intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Dự thảo tóm tắt Luận án Tiến sĩ Vật lý: Nghiên cứu lý thuyết về hiệu ứng quang kích thích của sóng điện từ cao tần trong hệ bán dẫn một chiều

Chia sẻ: Acacia2510 _Acacia2510 | Ngày: | Loại File: PDF | Số trang:19

24
lượt xem
3
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu nghiên cứu của luận án là nghiên cứu lý thuyết lượng tử về hiệu ứng quang kích thích cho dây lượng tử hình trụ với hố thế vô hạn, dây lượng tử hình trụ với hố thế parabol, dây lượng tử hình chữ nhật với hố thế vô hạn. Xây dựng phương trình động lượng tử cho hệ bán dẫn một chiều, từ đó tính mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích với hai loại tương tác là: tương tác electron – phonon âm và tương tác electron – phonon quang.

Chủ đề:
Lưu

Nội dung Text: Dự thảo tóm tắt Luận án Tiến sĩ Vật lý: Nghiên cứu lý thuyết về hiệu ứng quang kích thích của sóng điện từ cao tần trong hệ bán dẫn một chiều

  1. ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN ----------------------- Hoàng Văn Ngọc NGHIÊN CỨU LÝ THUYẾT VỀ HIỆU ỨNG QUANG KÍCH THÍCH CỦA SÓNG ĐIỆN TỪ CAO TẦN TRONG HỆ BÁN DẪN MỘT CHIỀU Chuyên ngành : Vật lí lí thuyết và vật lí toán Mã số: 62.44.01.01 DỰ THẢO TÓM TẮT LUẬN ÁN TIẾN SĨ VẬT LÝ Hà Nội – 2017
  2. Mở đầu Khi một sóng điện từ lan truyền trong vật liệu thì các tính chất điện, từ thông thường của hệ hạt tải bị thay đổi, do đó xuất hiện những hiệu ứng mới. Nếu biên độ sóng điện từ lớn, có thể làm các hiệu ứng trở nên phi tuyến, đặc biệt khi tần số sóng điện từ cao sao cho năng lượng photon vào cỡ năng lượng của electron hay năng lượng của phonon thì sự có mặt của sóng điện từ ảnh hưởng đáng kể đến quá trình tán xạ của electron với phonon. Xác suất của các quá trình dịch chuyển của electron thỏa mãn định luật bảo toàn năng – xung lượng thay đổi khi có sự tham gia của photon. Từ đây xuất hiện thêm nhiều hiệu ứng như cộng hưởng cyclotron, hiệu ứng cộng hưởng electron – phonon, cộng hưởng từ - phonon dò tìm bằng quang học, hay hiệu ứng quang kích thích, hiệu ứng Hall,... Sự suất hiện của bức xạ laser mạnh có thể ảnh hưởng đến độ dẫn điện và cá hiệu ứng động khác trong các chất bán dẫn bởi không chỉ thay đổi độ tập trung hạt tải hay nhiệt độ electron mà còn bởi làm thay đổi xác suất tán xạ của electron bởi phonon. Điều này có liên quan đến việc trải rộng của các hiệu ứng động mà nguyên nhân là do sự xuất hiện của các nhóm electron ở những năng lượng khác nhau với các độ linh động và độ dẫn nhiệt riêng phần khác nhau. Trong những năm gần đây nghiên cứu tính chất vật lý nói chung và tính chất động của bán dẫn thấp chiều nói riêng được quan tâm rất nhiều. Phổ năng lượng, hàm sóng của hệ thấp chiều (hai chiều, một chiều, không chiều) khác biệt so với phổ năng lượng, hàm sóng của các bán dẫn ba chiều truyền thống, nguyên nhân là do điện tử ngoài thế tuần hoàn còn có thế giam cầm. Trong tính chất động, một hiệu ứng đã được nghiên cứu trong bán dẫn khối và hệ hai chiều là hiệu ứng quang kích thích, nhưng trong hệ bán dẫn một chiều thì vẫn chưa được nghiên cứu. Dây lượng tử với các dạng thế khác nhau rất được chú ý, đó là lý do chúng tôi chọn đề tài nghiên cứu “Nghiên cứu lý thuyết về hiệu ứng quang kích thích của sóng điện từ cao tần trong hệ bán dẫn một chiều” để phần nào giải quyết được các vấn đề còn bỏ ngỏ nói trên. 2. Mục tiêu nghiên cứu Nghiên cứu lý thuyết lượng tử về hiệu ứng quang kích thích cho dây lượng tử hình trụ với hố thế vô hạn, dây lượng tử hình trụ với hố thế parabol, dây lượng tử hình chữ nhật với hố thế vô hạn. Xây dựng phương trình động lượng tử cho hệ bán dẫn một chiều, từ đó tính mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích với hai loại tương tác là: tương tác electron – phonon âm và tương tác electron – phonon quang. 3. Phương pháp nghiên cứu Trong khuôn khổ của luận án, bài toán về hiệu ứng quang kích thích trong dây lượng tử được nghiên cứu bằng phương pháp phương trình động lượng tử. Đây là phương pháp đã được sử dụng tính toán cho nhiều bài toán trong hệ thấp chiều, như bài toán về hiệu ứng quang kích thích trong bán dẫn khối, trong siêu mạng, trong giếng lượng tử, cũng như bài toán hấp thụ sóng điện từ các hệ hai chiều, hệ một chiều, hiệu ứng âm - điện - từ trong hệ hai chiều, hiệu ứng Hall trong các hệ hai chiều dưới ảnh hưởng của sóng điện từ mạnh và đã thu được những kết quả có ý nghĩa khoa học nhất định. Ngoài ra, còn kết hợp với phương pháp tính số dựa trên phần mềm Matlab là phần mềm được sử dụng nhiều trong Vật lí cũng như các ngành khoa học kỹ thuật. 