Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 04
lượt xem 1
download
Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 04 dành cho học sinh lớp 12 đang chuẩn bị thi tốt nghiệp THPT sắp tới, giúp các em phát triển tư duy, năng khiếu môn Toán học. Chúc các bạn đạt được điểm cao trong kì thi này nhé.
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Đề thi thử tốt nghiệp THPT môn Toán - THPT Lương Thế Vinh đề 04
- TRƯỜNG THPT LƯƠNG THẾ VINH KỲ THI TỐT NGHIỆP THPT ĐỀ THI THỬ TỐT NGHIỆP Môn thi: TOÁN − Giáo dục trung học phổ thông Đề số 04 Thời gian làm bài: 150 phút, không kể thời gian giao đề ------------------------------ --------------------------------------------------- I. PHẦN CHUNG DÀNH CHO TẤT CẢ CÁC THÍ SINH (7,0 điểm) 2x - 1 Câu I (3,0 điểm): Cho hàm số: y = x- 1 1) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho. 2) Viết phương trình tiếp tuyến với đồ thị (C ) biết tiếp tuyến có hệ số góc bằng – 4. Câu II (3,0 điểm): 1) Giải phương trình: log2 x - log4 (4x 2 ) - 5 = 0 2 p 3 sin x + cos x 2) Tính tích phân: I = ò0 dx cos x 3) Tìm các giá trị của tham số m để hàm số sau đây đạt cực tiểu tại điểm x 0 = 2 y = x 3 - 3mx 2 + (m 2 - 1)x + 2 Câu III (1,0 điểm): · Cho hình chóp S.ABC có đáy là tam giác vuông tại B, B A C = 300 ,SA = AC = a và SA vuông góc với mặt phẳng (ABC).Tính VS.ABC và khoảng cách từ A đến mặt phẳng (SBC). II. PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được chọn một trong hai phần dưới đây 1. Theo chương trình chuẩn r r r uuur r r Câu IVa (2,0 điểm): Trong không gian với hệ toạ độ (O , i , j , k ) , cho OM = 3i + 2k , mặt cầu (S ) có phương trình: (x - 1)2 + (y + 2)2 + (z - 3)2 = 9 1) Xác định toạ độ tâm I và bán kính của mặt cầu (S ) . Chứng minh rằng điểm M nằm trên mặt cầu, từ đó viết phương trình mặt phẳng (a ) tiếp xúc với mặt cầu tại M. 2) Viết phương trình đường thẳng d đi qua tâm I của mặt cầu, song song với mặt phẳng x+1 y- 6 z- 2 (a ) , đồng thời vuông góc với đường thẳng D : = = . 3 - 1 1 Câu Va (1,0 điểm): Giải phương trình sau đây trên tập số phức: - z 2 + 2z - 5 = 0 2. Theo chương trình nâng cao Câu IVb (2,0 điểm): Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có toạ độ các đỉnh là A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) 1) Viết phương trình đường vuông góc chung của AB và CD.
- 2) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD. Câu Vb (1,0 điểm): Tính diện tích hình phẳng giới hạn bởi các đường sau đây y = ln x , trục hoành và x = e ---------- Hết --------- Thí sinh không được sử dụng tài liệu. Giám thị coi thi không giải thích gì thêm. Họ và tên thí sinh: ........................................ Số báo danh: ............................................... Chữ ký của giám thị 1: .................................. Chữ ký của giám thị 2: .................................
