▼ët ♣❤➨♣ ✉②➸♥ ✤ê✐
❜↔♦ t♦➔♥ ❝↕♥❤ ❣â ❝õ❛ t❛♠ ❣✐→❝
❚❙✳ rà♥❤ ✣➔♦ ❈❤✐➳♥
r÷í♥❣ ❈❛♦ ✣➥♥❣ ❙÷ P❤↕♠ ●✐❛ ▲❛✐
r♦♥❣ q✉→ tr➻♥❤ s→♥❣ t→❝ ❤♦➦❝ t➻♠ tá✐ ❧í✐ ❣✐↔✐ ❝❤♦ ♥❤ú♥❣ ➔✐ t♦→♥ ❧✐➯♥ q✉❛♥ ✤➳♥ →❝
②➳✉ ❣â ✈➔ ↕♥❤ ❝õ❛ t❛♠ ❣✐→❝✱ ♠ët ✈➜♥ ✤➲ ♥❤✐➯♥ s❛✉ ✤➙② ✤÷ñ ♥↔② s✐♥❤✿ ◆❤ú♥❣
♣❤➨♣ ❜✐➳♥ ✤ê✐ ♥➔♦ ↔♥❤ ❝õ❛ ❣â ✭❝↕♥❤✮ ❝õ❛ ♠ët t❛♠ ❣✐→❝ ❝ô♥❣ ❧➟♣ t❤➔♥❤ ❣â
✭❝↕♥❤✮ ❝õ❛ ♠ët t❛♠ ❣✐→❝❄ ❇➔✐ ✈✐➳t ♥➔② ♣❤➛♥ ♥➔♦ t➻♠ ➙✉ ❣✐↔✐ ✤→♣ ❝❤♦ ✈➜♥ ✤➲ ✤➣ ♥➯✉
✈➔ ✤✐➲✉ q✉❛♥ trå♥❣ ❧➔✱ ✤➲ ➟♣ ✤➳♥ ♥❤ú♥❣ →♣ ❞ö♥❣ ❝õ❛ ♥â tr♦♥❣ ❝❤÷ì♥❣ tr➻♥❤ t♦→♥ r✉♥❣
❤å ♣❤ê t❤æ♥❣✳ ▲÷✉ þ r➡♥❣✱ tr♦♥❣ ❦❤✉æ♥ ❦❤ê â ❤↕♥✱ ➔✐ ✈✐➳t ❝❤÷❛ ✤➲ ➟♣ ✤➳♥ ♥❤ú♥❣
→♣ ❞ö♥❣ s➙✉ s➢❝ ❤ì♥✱ ❧✐➯♥ q✉❛♥ ✤➳♥ ❦❤→✐ ♥✐➺♠ ✧✤ë ❣➛♥ ✤➲✉✧ ❝õ❛ ♠ët ❞➣② →❝ t❛♠ ❣✐→❝
①→❝ ✤à♥❤✳
P❤➨♣ ✉②➸♥ ✤ê✐ ❜↔♦ t♦➔♥ ❣â ❝õ❛ t❛♠ ❣✐→❝
✶✳✶ P❤➨♣ ✉②➸♥ ✤ê✐
r♦♥❣ t➔✐ ❧✐➺✉ ❬✶❪ ❜➔✐ t♦→♥ ì ❜↔♥ s❛✉ ✤➙ ✤➣ ✤÷ñ ✤➲ ❝➟♣
❇➔✐ t♦ ✶✳✶✳
❳→❝ ✤à♥❤ →❝ ❤➔♠
f(x)
❧✐➯♥ tö tr♦♥❣ ✤♦↕♥
[0; π]
s❛♦ ❝❤♦
f(A)
f(B)
f(C)
❧✉æ♥ t↕♦ t❤➔♥❤ ✤♦ →❝ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝ ♥➔♦ ✤â ù♥❣ ✈î✐ ♠å✐ t❛♠
❣✐→❝
ABC
❝❤♦ tr÷î❝✳
●✐↔✐✳
r÷î ❤➳t t❛ ❝â ♥❤➟♥ ①➨t r➡♥❣✱ ❤❛✐ ❤➔♠
f(x) = x
f(x) = π
3
t❤ä❛ ♠➣♥ ❜➔✐
t♦→♥✳
♣❤→t ❜✐➸✉ ❜➔✐ t♦→♥ ❞÷î✐ ❞↕♥❣ s❛✉✿
❳→❝ ✤à♥❤ →❝ ❤➔♠
f(x)
❧✐➯♥ tö❝ tr♦♥❣ ✤♦↕♥
[0; π]
✈➔
f(x)>0, f (x) + f(y) + f(πxy) = π, x, y (0; π), x +y < π.
✭✶✮
❈❤♦
y0+
t❛ t❤ ✤÷ñ
f(x) + f(0) + f(πx) = π, x(0; π)
❤❛
f(πx) = πf(0) f(x),x(0; π).
