intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Lecture Business statistics in practice (7/e): Chapter 1 - Bowerman, O'Connell, Murphree

Chia sẻ: Fff Fff | Ngày: | Loại File: PPT | Số trang:11

62
lượt xem
2
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Chapter 1 - An introduction to business statistics. After mastering the material in this chapter, you will be able to: Define a variable, describe the difference between a quantitative variable and a qualitative variable, describe the difference between crosssectional data and time series data, construct and interpret a time series (runs) plot,...

Chủ đề:
Lưu

Nội dung Text: Lecture Business statistics in practice (7/e): Chapter 1 - Bowerman, O'Connell, Murphree

  1. Chapter 1 An Introduction to Business Statistics McGraw­Hill/Irwin Copyright © 2014 by The McGraw­Hill Companies, Inc. All rights reserved.
  2. An Introduction to Business Statistics 1.1 Data 1.2 Data Sources 1.3 Populations and Samples 1.4 Three Case Studies that Illustrate  Sampling and Statistical Inference 1.5 Ratio, Interval, Ordinal, and Nominative  Scales of Measurement (Optional) 1­2
  3. LO1-1: Explain what a variable is. 1.1 Data Data: facts and figures from which  conclusions can be drawn Data set: the data that are collected for a  particular study ◦Elements: may be people, objects, events, or  other entries Variable: any characteristic of an element 1­3
  4. LO1-2: Describe the difference between a quantitative variable Data  and a qualitative variable. Continued Measurement: A way to assign a value of a  variable to the element Quantitative: the possible measurements of  the values of a variable are numbers that  represent quantities Qualitative: the possible measurements fall  into several categories 1­4
  5. LO1-3: Describe the difference between cross-sectional data Cross­Sectional Data and time series data. Cross­sectional data: Data collected at the  same or approximately the same point in  time Time series data: data collected over  different time periods 1­5
  6. LO1-4: Construct and interpret a time series (runs) plot. Time Series Data Table 1.2 and Figure 1.1 1­6
  7. LO1-5: Describe the different types of data sources: existing data 1.2 Data Sources sources, experimental studies, and observational studies.  Existing sources: data already gathered by public or  private sources ◦ Internet ◦ Library ◦ Private data sources  Experimental and observational studies: data we  collect ourselves for a specific purpose ◦ Response variable: variable of interest ◦ Factors: other variables related to response variable 1­7
  8. LO1-6: Describe the difference between a population and a 1.3 Populations and Samples sample. Population The set of all elements about which we  wish to draw conclusions (people,  objects or events) Census An examination of the entire population  of measurements Sample A selected subset of the units of a  population 1­8
  9. LO1-7: Distinguish between descriptive statistics and statistical inference. Descriptive Statistics and Statistical  Inference Descriptive statistics: the science of  describing the important aspects of a set of  measurements Statistical inference: the science of using a  sample of measurements to make  generalizations about the important aspects  of a population of measurements 1­9
  10. LO1-8: Explain the importance of random sampling. 1.4 Three Case Studies That Illustrate  Sampling and Statistical Inference 1. Estimating Cell Phone Costs 2. The Marketing Research Case: Rating a  New Bottle Design 3. The Car Mileage Case: Estimating Mileage 1­10
  11. LO1-9: Identify ratio, interval, ordinal, and 1.5 Ratio, Interval, Ordinal, and Nominative  nominative scales of measurement (optional). Scales of Measurement (Optional)  Quantitative variables ◦ Ratio variable: a quantitative variable measured on a scale  such that ratios of its value are meaningful and there is an  inherently defined zero value ◦ Interval variable: a quantitative variable where ratios are  not meaningful and there is no defined zero  Qualitative variables (categorical) ◦ Ordinal variable: a qualitative variable for which there is  a meaningful ranking of the categories ◦ Nominative variable: a qualitative variable for which  there is no meaningful ranking of the categories 1­11
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2