- BÀI GIẢI CHI TIẾT. Câu I: 2x - 1 y= x- 1 Tập xác định: D = ¡ \ {1} - 1 Đạo hàm: y ¢ = < 0, " x Î D (x - 1)2 Hàm số đã cho NB trên các khoảng xác định và không đạt cực trị. Giới hạn và tiệm cận: lim y = 2 ; lim y = 2 Þ y = 2 là tiệm cận ngang. x® - ¥ x® + ¥ lim y = - ¥ ; lim y = + ¥ Þ x = 1 là tiệm cận đứng. x ® 1- x ® 1+ Bảng biến thiên x – 1 + y¢ – – 2 + y y – 2 1 Giao điểm với trục hoành: y = 0 Û 2x - 1 = 0 Û x = 2 3 Giao điểm với trục tung: cho x = 0 Þ y = 1 2,5 Bảng giá trị: x –1 0 1 2 3 2 y 3/2 1 || 3 5/2 Đồ thị hàm số như hình vẽ bên đây: 1 2x - 1 -1 O 1 2 3 x (C ) : y = x- 1 Tiếp tuyến có hệ số góc bằng –4 nên f ¢ x 0 ) = - 4 ( é é ê - 1= 1 x0 ê = 3 x - 1 2 1 ê 2 Û ê0 2 Û 2 = - 4 Û (x 0 - 1) = Û ê ê (x 0 - 1) 4 ê - 1= - 1 x ê = 1 x ê0 ê0 ë 2 ë 2 3 - 1 æ 3 2. 3ö Với x 0 = Þ y 0 = 3 2 = 4 .pttt là: y - 4 = - 4 çx - ÷ Û y = - 4x + 10 ç ç ÷ ÷ 2 - 1 è 2ø 2 1 2. 1 - 1 æ 1ö Với x 0 = Þ y 0 = 1 2 = 0 . pttt là: y - 0 = - 4 çx - ÷ Û y = - 4x + 2 ç ç ÷ ÷ 2 - 1 è 2ø 2 Vậy, có 2 tiếp tuyến thoả mãn ycbt là : y = - 4x + 2 và y = - 4x + 10 Câu II: Điều kiện: x > 0. Khi đó, phương trình đã cho tương đương với log2 x - (log4 4 + log 4 x 2 ) - 5 = 0 Û log 2 x - log2 x - 6 = 0 (*) 2 2 Đặt t = log2 x , phương trình (*) trở thành
- é= 3 t é é 3 2 ê t - t- 6= 0Û ê ê 2x = 3 Û ê = 2 Û ê log x (nhận cả hai nghiệm) t = - 2 log2 x = - 2 ê - 2 ê ë ê ë ê = 2 x ë 1 Vậy, phương trình đã cho có hai nghiệm : x = 8 và x = 4 p p p p sin x + cos x æsin x ö cos x ÷ sin x I = ò0 3 dx = ò 3 ç ç + ÷dx = ò 3 ÷ dx + ò0 3 1.dx cos x 0 ç cos x è cos x ø 0 cos x p sin x .dx Với I 1 = ò0 3 , ta đặt t = cos x Þ dt = - sin x .dx Þ sin x .dx = - dt cos x p Đổi cận: x 0 3 1 t 1 2 Thay vào: 1 ædt ö - ÷ 1 dt 1 1 I1 = 2ç ÷ ò1 ç t ø= ç è ÷ ò1 t = ln t 1 2 = ln 1 - ln 2 = ln 2 2 p p p Với I 2 = ò0 3 1.dx = x 3 0 = 3 p Vậy, I = I 1 + I 2 = ln 2 + 3 y = x 3 - 3m x 2 + (m 2 - 1)x + 2 có TXĐ D = ¡ y ¢ = 3x 2 - 6m x + m 2 - 1 y ¢ = 6x - 6m ¢ ì (2) ïf¢ = 0 ì 3.22 - 6m .2 + m 2 - 1 = 0 ï ï Hàm số đạt cực tiểu tại x 0 = 2 Û ï í Û í ï f ¢(2) > 0 ï ¢ ï 6.2 - 6m > 0 ï î ï î ì m - 12m + 11 = 0 ï 2 ì ï m = 1 hoac m = 11 ï ï Û í Û í Û m = 1 ï 12 - 6m > 0 ï ïm < 2 ï ï î î Vậy, với m = 1 thì hàm số đạt cực tiểu tại x 0 = 2 Câu III Theo giả thiết, SA ^ A B , BC ^ A B , BC ^ SA S Suy ra, BC ^ (SAB ) và như vậy BC ^ SB a 3 a a Ta có, A B = A C . cos 300 = và BC = A C . sin 300 = 2 2 a A C 3a 2 a 7 SB = SA 2 + A B 2 = a2 + = 4 2 B 1 1 a 3 a a2 3 1 a3 3 S D A BC = A B .BC = × × = Þ V S .A BC = SA ×S D A BC = 2 2 2 2 8 3 24