❚❤❛ ➔♦ ✭✶✮✱ t❛ t❤ ✤÷ñ
f(x) + f(y) + (πf(0) f(x+y)) = π, x, y (0; π), x +yπ
❤❛
f(x) + f(y) = f(x+y) + f(0) ,x, y [0; π], x +y < π.
✭✷✮
✣➦t
f(x) = f(0) + g(x)
❑❤✐ ✤â
g(x)
❧✐➯♥ tö❝ tr♦♥❣ ✤♦↕♥
[0; π]
✭✷✮ ❝â ❞↕♥❣
f(0) + g(x) + f(0) + g(y) = f(0) + g(x+y) + f(0) ,x, y [0; π], x +y < π
g(x) + g(y) = g(x+y),x, y [0; π], x +y < π.
✭✸✮
❉♦
g(x)
❧✐➯♥ tö❝ tr ✤♦↕♥
[0; π]
♥➯♥ ✭✸✮ ❧➔ ♣❤÷ì♥❣ tr➻♥❤ ❤➔♠ ❈❛✉❝ ♠ët ❞↕♥❣
♣❤÷ì♥❣ tr➻♥❤ ❤➔♠ ❝ì ❜↔♥✱ ❝â ♥❣❤✐➺♠
g(x) = αx
❙✉② r❛
f(x) = f(0) + αx
✣➦t
f(0) = β
t❛ ✤÷ñ
f(x) = αx +β
❝➛♥ ①→❝ ✤à♥❤
α
β
✤➸
f(x)>0
x(0; π)
x+y < π
f(A)+f(B)+f(C) = π
❤❛
(αx +β > 0,x(0; π) ;
αA +β+αB +β+αC +β=π.
(αx +β > 0,x(0; π) ;
α(A+B+C) + 3β=π.
(αx +β > 0,x(0; π) ;
απ + 3β=π.
αx +β > 0,x(0; π) ;
β=(1 α)π
3.
❉♦ ✤â
f(x) = αx +(1 α)π
3,x(0; π).
✭✹✮
❈❤♦
x0+
✭✹✮✱ s✉② r❛
(1 α)π
30α1.
❈❤♦
xπ
✭✹✮✱ s✉② r❛
απ +(1 α)π
30
❤❛
α 1
2
1
2α1
î✐
1
2< α < 1
t❤➻
f(x)
①→❝ ✤à♥❤ ð✐ ✭✹✮ ❤✐➸ ♥❤✐➯♥ t❤ä❛ ♠➣♥ ❜➔✐ t♦→♥✳
❳➨t
α=1
2
t❤➻
f(x) = 1
2x+π
2
t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❜➔✐ r❛✳
❚❤➟t î✐
0< x < π
t❤➻
f(x)> f (π) = 0
❙✉② r❛
f(x)>0
x(0; π)
❳➨t
α= 1
t❤➻
f(x) = x
❤✐➸♥ ♥❤✐➯♥ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❜➔✐ r❛✳ ❝→❝ ❤➔♠ ❝➛♥
t➻♠ ✤➲✉ ❝â ❞↕♥❣
f(x) = αx +(1 α)π
3,1
2α1.
◆❤÷ ❧í✐ ❣✐↔✐ tr➯♥ ✤➙ ✤➣ ➨t ❤➳t t➜t ❝↔ ❝→❝ ♥❣❤✐➺♠✱ ❧➔ ❝→❝ ❤➔♠
f(x)
t❤ä❛
♠➣♥ ❝→❝ ✤✐➲✉ ❦✐➺♥ ❝õ❛ ❜➔✐ t♦→♥✳
❇➙ ❣✐í✱ t❛ t✐➳♣ tö❝ t➻♠ ❦✐➳ ♥❤ú♥❣ →♣ ❞ö♥❣ ❝ö t❤➸ ❝õ❛ ❜➔✐ t♦→♥ tr➯♥ ①➨t ♥❤ú♥❣
tr÷í♥❣ ❤ñ♣ ❦❤→❝ ♠➔ ❜➔✐ t♦→♥ ❤÷❛ ✤➲ ❝➟♣✳
❚ø ❇➔✐ t♦→♥ ✶✳✶✱ t❛ ❝â
▼➺♥❤ ✤➲ ✶✳✶✳
î✐
1
2α1
♥➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✱ t❤➻
A1
B1
C1
①→❝ ✤à♥❤ ♥❤÷ s❛✉
A1=αA +(1 α)π
3, B1=αB +(1 α)π
3, C1=αC +(1 α)π
3,
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
▼➺♥❤ ✤➲ ✶✳✷✳
î✐
α < 1
2
♥➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝ t❤ä ♠➣♥
max {A, B, C}<(α1) π
3α
t❤➻
A1
B1
C1
①→❝ ✤à♥❤ ♥❤÷ s❛✉
A1=αA +(1 α)π
3, B1=αB +(1 α)π
3, C1=αC +(1 α)π
3,
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
❈❤ù♥❣ ♠✐♥❤✳
❚❤➟t î✐
α < 1
2
t❛ ❝â
max {A, B, C}<(α1) π
3αA < (α1) π
3α
3αA + (1 α)π > 0αA +(1 α)π
3>0A1>0.
