệ phương trình thuần nhất
3.4 Phương pháp Gauss

v1.0018112205
3.1. DẠNG CỦA HỆ PHƯƠNG TRÌNH ĐẠI SỐ TUYẾN TÍNH
Dạng tổng quát của hệ phương trình đại số tuyến tính được viết như sau:
Hệ này được viết dưới dạng ma trận là:Ax = b ( 3.2)
ởđây Alà ma trận được thành lập từ các hệ số của các biến A = [aij]mn
x: Véc tơ cột của các biến (3.3) b: Véc tơ cột các số hạng tự do (3.4)
11 1 12 2 1n n 1
21 1 22 2 2n n 2
m1 1 m 2 2 mn n m
a x a x a x b
a x a x a x b
a x a x a x b
31
( . )
...
...
....................................
...
1
2
n
x
x
x
x
...
1
2
n
b
b
b
b
...
5