4. Nội dung nghiên cứu và phạm vi nghiên cứu Nội dung nghiên cứu chính của luận án là: Trên cơ sở các biểu thức giải tích của hàm sóng và phổ năng lượng của electron trong dây lượng tử hình trụ với hố thế cao vô hạn, hình trụ với hố thế parabol và hình chữ nhật với thế cao vô hạn khi đặt trong một trường sóng điện từ phân cực phẳng, một trường laser và một điện trường không đổi, xây dựng toán tử Hamiltonian của hệ electron-phonon tương tác. Từ đó thiết lập phương trình động lượng tử cho toán tử số electron trung bình khi giả thiết số phonon không thay đổi theo thời gian. Giải phương trình động lượng tử, tính biểu thức mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích. Kết quả giải tích thu được thực hiện tính số, vẽ đồ thị và thảo luận đối với các mô hình dây lượng tử hình trụ, dây lượng tử hình chữ nhật cụ thể. Kết quả tính số được so sánh và bàn luận. Quá trình trên được thực hiện lần lượt với dây lượng tử hình chữ nhật với hố thế cao vô hạn, dây lượng tử hình trụ với hố thế cao vô hạn và dây lượng tử hình trụ với hố thế parabol với hai loại tương tác là tương tác electron - phonon quang, electron - phonon âm. Luận án sử dụng giả thiết tương tác electron- phonon được coi là trội, bỏ qua tương tác của các hạt cùng loại và chỉ xét đến số hạng bậc hai của hệ số tương tác electron-phonon, bỏ qua các số hạng bậc cao hơn hai. Hai loại phonon được xem xét là phonon
  3. quang ở miền nhiệt độ cao và phonon âm ở miền nhiệt độ thấp. Ngoài ra, luận án chỉ xét đến các quá trình phát xạ/ hấp thụ một photon, bỏ qua các quá trình của hai photon trở lên. 5. Ý nghĩa khoa học và thực tiễn của luận án Về phương pháp: Kết quả luận án góp phần khẳng định thêm tính hiệu quả và sự đúng đắn của phương pháp phương trình động lượng tử cho việc nghiên cứu và hoàn thiện lý thuyết lượng tử về hiệu ứng quang kích thích trong hệ một chiều chiều. Về ý nghĩa khoa học: Sự xuất hiện của dòng điện không đổi trong hiệu ứng quang kích thích và sự phụ thuộc của nó vào các tham số đặc trưng cho cấu trúc dây lượng tử, tần số sóng điện từ và tần số của trường laser có thể được sử dụng làm thước đo, làm tiêu chuẩn hoàn thiện công nghệ ứng dụng trong các thiết bị điện tử siêu nhỏ, thông minh và đa năng hiện nay. 6. Cấu trúc của luận án Ngoài phần mở đầu, kết luận, danh mục các công trình liên quan đến luận án đã công bố, các tài liệu tham khảo và phụ lục, phần nội dung của luận án gồm 4 chương, 13 mục, với 3 bảng biểu, 2 hình vẽ, 21 đồ thị, tổng cộng 96 trang. Nội dung của các chương như sau: Chương 1 trình bày về lý thuyết về hiệu ứng quang kích thích trong bán dẫn khối và tổng quan về hệ một chiều. Chương 2 nghiên cứu lý thuyết lượng tử về hiệu ứng quang kích thích trong dây lượng tử hình chữ nhật với thế cao vô hạn dưới tác dụng của một trường sóng điện từ phân cực phẳng, một trường laser và một điện trường không đổi. Chương 3 nghiên cứu lý thuyết lượng tử về hiệu ứng quang kích thích trong dây lượng tử hình trụ với thế cao vô hạn dưới tác dụng của một trường sóng điện từ phân cực phẳng, một trường laser và một điện trường không đổi. Chương 4 nghiên cứu lý thuyết lượng tử về hiệu ứng quang kích thích trong dây lượng tử hình trụ với thế parabol dưới tác dụng của một trường sóng điện từ phân cực phẳng, một trường laser và một điện trường không đổi. 7. Các kết quả nghiên cứu chính thu được trong luận án: Các kết quả nghiên cứu của luận án được công bố trong 06 công trình dưới dạng các bài báo, báo cáo khoa học đăng trên các tạp chí và kỷ yếu hội nghị khoa học quốc tế và trong nước. Các công trình này gồm: 03 bài trong tạp chí chuyên ngành quốc tế có SCOPUS/SCI (02 bài đăng trong tạp chí International Journal of Physical and Mathematical Sciences - World Academy of Science, Engineering and Technology, 01 bài trong Piers proceedings, Guangzhou, China); 02 bài đăng tại các tạp chí VNU Journal of Science, Mathematics – Physics của Đại học Quốc gia Hà Nội); 01 bài đăng trên tạp chí của Đại học Thủ đô Hà Nội. Chương 1: Lý thuyết lượng tử về hiệu ứng quang kích thích trong bán dẫn khối và tổng quan về hệ một chiều Chương này trình bày phương trình động lượng tử cho điện tử trong bán dẫn khối, biểu thức mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích trong bán dẫn khối; các hàm sóng và phổ năng lượng của điện tử trong các dây lượng tử. 1.1. Lý thuyết lượng tử về hiệu ứng quang kích thích trong bán dẫn khối Hiệu ứng quang kích thích liên quan đến việc khi lan truyền trong vật liệu, sóng điện từ mang theo cả năng lượng và xung lượng, kéo theo sự sinh ra của các electron, do đó có sự sắp xếp lại mật độ hạt điện, dẫn đến xuất hiện một dòng điện không đổi. Xuất phát từ Hamiltonian tương tác của hệ điện tử- phonon trong bán dẫn khối, thiết lập phương trình động lượng tử cho điện tử trong bán dẫn khối. Giải phương trình động lượng tử cho điện tử rồi tính toán biểu thức giải tích của mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích (ta chọn hệ quy chiếu với   1 ). 1.2. Hàm sóng và phổ năng lượng của điện tử trong dây lượng tử * Hàm sóng và phổ năng lượng của electron trong dây lượng tử hình chữ nhật với hố thế cao vô hạn