❚÷ì♥❣
B1>0
C1>0
❍ì♥ ♥ú❛✱
A1+B1+C1=π
♥➯♥ t❛ ❝â ✤✐➲✉ ♣❤↔✐ ù♥❣
♠✐♥❤✳
▼➺♥❤ ✤➲ ✶✳✸✳
î✐
α > 1
♥➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝ t❤ä ♠➣♥
min {A, B, C}>(α1) π
3α
t❤➻
A1
B1
C1
①→❝ ✤à♥❤ ♥❤÷ s❛✉
A1=αA +(1 α)π
3, B1=αB +(1 α)π
3, C1=αC +(1 α)π
3,
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
❈❤ù♥❣ ♠✐♥❤✳
❚❤➟t î✐
α > 1
t❛ ❝â
min {A, B, C}>(α1) π
3αA > (α1) π
3α
3αA + (1 α)π > 0αA +(1 α)π
3>0A1>0.
❚÷ì♥❣
B1>0
C1>0
❍ì♥ ♥ú❛✱
A1+B1+C1=π
♥➯♥ t❛ ❝â ✤✐➲✉ ♣❤↔✐ ù♥❣
♠✐♥❤✳
❉÷î✐ ✤➙ ❧➔ ♠ët tr÷í♥❣ ❤ñ♣ r✐➯♥❣✱ ♠✐♥❤ ❤å❛ ❤♦ ❝→❝ ♠➺♥❤ ✤➲ tr➯♥✳
❚ø ▼➺♥❤ ✤➲ ✶✳✶✱ î✐
α=1
2
t❛ ❝â
❍➺ q✉↔ ✶✳✶✳
◆➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✱ t❤➻
A1
B1
C1
①→❝ ✤à♥❤
♥❤÷ s❛✉
A1=πA
2, B1=πB
2, C1=πC
2
❤❛②
A1=B+C
2, B1=C+A
2, C1=A+B
2
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
❚ø ▼➺♥❤ ✤➲ ✶✳✶✱ î✐
α=1
2
t❛ ❝â
❍➺ q✉↔ ✶✳✷✳
◆➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✱ t❤➻
A1
B1
C1
①→❝ ✤à♥❤
♥❤÷ s❛✉
A1=π+ 3A
6, B1=π+ 3B
6, C1=π+ 3C
6
❤❛②
A1=4A+B+C
6, B1=4B+C+A
6, C1=4C+A+B
6
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
❚ø ▼➺♥❤ ✤➲ ✶✳✷✱ î✐
α=2
3
t❛ ❝â
❍➺ q✉↔ ✶✳✸✳
◆➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝ t❤ä ♠➣♥
max {A, B, C}<5π
6
t❤➻
A1
B1
C1
①→❝ ✤à♥❤ ♥❤÷ s❛✉
A1=5π6A
9, B1=5π6B
9, C1=5π6C
9
❤❛②
A1=5B+ 5CA
9, B1=5C+ 5AB
9, C1=5A+ 5BC
9
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
❚ø ▼➺♥❤ ✤➲ ✶✳✷✱ î✐
α=4
5
t❛ ❝â
❍➺ q✉↔ ✶✳✹✳
◆➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝ t❤ä ♠➣♥
max {A, B, C}<3π
4
t❤➻
A1
B1
C1
①→❝ ✤à♥❤ ♥❤÷ s❛✉
A1=3π4A
5, B1=3π4B
5, C1=3π4C
5
❤❛②
A1=3B+ 3CA
5, B1=3C+ 3AB
5, C1=3A+ 3BC
5
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
❚ø ▼➺♥❤ ✤➲ ✶✳✷✱ î✐
α=1
t❛ ❝â
❍➺ q✉↔ ✶✳✺✳
◆➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝ t❤ä ♠➣♥
max {A, B, C}<2π
3
t❤➻
A1
B1
C1
①→❝ ✤à♥❤ ♥❤÷ s❛✉
A1=2π
3A, B1=2π
3B, C1=2π
3C
❤❛②
A1=2B+ 2CA
3, B1=2C+ 2AB
3, C1=2A+ 2BC
3
❝ô♥❣ ❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝✳
❚ø ▼➺♥❤ ✤➲ ✶✳✷✱ î✐
α=2
t❛ ❝â
❍➺ q✉↔ ✶✳✻✳
◆➳✉
A
B
C
❧➔ ❣â ❝õ❛ ♠ët t❛♠ ❣✐→❝ t❤ä ♠➣♥
max {A, B, C}<π
2
tù❝ ❧➔ t❛♠ ❣✐→❝
ABC
♥❤å♥✱ t❤➻
A1
B1
C1
①→❝ ✤à♥❤ ♥❤÷ s❛✉
A1=π2A, B1=π2B, C1=π2C