YOMEDIA

ADSENSE
Lecture Advanced Econometrics (Part II) - Chapter 2: Hypothesis testing
57
lượt xem 3
download
lượt xem 3
download

Lecture "Advanced Econometrics (Part II) - Chapter 2: Hypothesis testing" presentation of content: Maximum likelihood estimators, wald test, likelihood ratio test, lagrange multiplier test, application of tests procedures to linear models, hausman specification test, power and size of tests.
AMBIENT/
Chủ đề:
Bình luận(0) Đăng nhập để gửi bình luận!
Nội dung Text: Lecture Advanced Econometrics (Part II) - Chapter 2: Hypothesis testing
- Advanced Econometrics - Part II Chapter 2: Hypothesis Testing Chapter 2 HYPOTHESIS TESTING I. MAXIMUM LIKELIHOOD ESTIMATORS: n (θ ) = ∏ f ( Z i , θ ) → θˆMLE = arg max (θ ) i =1 θ n L(θ ) ln= = (θ ) ∑ ln f (Z ,θ ) i =1 i • Asymptotic normality: ∂L Solve: θˆMLE for =0 ∂θ ∂2 L −1 θˆMLE ~ N θ , -E ∂θ∂θ ' ∂L ∂L ′ ∂2 L I (θ ) = E = −E θ vector (k ×1) ∂θ ∂θ ∂θ∂θ ' ∂L ∂θ 1 θ1 ∂L θ ∂L = ∂θ 2 θ = 2 ∂θ ∂L θ k ∂θ k ∂2 L ∂2 L ∂2 L ∂θ1 2 ∂θ1∂θ 2 ∂θ1∂θ k ∂2 L ∂2 L ∂2 L ∂2 L = ∂θ 2 ∂θ1 ∂θ 22 ∂θ 2 ∂θ k ∂θ∂θ ′ ∂ L 2 ∂ L2 ∂2 L ∂θ k ∂θ 1 ∂θ k ∂θ 2 ∂θ k2 • For the linear model: Y = Xβ + ε ( n×1) ( n×k )( k ×1) ( n×1) Nam T. Hoang UNE Business School 1 University of New England
- Advanced Econometrics - Part II Chapter 2: Hypothesis Testing → Y = Xβˆ + e ε ~ N (0,σ 2 I ) n n 1 L( β ,σ 2 ) = − ln 2π − ln σ 2 − (Y − Xβ )′(Y − Xβ ) 2 2 2σ 2 ∂L 1 (= 0) ∂β = − 2 (− X ′Y + X ′X β ) σ ∂L = n 1 − 2 + 2 (Y − X β )′(Y − X β ) ∂σ 2 2σ 2σ (= 0) e1 βˆ = ( X ' X ) −1 X 'Y e → 2 1 e = 2 ˆ ˆ e' e σˆ = (Y − Xβ )′(Y − Xβ ) = n n en −1 σ 2 ( X ' X ) −1 0 ∂2 L −E = 2σ 4 ∂θ∂θ ′ 0 n • We consider maximum likelihood estimator θ & the hypothesis: c(θ ) = q II. WALD TEST • Let θˆ be the vector of parameter estimator obtained without restrictions. • We test the hypothesis: H 0 : c(θ ) = q θˆ is restriction MLE of θ • If the restriction is valid, then c(θˆ) − q should be close to zero. We reject the hypothesis of this value significantly different from zero. • The Wald statistic is: ( −1 ) W = [c(θˆ) − q ]′ Var[c(θˆ) − q ] [c(θˆ) − q ] Under: H 0 : c(θ ) = q • W has chi-squared distribution with degree of freedom equal to the number of restrictions (i.e number of equations in c(θˆ) − q = 0 ) W ~ X [2J ] Nam T. Hoang UNE Business School 2 University of New England
- Advanced Econometrics - Part II Chapter 2: Hypothesis Testing III. LIKELIHOOD RATIO TEST: • H 0 : c(θ ) = q Let θˆU be the maximum likelihood estimator of θ obtained without restriction. Let θˆR be the MLE of θ with restrictions. If LˆU & Lˆ R are the likelihood functions evaluated at these two estimate. The likelihood ratio: Lˆ R λ= LˆU (0 ≤ λ ≤ 1) If the restriction c(θ ) = q is valid then Lˆ R should be close to LˆU . • Under H 0 : c(θ ) = q → −2 ln λ ~ X [2J ] is chi-squared, with degree of freedom equal to the number of restrictions imposed. LR = −2 ln λ ~ X [2J ] IV. LAGRANGE MULTIPLIER TEST (OR SCORE TEST): H 0 : c(θ ) = q Let λ be a vector of Lagrange Multipliers, define the Lagrange function: L* (θ ) = L(θ ) + λ ′[c(θ ) − q ] The FOC is: * ′ ∂L (θ ) =∂L (θ ) ∂c (θ ) ∂θ + λ=0 ∂θ ∂θ ′ ∂L* (θ ) = c (θ ) − = q 0 ∂λ Nam T. Hoang UNE Business School 3 University of New England