  4. 1 ipz z 2  nx  2  ly  0  x  Lx n,l,pz (x,y,z)  e Sin   Sin   khi  (1.1) Lz Lx   Lx  Ly  Ly  0  y  Ly x  0, x  L x Và  n ,l,p z (x, y,z)  0 khi   y  0, y  L y p 2z  2  n 2 l2  Năng lượng của hạt tải: n ,l,k      (1.2) 2m 2m  L2x L2y  32 4 (q x Lx nn ')(1  (1)n n ' cos(q x L x )) I n,l,n ',l ' (q)   Thừa số dạng: [(q x L x ) 4 -2 2 (q x L x ) 2 (n 2 +n 2 )+4 (n 2 -n 2 ) 2 ]2 (1.3) 32 4 (q x L x ll')(1  (1)l l ' cos(q y L y ))   [(q y L y )4 -2 2 (q y L y ) 2 (l 2 +l'2 )+ 4 (l 2 -l'2 )2 ]2 * Hàm sóng và phổ năng lượng của electron trong dây lượng tử hình trụ với hố thế vô hạn 0 rR  (1.4)  n,l,pz (r, ,z)   1 i ln  ipzz e e  n,l (r) rR  V  0 p 2z A 2n,l Năng lượng của hạt tải: n ,l,pz   (1.5) 2m 2mR 2 R 2 Thừa số dạng I n ,l,n ',l' (q)  J (qR)  *n '.l' (r)  n ,l (r)dr (1.6) R 2 0 n  n ' * Hàm sóng và phổ năng lượng của electron trong dây lượng tử hình trụ với hố thế parabol   r2 l eipz 2n! 1 2a02  r  l r 2  n,l (r)  e   Ln ( 2 ) (1.7) L (n  l !) a 0  a0  a0 p2z Năng lượng của hạt tải: n,l,pz  0 (2n  l 1) (1.8) 2m  2 I n,l,n ',l' (q z )   n,l (r)eiqr  *n ',l' (r)rdr R 2 0 Và thừa số dạng: (1.9) Chương 2: Hiệu ứng quang kích thích trong dây lượng tử hình chữ nhật với hố thế cao vô hạn Trong chương này, chúng tôi sử dụng phương pháp phương trình động lượng tử cho hàm phân bố điện tử để nghiên cứu hiệu ứng quang kích thích trong dây lượng tử hình chữ nhật với hố thế cao vô hạn dưới tác dụng của một sóng điện từ phân cực phẳng, một trường laser tần số cao và một điện trường không đổi. 2.1. Phương trình động lượng tử cho điện tử giam cầm trong dây lượng tử hình chữ nhật với hố thế cao vô hạn Halmintonian của hệ điện tử - phonon trong dây lượng tử hình chữ nhật với hố thế cao vô hạn được viết như sau  e    H = H0 + U =   n,l,pz  n,l,pz (p z  A(t)).a n,l,p c  .a z n,l,p z   q bq b q +   q        C .I q n,l,n  ,l (q)a n,l,p s q .a n,l,p z (b q  b  q ) (2.1)   n,l,n  ,l p z ,q Phương trình động lượng tử cho điện tử có dạng: f n ,l,p z i  a n ,l,p z a n ,l,p z ,H  (2.2) t t
  5. Phương trình động lượng tử cho hàm phân bố hạt tải f n,l,p z  t  trong một hệ như thế là: fn,l,p z (t)     fn,l,p z  t   (eE0  eE  t   c pz ,h(t)  ,  ) t pz  2 2  2    (2.3)  2  C  q  I n,l,n',l ' (q) Nq J L  [f n,l,pz q  t  -f n,l,pz  t  ]    n,l,n ', l',pz ,q L   (n ',l',pz q -n,l,p z -q -L) f n,l,pz q  t  -fn,l,p z  t    (n,l,pz q  n,l,pz  q  L) 2.2. Mật độ dòng điện không đổi trong dây lượng tử hình chữ nhật hố thế cao vô hạn dưới tác dụng của một trường sóng điện từ phân cực phẳng, một trường bức xạ laser và một điện trường không đổi 2.2.1. Trường hợp tán xạ điện tử - phonon âm  2 q z C  q   2v s V0  (2.4) N  k bT  q vs q z Biểu thức của mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích như sau    2c F  122  F    j0  R0 ()d AC 1 1  D  1 0E   AC   1 1  D1  E,h (2.5) 0 1   F  1   F  2 2 2 2  Trong đó n 0 e3 F 2  2   F  2 2   2  n 2 l2   A1  32m 4 vs2  2  n,l,n ',l'  2m  L2  L2  I exp (2.6) n,l,n ',l'   x y  7/2   C1  4N11 12(4,9/2; N11 )  24(3,7/2; N11 )  (2,5/2; N11 )    2m 2m 2m  (2.7)    4N7/2 21 12 N  24 N  N  (4,9/2; 21 ) (3,7/2; 21 ) (2,5/2; 21 )  2m 2m 2m   2 2  N11  2m  2 (n 2  n 2 )  2 (l2  l 2 )    (2.8)  2mL x 2mL y   2 2 2 2  N 21  2m  2 (n   n )  2 (l2  l 2 )    (2.9)  2mL x 2mL y  2 n 20 e 2   1    2  n 2 l2   D1         F  exp   2  2   (2.10) 4m 2 k BT  2m  n,l  2m  L x L y    1  (a,b,z)   e zx x a 1 (1  ax)b a 1 dx là hàm Hypergeometrix, tính toán với từng số hạng trên ta thu được  (a) 0  1 3 1/ 2  1    x 1  x  exp  6 o N11  N11 x  dx (2.11)  4,9/2,  2m    2m   1 2 1/2  1    x 1  x  exp  (2.12) 2 o N11  N11x  dx  3,7/2,  2m     2m 
  6.  1/ 2  1   N11    x 1  x  exp   N 11 x  dx (2.13)  2,5/ 2,  2 m    o  2m   1 3 1/ 2  1   N 21    x 1  x  exp   N 21 x  dx (2.14)  4,9/ 2,  2m   6o  2m   1 2 1/2  1   N21    x 1  x  exp  N 21x  dx (2.15)  3,7/2,   2m   2o  2m   1/ 2  1   N 21    x 1  x  exp   N 21 x  dx (2.16)  2,5/ 2,  2m   o  2m    Lựa chọn: E  0x ; h  0y thì biểu thức của j0 theo các trục được xác định như sau  j0x   A1C1  D1  E 0x   j  A C  D E  0y  1 1 1  0y (2.17)   j   A C  D  E  2c    F   1      F  A C  D  E 2 2  0z 1 1 1 0z  1 1 1  1  2 2   F  1  2 2   F   Phương trình (2.5) là biểu thức giải tích của mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích trong dây lượng tử hình chữ nhật với thế cao vô hạn. Mật độ dòng điện này phụ thuộc vào tần số của trường sóng điện từ phân cực phẳng, tần số của trường laser và kích thước của dây. 2.2.2. Trường hợp tán xạ điện tử - phonon quang Đối với trường hợp tán xạ điện tử-phonon quang:  k BT  Nq    q  2 (2.18)  C 2  2e 0  1  1   q    0 q z2    0  Trong đó 0 là hằng số điện môi,   và 0 lần lượt là độ thẩm điện môi cao tần và độ thẩm điện môi tĩnh. Ở đây ta giả thiết phonon không tán sắc, tức là coi q  o là tần số phonon quang.    2c F  122  F    j0   R0 ()d A2C2  D2  E0   A2C2  D2  E,h (2.19) 0 1   F  1   F  2 2 2 2  n0e6 F2 2  F   1 1     n l2  2 2 2 A2      n,l,n ',l' 80m44   0  n,l,n ',l' I exp     2  2   (2.20)  2m  Lx Ly 
