BAÛNG COÂNG THÖÙC ÑAÏO HAØM - NGUYEÂN HAØM
I. Caùc coâng thöùc tính ñaïo haøm.
'
u v '.
u v . '
v
)'
u
'
u v '.
. '
u 1. (
v '
u v 2.( . )'
u v 3.
2
u v
v
'
ku
'
'
Heä Quaû: 1.
k u 2. .
1 v
'v 2 v
II. Ñaïo haøm vaø nguyeân haøm caùc haøm soá sô caáp.
Bảng nguyên hàm
Bảng đạo hàm
1
1
ax b
x
x
u
'
'
1 u u . '.
x dx
c ,
1
c
.
ax b dx
1 x
1
1 a
1
c
ax b dx
ax b
sin
cos
1 a
xdx
x c
sin
cos
sin
cos
u
u
u
x
sin
'
'.cos
x '
c
ax b dx
ax b
cos
sin
x
xdx
x c
cos
'
sin
cos
sin
x
u
u
u
1 a
cos
'
'.sin
2
2
u
u
u
tan
'
x
x
tan
'
1 tan
' 2
'. 1 tan
dx
c
ax b
tan
2
dx
u cos
x c
tan
x
1 a
1 ax b
cos
x
1 2 cos
u
1 2 cos
2
2
dx
c
ax b
cot
x
x
cot
'
u
u
u
cot
'
2
1 cot
'. 1 cot
1 a
1 ax b
sin
1 2 sin
' u
u 2 sin
dx
x c
cot
x
1 2 sin
x
a x
dx
x
c
dx
ax b
c
ln
ln
1 a
1 x
1 ax b
log ' u ' log a x a u a
x
u
x
x
a
'
a
. ln
a
a
'
u a u .
'.ln
x a dx
ln x ' ln u ' 1 ln 1 x u ' .ln u ' u
x a
dx
c
a
a
x
u
u
x
ax b
ax b
e
x e dx
e
c
u e '.
e
'
dx
e
e
c
x e
'
x a .ln 1 a
Boå sung:
dx
2
2
dx
dx
dx
ln
x
x
a
C
arctan
C
arcsin
C
ln
C
2
2
2
2
2
2
2
2
x
a
1 a
x a
x a
x
a
x x
a a
1 a 2
x
a
a
x
dy
III. Vi phaân:
y dx ' .
d ax (
b
)
adx
dx
d ax (
b
)
d
cos
sin
VD:
, (sin ) x
xdx , (cos ) x d
xdx ,
1 a
c a a ln
d
(tan ) x
d
(cot ) x
,
,
. . .
dx 2 sin
dx 2 cos
x
x
d x (ln ) dx x
BAÛNG COÂNG THÖÙC MUÕõ - LOGARIT I. Coâng thöùc haøm soá Muõ vaø Logarit.
Haùm soá muõ
Haøm soá Logarit
M
log
,
a
x
a
0
0
1
b
a x M x 0
1
1
;
;
b
loga a
loga
log a
log a
b
a
b ;
loga
a
loga a
;
a
1 a
b
c
1 log a b c log . a
log a
log a
a
.a a
a
;
a a
b
c
log a
log a
log a
b c
a
.a
a
c
a
log b
log b
logaa
a
c
;
log c
a b .
a b ; .
b
b
log a
log .log c c
a
a b
a b
b a
log c
b
log a
a
a
a
0
1
a
log a
1 log b log a
a
1
a
:
a
a
1
log a
a
0
1
a
:
a
a
0
1
: log a : log a
log a
II.Moät soá giôùi haïn thöôøng gaëp.
x
1
a x
x
log
a
e
log
lim.5
lim.3
ln
a
a
x
0
x
0
e
1
1
. lim x
1 x
1
1
lim.4
a
x
0
lim.2
e
1
1 x x x
x
x x a x