- Advanced Econometrics - Part II Chapter 2: Hypothesis Testing If the restrictions are valid, then imposing them will not lead to a significant difference ∂L(θˆR ) in the maximized value of the likelihood function. This means is close to 0 or λ ∂θˆR is close to 0. We can test this hypothesis: H 0 : c(θ ) = q → leads to LM test. ′ −1 ∂L(θˆR ) ∂ 2 L(θˆR ) ∂L(θˆR ) =LM −E ∂θˆ ∂θˆ ∂θˆ′ ∂θˆ R R R R Under the null hypothesis H 0 : λ = 0 LM has a limiting chi-squared distribution with degrees of freedom equal to the number of restrictions. Graph V. APPLICATION OF TESTS PROCEDURES TO LINEAR MODELS Model: Y = Xβ + ε = Xβˆ + e ( n×1) ( n×k )( k ×1) ( n×1) ( n×1) H 0 : Rβ = q q R ( j ×k ) ( j×1) ( j ×k ) 1. Wald test: βˆ is an MEE of β (unrestriction) (′ )[ W = Rβˆ − q Rσˆ 2 ( X ′X ) R′ Rβˆ − q ~ X [2J ] −1 −1 ]( ) e′e βˆ is an unrestriction estimator of β : σˆ 2 = n It can be shown that: n(e′R eR − e′e) W = ~ X [2J ] e′e (1) With eR = Y − Xβˆ R βˆR is an estimator subject to the restriction Rβ . Nam T. Hoang UNE Business School 4 University of New England
- Advanced Econometrics - Part II Chapter 2: Hypothesis Testing 2. LR test: H 0 : Rβ = q L( βˆ R , X ) λ= L( βˆ , X ) [ ] LR = −2 ln λ = 2 ln L( βˆ ) − ln L( βˆR ) ~ X [2J ] It can be shown: LR = n(ln e′R eR − ln e′e) eR = Y − XβˆR 3. LM test: H 0 : Rβ = q It can be shown: neR X ( X ′X ) −1 X ′eR ne′R X ( X ′X ) −1 X ′eR n(e′R eR − e′e) LM = = = (3) σˆ 2 e′R eR e′R e′R It can be shown: 2 2 n(e′R eR − e′e) n e′R eR − e′e n(e′R eR − e′e) n e′R eR − e′e LR = − = + (2) e′e 2 e′e e′R eR 2 e′R eR From (1), (2), (3) we have: For the linear models: W ≥ LR ≥ LM The tests are asymptotically equivalent but in general will give different numerical results in finite samples. Which test should be used? The choice among would, LR & LM is typically made on the Basic of ease of computation. LR require both restrict & unrestrict. Wald require only unrestrict & LM requires only restrict estimators. Nam T. Hoang UNE Business School 5 University of New England
- Advanced Econometrics - Part II Chapter 2: Hypothesis Testing VI. HAUSMAN SPECIFICATION TEST: - Consider a test for endogeneity of a regressor in linear model. - Test based on comparisons between two different estimators are called Hausman Test. - Two alternative estimators are: βˆOLS & βˆ2 SLS estimators. Where βˆ2 SLS uses instruments to control for possible endogeneity of the regressor: H 0 : βˆOLS ≈ βˆ2 SLS Hausman’s statistic: [ ] −1 ( βˆ2 SLS − βˆOLS )′ VarCov( βˆ2 SLS − βˆOLS ) ( βˆ2 SLS − βˆOLS ) ~ χ [2r ] r: the number of endogenous regressors. Model general: ~ consider two estimators θˆ and θ We consider the test situation where: H0 : plim(θˆ − θ ) = 0 HA : plim(θˆ − θ ) ≠ 0 ~ ~ Assume under H0 : n (θˆ − θ ) → N (0,Var (θˆ − θ )) The Hausman test statistic: −1 ~ 1 ~ ~ H = (θˆ − θ ) Var (θˆ − θ ) (θˆ − θ ) ~ χ [2q ] n ~ q is rank of Var (θˆ - θ ) For the linear model: VarCov( βˆ2 SLS − βˆOLS ) = VarCov( βˆ2 SLS ) − VarCov( βˆOLS ) Nam T. Hoang UNE Business School 6 University of New England
- Advanced Econometrics - Part II Chapter 2: Hypothesis Testing VII. POWER AND SIZE OF TESTS: Size of a test: Size = Pr[type I error] = Pr[reject H0 | H0 true] Common choices: 0.01, 0.05 or 0.1, α = 0.05 Monte-Carlo: set H0 true, → see the probability of reject H0 → size Power of a test: Power = Pr [reject H0/H0 wrong] = 1 - Pr[accept H0/H0 wrong] = 1 - Pr[Type II error] Monte-Carlo: set H0 wrong, → see the probability of reject H0 → power size. Nam T. Hoang UNE Business School 7 University of New England

ADSENSE
CÓ THỂ BẠN MUỐN DOWNLOAD
Thêm tài liệu vào bộ sưu tập có sẵn:

Báo xấu

LAVA
ERROR:connection to 10.20.1.98:9315 failed (errno=111, msg=Connection refused)
ERROR:connection to 10.20.1.98:9315 failed (errno=111, msg=Connection refused)
AANETWORK
TRỢ GIÚP
HỖ TRỢ KHÁCH HÀNG
Chịu trách nhiệm nội dung:
Nguyễn Công Hà - Giám đốc Công ty TNHH TÀI LIỆU TRỰC TUYẾN VI NA
LIÊN HỆ
Địa chỉ: P402, 54A Nơ Trang Long, Phường 14, Q.Bình Thạnh, TP.HCM
Hotline: 093 303 0098
Email: support@tailieu.vn