  7. 1/2  1 1 1 1  1    C2    N12  N22  N32  N42    N125/2  N  N   2 2 2 2  2m   (2,5/2; 12 ) 2m (3,7/2; 12 ) 2m      (2.21) N5/2 22  N22  5/2 N22   N32  N32  N32    (2,5/2; 2m ) (3,7/2; 2m )   (2,5/2; 2m ) (3,7/2; 2m )    N5/2 42  N  N  (2,5/2; 42 ) (3,7/2; 42 )  2m 2m   1/2  1   N12    x 1  x  exp   N12 x  dx (2.22)  2,5/ 2,  2m   o  2m   1 2 1/2  1   N12    x 1  x  exp  N12 x  dx (2.23)  3,7/2,  2m   2o  2m   1/2  1   N 22    x 1  x  exp  N 22 x  dx (2.24)  2,5/2,   2m   o  2m   1 2 1/2  1   N22    x 1  x  exp  N22 x  dx (2.25)  3,7/2, 2m    2o  2m   1/ 2  1   N 32    x 1  x  exp   N 32 x  dx (2.26)  2,5/2,   2m   o  2m   1 2 1/2  1    x 1  x  exp  N32 x  dx (2.27)  3,7/2,  N32  2m   2 o  2m   1/2  1   N 42    x 1  x  exp  N 42 x  dx (2.28)  2,5/2,  2m    o  2m   1 2 1/2  1   N42    x 1  x  exp  N42 x  dx (2.29)  3,7/2,  2m   2o  2m   2 2 2 2  N12  2m  2 (n   n )  2 (l2  l2 )  q    (2.30)  2mL x 2mL y   2 2 2 2  N 22  2m  2 (n   n )  2 (l2  l2 )  q    (2.31)  2mL x 2mL y   2 2 2 2  N 32  2m  2 (n   n )  2 (l2  l2 )  q    (2.32)  2mL x 2mL y   2 2  N 42  2m  2 (n 2  n 2 )  2 (l2  l2 )  q    (2.33)  2mL x 2mL y  2 n 02 e 2  1     n l 2   2 2 D2        F   exp     2  2   (2.34) 4m 2 k BT  2m  n ,l  2m  L x L y    và 0 là độ thẩm điện môi cao tần và độ thẩm điện môi tĩnh.   Lựa chọn: E  0x ; h  0y ta sẽ thu được các thành phần j0 x   A 2 C 2  D 2  E 0 x (2.35)
  8. j0y   A 2 C2  D 2  E 0y (2.36) 2c   F  1  2 2   F   j0z   A 2 C2  D 2  E 0z  2 2  2 2 A 2 C2  D 2  E (2.37) 1      F  1      F   Vậy với trường hợp tán xạ điện tử - phonon quang, ta thu được biểu thức giải tích của mật độ dòng điện không đổi dưới dạng phương trình (2.19). Mật độ dòng điện này xuất hiện trong dây lượng tử hình chữ nhật với thế cao vô hạn khi hạt tải được đặt trong một trường sóng điện từ phân cực phẳng, một trường laser và một điện trường không đổi. Ta thấy mật độ dòng điện không đổi phụ thuộc vào tần số của sóng điện từ, tần số của trường laser, và phụ thuộc vào các đại lượng đặc trưng cho dây lượng tử hình chữ nhật với thế cao vô hạn như: hàm sóng, phổ năng lượng hay thừa số dạng. 2.2.3. Kết quả tính toán số và thảo luận Trong phần này chúng ta sẽ khảo sát và vẽ đồ thị sự phụ thuộc của j0z vào nhiệt độ, các đại lượng đặc trưng cho dây lượng tử, tần số của sóng điện từ và tần số của trường laser. Dây lượng tử được chọn là GaAs / GaAsAl , đây là vật liệu thường được sử dụng nhiều trong tính số. * Tương tác điện tử - phonon âm Hình 2.1. Sự phụ thuộc của mật độ Hình 2.2. Sự phụ thuộc của mật độ dòng điện không đổi vào tần số của dòng điện không đổi vào tần số của trường laser với các giá trị khác nhau trường sóng điện từ với các giá trị của nhiệt độ cho trường hợp tán xạ khác nhau của nhiệt độ cho trường điện tử - phonon âm. hợp tán xạ điện tử - phonon âm. Hình 2.3. Sự phụ thuộc của mật Hình 2.4. Sự phụ thuộc của mật độ dòng điện không đổi vào kích độ dòng điện không đổi vào biên thước của dây hình chữ nhật cho độ của trường lực laser cho trường hợp tán xạ điện tử - trường hợp tán xạ điện tử phonon âm. phonon âm với các giá trị khác nhau của nhiệt độ.
  9. * Tương tác điện tử - phonon quang Hình 2.5. Sự phụ thuộc của mật độ Hình 2.6. Sự phụ thuộc của mật dòng điện không đổi vào tần số của độ dòng điện không đổi vào tần trường laser cho trường hợp tán xạ số của trường sóng điện từ cho điện tử - phonon quang ứng với các trường hợp tán xạ điện tử - giá trị khác nhau của tần số sóng phonon quang với các giá trị điện từ. khác nhau của nhiệt độ. Hình 2.7. Sự phụ thuộc của mật độ Hình 2.8. Sự phụ thuộc của mật dòng điện không đổi vào kích thước độ dòng điện không đổi vào của dây lượng tử hình chữ nhật với nhiệt độ của hệ trong dây lượng hố thế cao vô hạn cho trường hợp tử hình chữ nhật với hố thế cao tán xạ điện tử - phonon quang. vô hạn cho trường hợp tán xạ điện tử - phonon quang với các gía trị khác nhau của tần số sóng điện từ. 2.3. Kết luận chương 2 Chương 2 của luận án nghiên cứu lý thuyết lượng tử về hiệu ứng quang kích thích trong dây lượng tử hình chữ nhật với hố thế cao vô hạn dưới tác dụng của một sóng điện từ phân cực phẳng, một trường bức xạ laser và một điện trường không đổi. Chúng tôi đã tính toán phương trình động lượng tử và mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích cho cả hai trường hợp là tán xạ điện tử - phonon âm và tán xạ điện tử - phonon quang. Biểu thức giải tích của mật độ dòng điện không đổi cho thấy sự phụ thuộc của nó và tần số của sóng điện từ, tần số của trường laser, và các đặc trưng của dây lượng tử hình chữ nhật với hố thế cao vô hạn như: hàm sóng, thừa số dạng, hàng rào thế hay kích thước của dây. Kết quả giải tích được áp dụng tính số và vẽ đồ thị cho dây lượng tử hình chữ nhật GaAs / GaAsAl . Kết quả tính toán số cho thấy cả hai trường hợp tán xạ điện tử - phonon âm và tán xạ điên tử - phonon quang cho thấy mật độ dòng điện một chiều ảnh hưởng trực tiếp bởi sóng điện từ, sự xuất hiện của trường laser chỉ làm thay đổi độ tập trung hạt tải, nhiệt độ electron hay xác suất tán xạ của electron bởi phonon. Sự phụ thuộc của mật độ dòng điện một chiều vào tần số sóng điện từ, tần số trường laser cũng có sự khác biệt so với bán dẫn khối, siêu mạng và giếng lượng tử. Đối với giếng lượng tử, sự phụ thuộc của mật độ dòng điện vào tần số của sóng điện từ có các đỉnh cộng hưởng và các đáy cực tiểu, nhưng khi tần số tiếp tục