- 1 1 a 7 a a2 7 S D SBC = SB .BC = × × = 2 2 2 2 8 1 3V S .A BC a3 3 8 a 21 V S .A BC = d (A,(SBC )).S D SBC Þ d (A, (SBC )) = = 3× × = 3 S D SBC 24 a 2 7 7 THEO CHƯƠNG TRÌNH CHUẨN Câu IVa: uuur r r OM = 3i + 2k Þ M (3; 0;2) và (S ) : ( x - 1)2 + (y + 2)2 + (z - 3)2 = 9 Mặt cầu có tâm I (1;- 2; 3) và bán kính R = 3 Thay toạ độ điểm M vào phương trình mặt cầu: (3 - 1)2 + (0 + 2)2 + (2 - 3)2 = 9 là đúng Do đó, M Î (S ) r uuu r (a ) đi qua điểm M, có vtpt n = IM = (2;2; - 1) Vậy, PTTQ của (a ) là: 2(x - 3) + 2(y - 0) - 1(z - 2) = 0 Û 2x + 2y - z - 4 = 0 Điểm trên d: I (1;- 2; 3) r r (a ) có vtpt n = (2;2; - 1) và D có vtcp u D = (3; - 1;1) nên d có vtcp r r r æ 2 - 1 - 1 2 2 2ö ÷ ç ç ÷ = (1; - 5; - 8) u = [n , u D ] = ç 1 ; ; ÷ ÷ ç- ç è 1 1 3 3 - 1ø ÷ ìx = 1+ t ï ï ï Vậy, PTTS của d là: ï y = - 2 - 5t (t Î ¡ ) í ï ï z = 3 - 8t ï ï î 2 Câu Va: - z + 2z - 5 = 0 (*) Ta có, D = 22 - 4.(- 1).(- 5) = - 16 = (4i )2 Vậy, pt (*) có 2 nghiệm phức phân biệt - 2 - 4i - 2 + 4i z1 = = 1 + 2i và z 2 = = 1 - 2i - 2 - 2 THEO CHƯƠNG TRÌNH NÂNG CAO Câu IVb: uuu r uuu r Ta có, A B = (0;1; 0) và CD = (1;1; - 1) Gọi M,N lần lượt là điểm nằm trên AB và CD thì toạ độ của M,N có dạng M (1;1 + t ;1), N (1 + t ¢ + t ¢ - t ¢ ;1 ;2 ) uuuu r Þ MN = (- t ¢t - t ¢ t ¢- 1) ; ; MN là đường vuông góc chung của AB và CD khi và chỉ khi uuu uuur r u ì ï A B .MN = 0 ì t - t ¢= 0 ï ï ï uuu uuur ï 1 í r u Û í Û t = t ¢= ï CD .MN = 0 ï ï - t ¢+ t - t ¢- t ¢+ 1 = 0 ï 2 ï î î
- æ 3 ö æ 3 3 ö uuuu æ 1 r ö Vậy, M ç1; ;1÷, N ç ÷ ç3 ; ; ÷ Þ MN = ç- ; 0; - 1 ÷ hay u = (1; 0;1) là vtcp của d cần ç ÷ ç ÷ r ç 2 ø è ÷ è ÷ ç2 2 2 ø ç 2 è 2ø÷ tìm ìx = 1+ t ï ï ï ï 3 PTCT của đường vuông góc chung cần tìm là: ï y = í (t Î ¡ ) ï ï 2 ïz = 1+ t ï ï î Phương trình mặt cầu (S ) có dạng: x + y + z 2 - 2ax - 2by - 2cz + d = 0 2 2 Vì A(1;1;1) , B(1;2;1) , C(1;1;2) , D(2;2;1) thuộc (S ) nên: ì 3 - 2a - 2b - 2c + d = 0 ï ì 2a + 2b + 2c - d = 3 ï ì ï d = 2a + 2b + 2c - 3 ìd = ï 6 ï ï ï ï ï ï ï ï ï 6 - 2a - 4b - 2c + d = 0 ï ï 2a + 4b + 2c - d = 6 ï ï - 2b ï = - 3 ïb = ï 3/ 2 ï í Û íï Û íï Û ï í ï 6 - 2a - 2b - 4c + d = 0 ï ï 2a + 2b + 4c - d = 6 ï ï ï 2b - 2c = 0 ïc = ï 3/ 2 ï ï 9 - 4a - 