  10. tăng lên thì mật độ dòng điện cũng giống như dây lượng tử hình chữ nhật là nó đạt một giá trị gần như là xác định. Còn đối với siêu mạng thì ta thấy mật độ dòng điện phụ thuộc vào tần số của sóng điện từ có dạng gần giống như hình sin, có các cực đại và cực tiểu, nhưng các cực đại và cực tiểu này có giá trị giảm dần thì tần số sóng điện từ tăng lên [10]. Sự phụ thuộc của mật độ dòng điện không đổi vào nhiệt độ, cường độ và tần số của trường laser thay đổi cả về mặt định tính và định lượng so với bán dẫn khối và hệ hai chiều và kích thước dây lượng tử có ảnh hưởng đáng kể đối với mật độ dòng điện không đổi. Chương 3: Hiệu ứng quang kích thích trong dây lượng tử hình trụ với hố thế cao vô hạn 3.1. Phương trình động lượng tử cho điện tử giam cầm trong dây lượng tử hình trụ hố thế cao vô hạn fn,l,p z (t)     fn,l,p z  t   (eE0  eE  t   c pz ,h(t)  ,  ) t pz  2 2  2    (3.1)  2  C  q  I n,l,n',l ' (q) Nq J L  [f n,l,pz q  t  -f n,l,pz  t  ]    n,l,n ', l',pz ,q L    (n ',l',pz q -n,l,p z -q -L) f n,l,pz q  t  -fn,l,p z  t    (n,l,pz q  n,l,pz  q  L) 3.2. Mật độ dòng điện không đổi trong dây lượng tử hình trụ với hố thế cao vô hạn dưới tác dụng của một trường sóng điện từ phân cực phẳng, một trường bức xạ laser và một điện trường không đổi 3.2.1. Trường hợp tán xạ điện tử - phonon âm    2 c  F  2 2 1 F D E,h  j0  R0 ()d AC 3 3  D  3 0E   2 2 AC 3 3 3    (3.2) 0 1  F  1  F  2 2  Trong đó n 0 e3 F 2  2   F  2 2  A 2n ,l  A3  32m 4vs2  2  n ,l,n ',l' I n,l,n ',l ' exp    2mR  2  (3.3) 7/2   C3  4N13 12(4,9/2; N13 )  24(3,7/2; N13 )  (2,5/2; N13 )    2m 2m 2m  (3.4)    4N7/2 23 12 N  24 N  N  (4,9/2; 23 ) (3,7/2; 23 ) (2,5/2; 23 )  2m 2m 2m  1 2m N13   (Bn2 ',l'  Bn2 ,l )   (3.5) R 2  1 2m N 23   (B2n ',l '  Bn,l 2 )  (3.6) R2  2 n 20 e 2  1   A 2n ,l  D3      F    exp   2  (3.7) 4m 2 k B T  2m  n ,l  2mR   1 3 1/2  1   N13    x 1  x  exp   N13 x  dx (3.8)  4,9/ 2,  2m   6o  2m   1 2 1/2  1   N13    x 1  x  exp   N13 x  dx (3.9)  3,7/ 2,   2m   2o  2m    1/ 2  1   N 13    x 1  x  exp   N 13 x  dx (3.10)  2,5/ 2 ,   2m   o  2m   1 3  1/ 2  1    x 1  x  exp   N 23 x  dx (3.11)  4,9/2,  N 23  2m   6 o  2m 
  11.  1 2 1/2  1    x 1  x  exp   (3.12) 2 o N 23  N 23 x  dx  3,7/2,  2m    2m    1/ 2  1   N 23    x 1  x  exp   N 23 x  dx (3.13)  2,5 / 2 ,   2m   o  2m    Lựa chọn: E  0x ; h  0y thì biểu thức của j0 theo các trục được xác định như sau  j0x   A 3 C3  D 3  E 0x   j  A C  D E (3.14)  0y  3 3 3  0y   j   A C  D  E  2c    F   1      F  A C  D  E 2 2  0z 3 3 3 0z  3 3 3  1  2  2   F   1  2 2   F   3.2.2. Trường hợp tán xạ điện tử - phonon quang    2c F  122  F    j0   R0 ()d A4C4  D4  E0   A4C4  D4  E,h (3.15) 0 1   F  1   F  2 2 2 2  n 0 e 6 F 2 2   F   1 1  2  A 2n ,l  A4      n,l,n ',l ' I exp   2  (3.16) 80 m 4 4   0  n,l,n ',l'  2mR  1/2  1 1 1 1  1  5/2   C4    N14  N24  N34  N44     N14 (2,5/ 2; N14 )  (3,7/ 2; N14 )    2 2 2 2  2m   2m  2m (3.17) 5/2   5/ 2    N  24 N24   N   N34  (2,5/2; N34 )  (3,7/2; N34 )   (3,7/ 2; 24 )  (2,5/ 2; 2m ) 2m   2m 2m     N5/2 44  N44   N  (3,7/ 2; 44 )  (2,5/ 2; 2m ) 2m   1/2  1   N14    x 1  x  exp   N14 x  dx (3.18)  2,5/ 2,  2m   o  2m   1 2 1/2  1    x 1  x  exp  N14 x  dx (3.19)  3,7/2,  N14  2m   2 o  2m   1/2  1   N 24    x 1  x  exp  N 24 x  dx (3.20)  2,5/2,   2m   o  2m   1 2 1/2  1   N24    x 1  x  exp  N24 x  dx (3.21)  3,7/2, 2m    2o  2m   1/ 2  1   N 34    x 1  x  exp   N 34 x  dx (3.22)  2,5/2,   2m   o  2m   1 2 1/2  1   N34    x 1  x  exp  N34 x  dx (3.23)  3,7/2,  2m   2o  2m   1/2  1   N 44    x 1  x  exp  N 44 x  dx (3.24)  2,5/2,  2m    o  2m   1 2 1/2  1    x 1  x  exp  N44 x  dx (3.25)  3,7/2,  N44  2m   2 o  2m 
  12. 1 N14   (A n2 ',l '  A n,l 2 )  2m(q  ) (3.26) R2 1 N 24   (A n2 ',l '  A n,l 2 )  2m(q  ) (3.27) R2 1 N 34   2 (A n2 ',l '  A n,l 2 )  2m(q  ) (3.28) R 1 N 44   (A n2 ',l '  A n,l 2 )  2m(q  ) (3.29) R2 2 n 20 e 2  1   A 2n ,l  D4         F  exp   2  (3.30) 4m 2 k B T  2m  n ,l  2mR    Lựa chọn: E  0x ; h  0y ta sẽ thu được các thành phần j0 x   A 4 C 4  D 4  E 0 x (3.31) j0 y   A 4 C 4  D 4  E 0 y (3.32) 2c   F  1  22  F   j0z   A4C4  D4  E0z  2 2  2 2 A4C4  D4  E (3.33) 1     F  1     F   Từ biểu thức (3.15) ta thấy mật độ dòng điện này phụ thuộc vào tần số của sóng điện từ, tần số của trường laser, và các thông số đặc trưng cho dây lượng tử hình trụ với thế cao vô hạn. 3.2.3. Kết quả tính toán số và thảo luận Để thấy được sự phụ thuộc của mật độ dòng điện không đổi vào tần số của sóng điện từ, tần số của trường laser, và các tham số cả về định tính lẫn định lượng trong dây lượng tử hình trụ với hố thế cao vô hạn, trong phần này chúng tôi sẽ tính toán số, vẽ đồ thị và thảo luận các kết quả trên dây lượng tử hình trụ với hố thế cao vô hạn cụ thể GaAs/GaAsAl đây là loại vật liệu thường được sử dụng nhiều trong tính toán số. * Tương tác điện tử - phonon âm Hình 3.2. Sự phụ thuộc của mật độ dòng Hình 3.1. Sự phụ thuộc của mật độ dòng điện không đổi trong dây lượng tử hình điện không đổi trong dây lượng tử hình trụ thế cao vô hạn vào tần số của sóng điện từ trụ thế cao vô hạn vào bán kính của dây trong trường hợp tán xạ điện tử - phonon trong trường hợp tán xạ điện tử - âm với các giá trị khác nhau của nhiệt độ. phonon âm với các giá trị khác nhau của tần số sóng điện từ.
  13. Hình 3.3. Sự phụ thuộc của mật độ dòng điện không đổi trong dây lượng tử hình trụ thế cao vô hạn vào tần số của trường laser trong trường hợp tán xạ điện tử - phonon âm với các giá trị khác nhau của tần số sóng điện từ. * Tương tác điện tử - phonon quang Hình 3.4. Sự phụ thuộc của mật độ dòng điện không Hình 3.5. Sự phụ thuộc của mật độ dòng điện không đổi trong dây lượng tử hình trụ thế cao vô hạn vào đổi trong dây lượng tử hình trụ thế cao vô hạn vào tần số của trường sóng điện từ trong trường hợp tán tần số của trường laser trong trường hợp tán xạ xạ điện tử - phonon quang với các giá trị khác nhau điện tử - phonon quang với các giá trị khác nhau của nhiệt độ. của tần số sóng điện từ. Hình 3.6. Sự phụ thuộc của mật độ dòng điện không đổi trong dây lượng tử hình trụ thế cao vô hạn vào nhiệt độ của hệ trong trường hợp tán xạ điện tử - phonon quang với các giá trị khác nhau của tần số sóng điện từ. 3.3. Kết luận chương 3 Chương 3 của luận án trình bày phương pháp phương trình động lượng tử để tìm ra biểu thức của mật độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích. Trong đó dây lượng tử hình trụ với thế cao vô hạn được đặt trong một trường sóng điện từ phân cực phẳng, một trường laser tần số cao và một trường điện không đổi. Bài toán cũng được xem xét cho cả hai cơ chế tán xạ điện tử-phonon âm và điện tử- phonon quang. Bên cạnh việc khảo sát sự phụ thuộc của mật độ dòng điện vào tần số của sóng điện từ, tần số củatrường laser, nhiệt độ của hệ, chúng tôi đã khảo sát sự ảnh hưởng của các tham số cấu trúc đặc trưng của
  14. dây lượng tử hình trụ hố thế cao vô hạn lên hệ. Ta thấy mật độ dòng điện có sự thay đổi vào phụ thuộc mạnh vào tần số hiệu dụng của hố thế giam giữ điện tử. Chương 4: Hiệu ứng quang kích thích trong dây lượng tử hình trụ với hố thế parabol 4.1. Phương trình động lượng tử cho điện tử giam cầm trong dây lượng tử hình trụ hố thế parabol fn ,l,p z (t)     fn ,l,p z  t   (eE0  eE  t   c  p z , h(t)  ,  ) t p z  2 2  2  (4.1)  2  C  q  I n,l,n ',l ' (q) Nq J L  [f n,l,p z  q  t  -f n,l,p z  t  ]    n ,l,n ',l',pz ,q L    (n ',l',p z  q - n,l,p z -q -L)  f n,l,p z  q  t  -fn ,l,p z  t    ( n ,l,p z  q   n,l,p z  q  L) 4.2. Mật độ dòng điện không đổi trong dây lượng tử hình trụ với hố thế parabol dưới tác dụng của một trường sóng điện từ phân cực phẳng, một trường bức xạ laser và một điện trường không đổi 4.2.1. Trường hợp tán xạ điện tử - phonon âm    2   1 2 2     j0  R0 ()d A5C5  D5  E0  c2 2 F  2 2 F A5C5 D5 E,h (4.2) 0 1  F  1  F   Trong đó n 0 e3 F2 2   F   2 A5  4 2 2  I n2 ,l,n ',l' exp 0 (2n  l  1) (4.3) 32m v  s n ,l,n ',l ' 7/2   C5  4N15 12(4,9/2; N15 )  24(3,7/2; N15 )  (2,5/2; N15 )    2m 2m 2m  (4.4)    4N7/2 25 12 N  24 N  N  (4,9/2; 25 ) (3,7/2; 25 ) (2,5/2; 25 )  2m 2m 2m  N15  2m  2o (n ' n)  0 (l' l)    (4.5) N 25  2m  2o (n ' n)  0 (l' l)    (4.6) 2 n 02 e2  1  D5       F   exp 0 (2n  l  1) (4.7) 4 m 2 k B T  2m  n ,l  1 3 1/ 2  1   N15    x 1  x  exp  N15 x  dx (4.8)  4,9/ 2,  2m   6o  2m   1 2 1/2  1   N15    x 1  x  exp   N15 x  dx (4.9)  3,7/ 2,   2m   2o  2m   1/ 2  1   N 15    x 1  x  exp   N 15 x  dx (4.10)  2,5/ 2 ,   2m   o  2m   1 3 1/ 2  1    x 1  x  exp   N 25 x  dx (4.11)  4,9/2,  N 25  2m   6 o  2m   1 2 1/2  1   N 25    x 1  x  exp   N 25 x  dx (4.12)  3,7/2,  2m   2o  2m    1/ 2  1   N 25    x 1  x  exp   N 25 x  dx (4.13)  2,5 / 2 ,   2m   o  2m 
  15.   ựa chọn: E  0x ; h  0y thì biểu thức của j0 theo các trục được xác định như sau  j0 x   A 5 C5  D 5  E 0 x   j  A C  D E (4.14)  0y  5 5 5  0y   j  A C  D E  2c    F   1      F  A C  D  E 2 2  0z  5 5 5  0z  5 5 5  1  2 2   F  1  2 2   F   Sử dụng phương trình động lượng tử cho điện tử trong dây lượng tử hình trụ hố thế parabol dưới tác dụng của một trường sóng điện từ phân cực phẳng, một trường bức xạ laser và một điện trường không đổi, mật độ dòng điện không đổi đã được tính toán. 4.2.2. Trường hợp tán xạ điện tử - phonon quang    2c F  122  F    j0   R0 ()d A6C6  D6  E0   A6C6  D6  E,h (4.15) 0 1   F  1   F  2 2 2 2  n 0e6 F2 2  F   1 1  2 A6  4 4     In,l,n',l' exp0 (2n  l  1) (4.16) 80 m    0  n,l,n',l' 1/2  1 1 1 1  1  5/ 2   C6    N16  N26  N36  N46     N16  (2,5/ 2; N16 )  (3,7/ 2; N16 )    2 2 2 2  2m   2m 2m  (4.17) 5/ 2  5/2    N  26 N  N   N36 (2,5/ 2; N36 )  (3,7/ 2; N36 )   (2,5/ 2; 26 ) (3,7/2; 26 )  2m 2m   2m 2m  5/ 2    N46  N 46   N  (3,7/2; 46 )  (2,5/ 2; 2m ) 2m   1/2  1   N16    x 1  x  exp   N16 x  dx (4.18)  2,5/ 2,  2m   o  2m   1 2 1/2  1   N16   x 1  x  exp  (4.19) 2 o N16 x  dx  3,7/2,   2m   2m   1/2  1   N 26    x 1  x  exp  N 26 x  dx (4.20)  2,5/2,   2m   o  2m   1 2 1/2  1   N26    x 1  x  exp  N26 x  dx (4.21)  3,7/2,  2m   2o  2m   1/ 2  1   N 36    x 1  x  exp   N 36 x  dx (4.22)  2,5/2,   2m   o  2m   1 2 1/2  1   N36    x 1  x  exp  N36 x  dx (4.23)  3,7/2,   2m  2o  2m   1/2  1   N 46    x 1  x  exp  N 46 x  dx (4.24)  2,5/2,   2m   o  2m   1 2 1/2  1    x 1  x  exp  N46 x  dx (4.25)  3,7/2,  N46  2m   2 o  2m  N16  2m  2o (n ' n)  0 (l' l)  q    (4.26) N 26  2m  2o (n ' n)  0 (l' l)  q    (4.27)
  16. N 36  2m  2o (n ' n)  0 (l' l)  q    (4.28) N 46  2m  2o (n ' n)  0 (l' l)  q    (4.29) 2 n 20 e2  1  D6      F   exp0 (2n  l  1) (4.30) 4m2 k B T  2m  n,l   Lựa chọn: E  0x ; h  0y ta sẽ thu được các thành phần j0x   A 6 C6  D6  E 0x (4.31) j0 y   A 6 C6  D6  E 0 y (4.32) 2c  F  1  22  F   j0z   A6C6  D6  E0z   A6C6  D6  E (4.33) 1     F  1     F  2 2 2 2  Từ biểu thức (4.15) ta thấy mật độ dòng điện này phụ thuộc vào tần số của sóng điện từ, tần số của trường laser, và các thông số đặc trưng cho dây lượng tử hình trụ với thế parabol. 4.2.3. Kết quả tính toán số và thảo luận Trong phần này chúng tôi sẽ tính toán số, vẽ đồ thị và thảo luận các kết quả trên dây lượng tử hình trụ GaAs/GaAsAl. * Tán xạ điện tử - phonon âm 4 1.8  1=1.3.1013 s -1 T=48K 1.6 T=50K 13 -1  2=1.5.10 s T=52K 3.95  3=1.7.1013 s -1 1.4 1.2 3.9 1 J0z J 0z 0.8 3.85 0.6 0.4 3.8 0.2 0 3.75 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 The frequency of radiation field 12 The frequency of Electromagnetic wave 13 x 10 x 10 Hình 4.1. Sự phụ thuộc của mật độ Hình 4.2. Sự phụ thuộc của mật độ dòng điện không đổi trong dây dòng điện không đổi trong dây lượng tử hình trụ thế parabol vào lượng tử hình trụ thế parabol vào tần số của sóng điện từ trong tần số của trường laser trong trường trường hợp tán xạ điện tử - phonon hợp tán xạ điện tử - phonon âm với âm với các giá trị khác nhau của các giá trị khác nhau của nhiệt độ. tần số trường laser.
  17. -5 7 x 10 2.5 13 -1 1=0.1.10 s 13 -1 1=0.1.10 s 6 2=0.14.1013 s-1 2=0.14.10 13 s-1 13 -1 2 3=0.18.10 s 13 -1 5 3=0.18.10 s 4 1.5 J0z J0z 3 1 2 0.5 1 0 50 51 52 53 54 55 56 57 58 59 60 0 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 The Temperature (K) Radius of wire -9 x 10 Hình 4.3. Sự phụ thuộc của mật độ Hình 4.4. Sự phụ thuộc của mật độ dòng dòng điện không đổi trong dây lượng điện không đổi trong dây lượng tử hình tử hình trụ thế parabol vào nhiệt độ trụ thế parabol vào bán kính của dây của hệ trong trường hợp tán xạ điện tử trong trường hợp tán xạ điện tử - - phonon âm với các giá trị khác nhau phonon âm với cá giá rị khác nhau của của tần số sóng điện từ. tần số sóng điện từ. * Tương tác điện tử - phonon quang Ta khảo sát sự phụ thuộc của mật độ dòng điện không đổi vào tần số của sóng điện từ, tần số của trường laser và các thông số đặc trưng cho dây lượng tử cũng như nhiệt độ của hệ. 3.5 1.6238 T=264(K)  1=11,17.1012 s-1 T=267(K) 3 1.6238 T=270(K)  2=11,18.1012 s-1 1.6238  3=11,20.1012 s-1 2.5 1.6238 2 j0z jz/jo J0z 1.6238 1.5 1.6238 1 1.6238 0.5 1.6238 0 1.6238 1 2 3 4 5 6 7 8 9 10 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 The frequency  of the laser radiation 14 The radius of wire -9 x 10 x 10 Hình 4.5. Sự phụ thuộc của mật độ Hình 4.6. Sự phụ thuộc của mật độ dòng điện không đổi trong dây dòng điện không đổi trong dây lượng tử hình trụ thế parabol vào lượng tử hình trụ thế parabol vào tần số của trường laser trong bán kính của dây trong trường hợp trường hợp tán xạ điện tử - phonon tán xạ điện tử - phonon quang với quang với các giá trị khác nhau các giá trị khác nhau của tần số của nhiệt độ. trường laser. 10.8  1=11,17.1012 s -1 10.6  2=11,18.1012 s -1  3=11,20.1012 s -1 10.4 10.2 J0z 10 9.8 9.6 9.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 15 x 10 Hình 4.7. Sự phụ thuộc của mật độ dòng điện không đổi trong dây lượng tử hình trụ thế parabol vào tần số của trường sóng điện từ trong trường hợp tán xạ điện tử - phonon quang với các giá trị khác nhau của tần số trường laser. 4.3. Kết luận chương 4 Chương 4 của luận án trình bày phương pháp phương trình động lượng tử để tìm ra biểu thức của mật
  18. độ dòng điện không đổi xuất hiện trong hiệu ứng quang kích thích trong dây lượng tử hình trụ với hố thế parabol. Trong đó dây lượng tử được đặt trong một trường sóng điện từ phân cực phẳng, một trường laser tần số cao và một trường điện không đổi. Mật độ dòng điện không đổi được tính toán cho cả hai trường hợp là tán xạ điện tử - phonon âm và điện tử - phonon quang. Bên cạnh việc khảo sát sự phụ thuộc của mật độ dòng điện vào tần số của sóng điện từ, tần số của trường laser, nhiệt độ của hệ, chúng tôi cũng đã khảo sát sự ảnh hưởng của các tham số cấu trúc đặc trưng của dây lượng tử hình trụ với hố thế parabol. KẾT LUẬN Bằng phương pháp phương trình động lượng tử, chúng tôi đã nghiên cứu hiệu ứng quang kích thích trong dây lượng tử hình trụ với hố thế cao vô hạn, dây lượng tử hình trụ với hố thế parabol và dây lượng tử hình chữ nhật với hố thế cao vô hạn dưới tác dụng của một trường điện từ phân cực phẳng, một trường bức xạ laser. Các kết quả chính của luận án được tóm tắt như sau: 1. Lần đầu tiên thiết lập phương trình động lượng tử cho hệ điện tử - phonon trong bán dẫn một chiều (dây lượng tử hình trụ với hố thế cao vô hạn, dây lượng tử hình trụ với hố thế parabol, dây lượng tử hình chữ nhật với hố thế cao vô hạn) và thu được các biểu thức giải tích cho mật độ dòng điện không đổi xuất hiện do hiệu ứng quang kích thích trong dây lượng tử hình trụ với thế cao vô hạn, dây lượng tử hình trụ với thế parabol và dây lượng tử hình chữ nhật với hố thế cao vô hạn. 2. Các kết quả thu được cho thấy sự lượng tử hóa do giảm kích thước trong các dây lượng tử ảnh hưởng mạnh lên mật độ dòng điện trong các dây lượng tử. Sự phụ thuộc của mật độ dòng điện không đổi vào tần số của trường sóng điện từ, tần số của trường laser, các tham số như nhiệt độ của hệ, cấu trúc của dây lượng tử có nhiều sự khác biệt so với bài toán tương tự trong bán dẫn khối, siêu mạng và hố lượng tử. Sự khác biệt này là do phổ năng lượng của hạt tải thay đổi, dẫn đến sự thay đổi hàm sóng, thừa số dạng và các đại lượng đặc trưng cho hệ lượng tử. 3. Kết quả tính toán số cho mật độ dòng điện trong dây lượng tử hình trụ với hố thế cao vô hạn, dây lượng tử hình trụ với thế parabol và dây lượng tử hình chữ nhật với thế vô hạn GaAs/GaAsAl chỉ ra sự phụ thuộc của mật độ dòng điện không đổi vào tần số của trường sóng điện từ, trường laser, và các thông số của hệ lượng tử như kích thước của dây hay nhiệt độ của hệ. Các kết quả cũng tính cho hai loại tương tác là tương tác điện tử - phonon âm và tương tác điện tử - phonon quang. Luận án góp phần khẳng định khả năng, tính hiệu quả và đúng đắn của phương pháp phương trình động lượng tử khi nghiên cứu các tính chuyển tải của hệ electron – phonon bằng lý thuyết lượng tử. Các kết quả thu được của luận án góp một phần hoàn thiện lý thuyết lượng tử về hiệu ứng quang kích thích trong hệ bán dẫn một chiều nói riêng và trong Vật lý bán dẫn thấp chiều nói chung; góp phần nhỏ bé vào sự phát triển của lý thuyết Vật lý nanô, cung cấp các thông tin về bán dẫn thấp chiều. Những thông tin này có thể được xem là cơ sở cho công nghệ chế tạo các linh kiện bằng vật liệu nanô hiện nay.
  19. CÁC CÔNG TRÌNH LIÊN QUAN ĐẾN LUẬN ÁN ĐÃ CÔNG BỐ [1] Hoang Van Ngoc, Nguyen Vu Nhan, and Nguyen Quang Bau, (2014) “ Photostimulated quantum effects in quanum wire with parabolic potential”, Progress in electromagnetics research symposium proceedings, Guangzhou, China, pp. 1945-1948. (ISSN 1559-9450) [2] Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau, (2016) “The photon – drag effect in cylindrical quantum wire with a parabolic potential”, International Journal of Physical and Mathematical Sciences - World Academy of Science, Engineering and Technology, 10 (12), pp 542-545. ISSN 1307-6892), (ISI/SCOPUS). [3] Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau, (2017) “The light – effect in cylindrical quantum wire with an infinite potential for the case of electrons - optical phonon scattering ”, International Journal of Physical and Mathematical Sciences - World Academy of Science, Engineering and Technology, 11 (8), pp 349-352. (ISSN 1307-6892), (ISI/SCOPUS). [4] Hoang Van Ngoc, Nguyen Vu Nhan, Dinh Quoc Vương (2017) “The photon – drag effect in retangular quantum wire with an infinite potential”, VNU Journal of Science, Mathematics – Physics, 33 (No.1), pp 53- 59. (ISSN 0866-8612). [5] Nguyen Vu Nhan, Hoang Dinh Trien, and Hoang Van Ngoc (2017) “The photostimulated quantum effect in rectangular quantum wire with an infinite potential for the case of electron – acoustic phonon scattering”, Tạp chí khoa học, Đại học Thủ đô Hà Nội, (ISSN 2354-1512) (xác nhận đăng). [6] Hoang Van Ngoc, Nguyen Vu Nhan, Dinh Quoc Vuong (2017) “The photon – drag effect in cylindrical quantum wire with an infinite potential for the case of electrons – acoustic phonon scattering”, Journal of Science, Mathematics – Physics, số tháng 12, (ISSN 0866-8612) (xác nhận đăng)
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2