4b - 2c + d = 0 ï ï 4a + 4b + 2c - d = 9 ï ï - 2a - 2b + 2c = - 3 ï ïa = ï ï ï ï 3/ 2 ï î ï î ï î ï î Vậy, phương trình mặt cầu là: x 2 + y 2 + z 2 - 3x - 3y - 3z + 6 = 0 Câu Vb: Cho y = ln x = 0 Û x = 1 Diện tích cần tìm là: e e S = ò1 ln x dx = ò1 ln xdx ì ï ì u = ln x ï ï ï du = 1 dx ï Đặt í Þ í x . Thay vào công thức tính S ta được: ï dv = dx ï ïv = x ï î ï ï î e e e S = x ln x 1 - ò1 dx = e ln e - 1ln 1 - x 1 = e - 0 - e + 1 = 1 (đvdt) Vậy, diện tích cần tìm là: S = 1 (đvdt)
CÓ THỂ BẠN MUỐN DOWNLOAD
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Sở GD&ĐT Sơn La (Lần 2)
7 p | 5 | 2
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 - Trường THPT Chuyên Lam Sơn, Thanh Hóa (Lần 2)
6 p | 9 | 2
-
Đề thi thử tốt nghiệp THPT môn Hóa học năm 2024 - Trường THPT Võ Thị Sáu, Phú Yên
6 p | 9 | 2
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Dương Quảng Hàm, Hưng Yên
14 p | 7 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Kim Liên, Nghệ An (Lần 4)
18 p | 5 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT Chuyên Đại học Vinh (Lần 2)
22 p | 9 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Chuyên Hạ Long (Lần 3)
6 p | 12 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT A Nghĩa Hưng, Nam Định (Lần 2)
7 p | 9 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Ngô Thì Nhậm, Ninh Bình (Lần 1)
26 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Nam Cao, Hà Nam (Lần 1)
14 p | 5 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Sở GD&ĐT Đắk Lắk (Lần 2)
34 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2023-2024 có đáp án - Trường THPT Tĩnh Gia 2, Thanh Hóa
20 p | 5 | 1
-
Đề thi thử tốt nghiệp THPT môn Toán năm 2024 có đáp án - Trường THPT Tháp Mười, Đồng Tháp
8 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Vật lý năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 3 | 1
-
Đề thi thử tốt nghiệp THPT môn Sinh học năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 4 | 1
-
Đề thi thử tốt nghiệp THPT môn Lịch sử năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
5 p | 7 | 1
-
Đề thi thử tốt nghiệp THPT môn GDCD năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
6 p | 6 | 1
-
Đề thi thử tốt nghiệp THPT môn Địa lí năm 2024 - Cụm Liên trường THPT tỉnh Quảng Nam (Lần 2)
4 p | 11 | 1
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn