intTypePromotion=1
zunia.vn Tuyển sinh 2024 dành cho Gen-Z zunia.vn zunia.vn
ADSENSE

Luận án Tiến sĩ Vật lý: Xây dựng và khảo sát mô hình khối lượng neutrino với đối xứng vị A4 bằng phương pháp nhiễu loạn

Chia sẻ: _ _ | Ngày: | Loại File: PDF | Số trang:133

30
lượt xem
5
download
 
  Download Vui lòng tải xuống để xem tài liệu đầy đủ

Mục tiêu của đề tài là xây dựng và khảo sát mô hình chuẩn mở rộng với đối xứng vị A4, trong đó tính toán khối lượng và chuyển hoá neutrino bằng phương pháp nhiễu loạn cho các kết quả phù hợp với thực nghiệm và thu được biểu thức giải tích liên hệ giữa pha Dirac vi phạm CP δCP với các góc trộn θij. Mời các bạn cùng tham khảo.

Chủ đề:
Lưu

Nội dung Text: Luận án Tiến sĩ Vật lý: Xây dựng và khảo sát mô hình khối lượng neutrino với đối xứng vị A4 bằng phương pháp nhiễu loạn

  1. BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- PHÍ QUANG VĂN XÂY DỰNG VÀ KHẢO SÁT MÔ HÌNH KHỐI LƯỢNG NEUTRINO VỚI ĐỐI XỨNG VỊ A4 BẰNG PHƯƠNG PHÁP NHIỄU LOẠN LUẬN ÁN TIẾN SỸ VẬT LÝ HÀ NỘI – 2017
  2. BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ ----------------------------- PHÍ QUANG VĂN XÂY DỰNG VÀ KHẢO SÁT MÔ HÌNH KHỐI LƯỢNG NEUTRINO VỚI ĐỐI XỨNG VỊ A4 BẰNG PHƯƠNG PHÁP NHIỄU LOẠN LUẬN ÁN TIẾN SỸ VẬT LÝ Chuyên ngành: Vật lý lý thuyết và vật lý toán Mã số: 62 44 01 03 Người hướng dẫn khoa học: PGS. TS. Nguyễn Anh Kỳ Hà Nội – 2017
  3. Lời cảm ơn Lời đầu tiên tôi xin gửi lời cảm ơn chân thành, sâu sắc nhất tới thầy Nguyễn Anh Kỳ, người đã tận tình hướng dẫn, định hướng, dìu dắt, giúp đỡ tôi trên con đường nghiên cứu khoa học cũng như tác phong làm việc nghiêm túc và không biết mệt mỏi của Thầy trong thời gian hướng dẫn tôi làm nghiên cứu sinh và hoàn thành luận án tiến sĩ này. Luận án cũng không thể được hoàn thành nếu thiếu sự giúp đỡ nhiệt thành và phong cách làm việc chuyên nghiệp của TS. Nguyễn Thị Hồng Vân, TS. Đinh Nguyên Dinh trong việc trao đổi, chia sẻ kinh nghiệm, cùng những buổi sinh hoạt nhóm, thảo luận chuyên môn dài bất tận, có thể nói tôi đã học được rất nhiều điều từ đây, với những gì đã nhận được tôi xin gửi lời cảm ơn chân thành tới họ. Môi trường và điều kiện học tập, nghiên cứu rất tốt tại cơ sở đào tạo cũng góp phần không nhỏ trong việc hình thành kỹ năng làm việc và kết quả nghiên cứu luận án của tôi. Qua đây tôi xin gửi lời cảm ơn đến nơi tôi được đào tạo, nghiên cứu là Viện Vật lý và Học viên Khoa học và Công nghệ, Viện Hàn lâm Khoa học và Công nghệ Việt Nam. Nhân đây, tôi muốn gửi lời cảm ơn tới Ban Giám hiệu Trường Đại học Kỹ thuật - Hậu cần CAND cùng các đồng nghiệp nơi tôi công tác đã giúp đỡ, động viên, hỗ trợ và tạo nhiều điều kiện tốt nhất về công tác cho tôi trong thời gian làm nghiên cứu sinh và hoàn thành luận án này. Tôi cũng gửi lời cảm ơn đến chương trình học bổng thuộc Đề án 911, Quỹ phát triển khoa học và công nghệ Quốc gia (Nafosted) theo đề tài số 103.03-2012.49 và quỹ học bổng Odon Vallet thuộc Tổ chức Gặp gỡ Việt Nam đã hỗ trợ một phần kinh phí cho tôi trong thời gian làm nghiên cứu sinh. Và trên hết, tôi xin bày tỏ lòng biết ơn tới bố mẹ, gia đình nhỏ, anh chị và bạn bè những người đã hết sức ủng hộ, động viên về mọi mặt để tôi vững tin hoàn thành luận án này. Hà Nội, Mùa Thu 2016 i
  4. Lời cam đoan Tôi xin cam đoan kết quả luận án "Xây dựng và khảo sát mô hình khối lượng neutrino với đối xứng vị A4 bằng phương pháp nhiễu loạn" là kết quả nghiên cứu của bản thân cùng sự hướng dẫn của thầy hướng dẫn và sự hợp tác của nhóm nghiên cứu. Kết quả luận án là kết quả mới không trùng lặp với các kết quả của các luận án và công trình đã có. Hà Nội, 26-09-2016 ii
  5. Mục lục Lời cảm ơn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Lời cam đoan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Danh sách hình vẽ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Danh sách bảng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Mở đầu 2 1 Mô hình chuẩn và vấn đề khối lượng neutrino 11 1.1 Mô hình chuẩn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.1.1 Cấu trúc gauge của mô hình chuẩn . . . . . . . . . . . . . . . . 12 1.1.2 Phá vỡ đối xứng tự phát. Cơ chế Higgs . . . . . . . . . . . . . . 14 1.1.3 Tương tác Yukawa và khối lượng các fermion . . . . . . . . . . 16 1.1.4 Các dòng tương tác điện yếu . . . . . . . . . . . . . . . . . . . . 18 1.2 Khối lượng và chuyển hoá neutrino . . . . . . . . . . . . . . . . . . . . 20 1.2.1 Số hạng khối lượng Dirac và Majorana . . . . . . . . . . . . . . 20 1.2.2 Ma trận trộn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2.3 Cơ chế cầu bập bênh . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2.4 Chuyển hoá neutrino . . . . . . . . . . . . . . . . . . . . . . . . 31 1.2.5 Khối lượng neutrino trong một số mở rộng mô hình chuẩn . . 36 (1) 2 Khối lượng và chuyển hoá neutrino trong mô hình A4 44 2.1 Biểu diễn của nhóm A4 và các mô hình A4 . . . . . . . . . . . . . . . . 45 (1) 2.2 Mô hình chuẩn mở rộng A4 . . . . . . . . . . . . . . . . . . . . . . . . 48 2.3 Phần vô hướng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 Phần lepton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 2.5 Khối lượng và trộn neutrino . . . . . . . . . . . . . . . . . . . . . . . . 56 2.6 Pha Dirac vi phạm CP và tham số Jarlskog . . . . . . . . . . . . . . . 62 iii
  6. MỤC LỤC MỤC LỤC (10) 3 Khối lượng và chuyển hoá neutrino trong mô hình A4 68 (10) 3.1 Mô hình chuẩn mở rộng A4 . . . . . . . . . . . . . . . . . . . . . . . 68 3.2 Phần vô hướng . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3 Phần lepton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.4 Khối lượng và chuyển hoá neutrino . . . . . . . . . . . . . . . . . . . . 77 3.5 Nhận xét và so sánh sơ lược giữa hai mô hình . . . . . . . . . . . . . . 87 Kết luận 89 Danh mục các công trình đã công bố 91 A Chéo hoá ma trận khối lượng neutrino 92 B Biểu diễn của nhóm A4 95 C Biểu thức khai triển nhiễu loạn 101 Tài liệu tham khảo 105 iv
  7. Danh sách hình vẽ 1 Nguồn neutrino mặt trời [13] . . . . . . . . . . . . . . . . . . . . . . . 4 2 Nguồn neutrino khí quyển (do tia vũ trụ bắn phá hạt nhân ở bầu khí quyển) [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1 Đồ thị mô tả dạng thế Higgs [97] . . . . . . . . . . . . . . . . . . . . . 15 1.2 Góc trộn neutrino biểu diễn theo góc Euler liên hệ gữa cơ sở trạng thái riêng và trạng thái khối lượng [109]. . . . . . . . . . . . . . . . . 25 1.3 Cơ chế cầu bập bênh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 Khối lượng neutrino hiệu dụng . . . . . . . . . . . . . . . . . . . . . . 28 1.5 Cơ chế seesaw I, III (hình trái), seesaw II (hình phải) . . . . . . . . . 28 1.6 Cơ chế seesaw I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.7 Cơ chế seesaw II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.8 Cơ chế seesaw III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.9 Các hướng để xây dựng mô hình vật lý nghiên cứu về neutrino. . . . 37 2.1 Trường thành phần trong mô hình chuẩn với đối xứng vị A4 × ZN [109]. 48 2.2 Phân bố của δCP trong trường hợp NO. . . . . . . . . . . . . . . . . . . 63 2.3 Sự phụ thuộc δCP theo sin2 θ13 trong trường hợp NO. . . . . . . . . . . 64 2.4 Phân bố của δCP trong trường hợp IO. . . . . . . . . . . . . . . . . . . 64 2.5 Sự phụ thuộc δCP theo sin2 θ13 trong trường hợp IO. . . . . . . . . . . . 64 2.6 Phân bố của JCP trong trường hợp NO và IO. . . . . . . . . . . . . . . 66 3.1 Neutrino hiệu dụng trong cơ chế see-saw I. . . . . . . . . . . . . . . . 69 3.2 Cơ chế see-saw I với đối xứng vị A4 . . . . . . . . . . . . . . . . . . . . . 69 3.3 Khối lượng hiệu dụng |hmee i| là hàm của khối lượng neutrino; đồ thị (hình trái) thu được bởi (3.72) với θij ∈ 3σ và δ, α21 , α31 ∈ [0, 2π], đồ thị (hình phải) từ [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 v
  8. DANH SÁCH HÌNH VẼ DANH SÁCH HÌNH VẼ 3.4 JCP là hàm của θ13 (hình trái) và là hàm của δCP (hình phải) với các góc trộn θij ∈ 3σ và pha δCP ∈ [0, 2π]. . . . . . . . . . . . . . . . . . . . 83 3.5 Phân bố của δCP trong NO (hình trái) và IO (hình phải) với 2 nghiệm phân biệt tương ứng với màu đỏ và xanh . . . . . . . . . . . . . . . . . 84 3.6 Sự liên hệ giữa δCP và θ13 trong NO (hình trái) và IO (hình phải), ở vùng 1σ, 2σ and 3σ tương ứng với màu đỏ, xanh lá cây và xanh da trời. 85 3.7 Phân bố của JCP trong NO và IO . . . . . . . . . . . . . . . . . . . . . 85 3.8 JCP là hàm của θ13 trong NO (hình trái) và IO (phải phải) . . . . . . . 86 B.1 A4 là nhóm đối xứng của hình tứ diện đều. . . . . . . . . . . . . . . . . 95 vi
  9. Danh sách bảng 1.1 Một số nhóm gián đoạn được sử dụng trong việc mở rộng mô hình chuẩn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.1 Các phiên bản mô hình chuẩn mở rộng với đối xứng vị A4 . . . . . . . 47 2.2 Các trường lepton và vô hướng với nhóm biến đổi A4 , Z3 , Z4 . . . . . . . 49 2.3 Dữ liệu thực nghiệm của trường hợp NO và IO [6, 7]. . . . . . . . . . . 61 2.4 Giá trị trung bình của δCP và |JCP | trong trường hợp NO và IO của (1) mô hình A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 (10) 3.1 Mô hình chuẩn mở rộng với đối xứng vị A4 . . . . . . . . . . . . . . . 69 3.2 Thang khối lượng của mô hình. . . . . . . . . . . . . . . . . . . . . . . 76 3.3 Giá trị trung bình của δCP và |JCP | trong trường hợp NO và IO của (10) mô hình A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 B.1 Lớp liên hợp của A4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 1
  10. Mở đầu Giới thiệu về neutrino Neutrino là hạt fermion có spin 1/2, trung hoà điện và có khối lượng rất nhỏ. Nó là hạt cơ bản rất đặt biệt và khó ghi nhận do tương tác rất yếu với vật chất, chỉ tương tác thông qua lực yếu và hấp dẫn, nhưng lại là loại hạt có rất nhiều trong vũ trụ. Neutrino có 3 loại: neutrino electron (νe ), neutrino muon (νµ ) và neutrino tau (ντ ), mật độ trung bình của neutrino trong vũ trụ là nν ≈ 336 cm−3 , trong thiên hà của chúng ta mật độ có thể lớn hơn do các phản ứng hạt nhân. Neutrino nguyên thuỷ được tạo ra từ khoảng 13 tỉ năm trước, thời kỳ đầu sau Vụ nổ lớn (bigbang), thời kỳ này vũ trụ là nóng, đậm đặc bao gồm các hạt cơ bản và neutrino. Nó được sinh ra từ nhiều nguồn như: mặt trời, khí quyển trái đất, lò phản ứng hạt nhân, supernova, bigbang [1–5]... Kể từ khi được phát hiện, neutrino đóng vai trò rất quan trọng trong vật lý hạt cơ bản, vật lý thiên văn, vũ trụ học, nó cũng là mảnh ghép trọng yếu trong nhận thức của chúng ta về vật chất và vũ trụ. Do những tính chất hết sức đặc biệt và những hiểu biết về nó còn hạn chế nên các vấn đề về vật lý neutrino và các đối tượng liên quan luôn là những chủ đề được quan tâm cần phải giải quyết. Hiện nay chúng ta chỉ mới biết neutrino là hạt có khối lượng rất nhỏ, nhưng chưa biết khối lượng chính xác của chúng bằng bao nhiêu. Năm 1967, ba nhà vật lý Sheldon Glashow, Abdus Salam và Steven Weinberg đề xuất lý thuyết điện yếu. Lý thuyết này mô tả tương tác điện từ, yếu giữa các hạt cơ bản, khi kể đến tương tác mạnh (cũng được phát triển trong thời gian này), gọi là mô hình chuẩn (MHC), và là lý thuyết gauge của đối xứng SU (3)C × SU (2)L × U (1)Y . Mô hình chuẩn đã đem lại những thành công lớn trong vật lý hạt cơ bản: như tiên đoán sự tồn tại của boson W ± , Z, dòng trung hoà, quark t và c... Tuy nhiên, ngoài những thành công trên MHC cũng còn những hạn chế chưa thể giải quyết được như: không thống nhất được tương tác hấp dẫn, không giải thích được sự tồn tại 2
  11. Mở đầu của 3 thế hệ fermion, vấn đề phân bậc khối lượng, bất đối xứng giữa vật chất - phản vật chất, bản chất của vật chất tối và năng lượng tối..., và vấn đề về khối lượng và chuyển hoá neutrino. Trong mô hình chuẩn, neutrino là hạt có khối lượng bằng không, nhưng thực nghiệm đã cho thấy khối lượng của neutrino khác không. Khối lượng này không thể được giải thích bởi cơ chế sinh khối lượng-cơ chế Higgs trong mô hình chuẩn được, do trong mô hình không có neutrino phân cực phải, số lepton bảo toàn và thực nghiệm không tìm được hệ số tương tác Yukawa đủ bé ( 10−12 ) để sinh khối lượng neutrino. Do vậy cần có cơ chế mới sinh khối lượng neutrino, một trong những cơ chế đó là cơ chế cầu bập bênh (seesaw), cơ chế này sinh khối lượng neutrino rất bé (< 0.2eV [6, 7]) do tỉ lệ với bình phương khối lượng neutrino Dirac ∼ 100GeV và tỉ lệ nghịch khối lượng neutrino Majrorana phân cực phải ∼ 1015 GeV . Đây chính là một trong những định hướng quan trọng để các nhà vật lý mở rộng mô hình chuẩn và cũng là hướng tiếp cận luận án này khi nghiên cứu về khối lượng và chuyển hoá neutrino thông qua việc mở rộng mô hình chuẩn. Lịch sử và phát triển về nhận thức neutrino trải qua nhiều giai đoạn với sự đóng góp không mệt mỏi của cộng đồng vật lý [3, 5, 8–11]. Ý tưởng về neutrino xuất hiện lần đầu tiên trong giả thuyết của W. Pauli vào năm 1930, và có thể coi đây là dấu mốc ra đời của vật lý neutrino. Ý tưởng này được biết đến trong nội dung lá thư mở của W. Pauli gửi đến hội nghị Tubingen, Thuỵ sĩ ngày 4 tháng 9 năm 1930, trong đó ông đã giả thuyết sự tồn tại của hạt mới trung hoà có spin 1/2 và được tạo ra cùng electron trong phân rã β. Từ thí nghiệm của C. D. Ellis và W. A. Wooster về phân rã β, cho thấy năng lượng trung bình của electron được sinh ra trong phân rã nhỏ hơn năng lượng giải phóng toàn phần. Do đó, để đảm bảo định luật bảo toàn năng lượng không bị vi phạm thì giả thiết có sự tồn tại hạt trung hoà điện, với khối lượng bé và có khả năng đâm xuyên lớn (lớn hơn cả photon), hạt này được gọi là neutrino (theo tiếng Ý neutrino được ghép từ 2 từ: neutral có nghĩa là trung hoà và từ nino có nghĩa là bé - do E. Fermi gợi ý). Thời điểm này vấn đề neutrino chưa thu hút được sự quan tâm nhiều của giới vật lý. Nó chỉ thực sự được chú tới sau khi các hạt neutron, muon, pions, kaons, Λ và những hạt lạ khác được phát hiện, và càng chú ý hơn sau công trình của B. Pontecorvo (năm 1957) về chuyển hoá neutrino [12]. Ý tưởng của B. Pontecorvo đã đề xuất neutino có khối lượng bé và có sự chuyển 0 hoá tương tự như chuyển hoá (K 0 , K ) [13, 14]. Sự chuyển hoá cho thấy trạng thái vị (một số tài liệu gọi là hương - flavor) và trạng thái khối lượng của neutrino là khác nhau, chúng liên hệ với nhau bởi ma trận trộn. Ma trận trộn này được tham số hoá bởi 3 góc trộn và 3 pha (1 pha Dirac và 2 pha Majorana) gọi là ma trận trộn 3
  12. Mở đầu Pontecorvo-Maki- Nakagawa-Sakata có dạng    c12 c13 s12 c13 s13 e−iδ 1 0 0    UP M N S =  −c23 s12 − s13 s23 c12 eiδ c23 c12 − s13 s23 s12 eiδ s23 c13   0 eiα1 /2  , (1)    0    s23 s12 − s13 c23 c12 eiδ −s23 c12 − s13 c23 s12 eiδ c23 c13 0 0 eiα2 /2 ở đây, cij = cos θij , sij = sin θij , i, j = 1, 2, 3, δ là pha Dirac và α1 , α2 là pha Majorana ∈ [0, 2π]. Ma trận UP M N S khác với ma trận trộn UCKM của phần quark bởi 2 pha Majorana, do neutrino có thể là hạt Majrorana (tức đồng nhất với phản hạt của nó). Hình 1: Nguồn neutrino mặt trời [13] Hình 2: Nguồn neutrino khí quyển (do tia vũ trụ bắn phá hạt nhân ở bầu khí quyển) [13] Hiện nay có rất nhiều thí nghiệm khảo sát sự chuyển hoá neutrino như thí nghiệm Super-Kamiokande, T2K, KamLAND (Nhật Bản), SNO (Canada), RENO (Hàn Quốc), Double CHOOZ (Pháp), NOνA (Mỹ), Daya Bay (Trung Quốc) từ các nguồn neutrino mặt trời, khí quyển, (minh hoạ trong hình 1, 2), lò phản ứng hạt nhân và máy gia tốc. Các thí nghiệm này có thể xác định các đại lượng như góc trộn 4
  13. Mở đầu θij , pha Dirac vi phạm CP δCP và chênh lệch bình phương khối lượng ∆m2ij . Việc xác định được các đại lượng trên có ý nghĩa rất lớn không chỉ trong vật lý hạt và vũ trụ học mà còn hỗ trợ trong việc xây dựng các mô hình vật lý hiện tượng luận. Lý do chọn đề tài Các thí nghiệm trên đến nay đã xác định được 5 tham số neutrino gồm: 3 góc trộn θ23 ≈ 41, 40 , θ12 ≈ 33, 70 , θ13 ≈ 8, 80 và 2 chênh lệch bình phương khối lượng ∆m212 = 7, 54.10−5 eV 2 , |∆m2 | = 2, 43.10−3 [6]. Tuy nhiên, vật lý neutrino vẫn còn những vấn đề thực nghiệm chưa xác định được [3, 8–11] như: • Neutrino là hạt Dirac hay Majorana? • Phần lepton có vi phạm CP không? Giá trị của pha CP bằng bao nhiêu? • Đặc trưng phổ khối lượng neutrino là gì? Phổ khối lượng là phân bậc thuận hay phân bậc ngược? • Giá trị khối lượng tuyệt đối neutrino bằng bao nhiêu? • Có tồn tại neutrino trơ/lạ (sterile) không? Để mô tả các dữ liệu đã được thực nghiệm xác định và giải quyết các thách thức trên thì cần phải có mô hình lý thuyết phù hợp, nhưng hiện tại chưa có mô hình nào có thể giải quyết trọn vẹn, thuyết phục vấn đề trên. Đây là lý do, các nhà vật lý cần phát triển mô hình lý thuyết để giải quyết những thách thức này. Luận cứ chính cho hầu hết các mô hình lý thuyết được phát triển hiện nay là mở rộng trên cơ sở mô hình chuẩn. Đến thời điểm hiện tại, có rất nhiều hướng mở rộng MHC, trong đó các vấn đề neutrino được nghiên cứu như mô hình siêu đối xứng [15–19], lý thuyết thống nhất lớn [20, 21], mô hình chuẩn đối xứng trái phải [22–24], mô hình 3-3-1 [25–40], mô hình đối xứng gương [41, 42], mô hình Zee [43–46], mô hình Zee-Babu [47–50] và mô hình đối xứng thế hệ (đối xứng vị hay hương) v.v... Một trong những hướng trên thu hút được quan tâm hiện nay là mở rộng mô hình chuẩn với đối xứng vị. Như chúng ta đã biết trong mô hình chuẩn các thế hệ hạt quark và lepton biến đổi như nhau dưới đối xứng chuẩn và số thế hệ là bất kỳ (về lý thuyết). Việc đưa thêm đối xứng vị vào trong mô hình chuẩn góp phần vào việc xác định khối lượng của các quark, lepton và cách thức trộn giữa các quark và lepton một cách hiệu quả và thuận tiện hơn [51]. 5
  14. Mở đầu Đối xứng vị là đối xứng tác dụng trong không gian thế hệ và luôn được coi có khả năng bị phá vỡ ở thang năng lượng cao (lớn hơn thang điện yếu) trong các nghiên cứu về neutrino và chúng giao hoán với nhóm gauge. Do đó, các mô hình chuẩn mở rộng có thể thêm vào nhóm đối xứng vị, ví dụ như SU (3)C × SU (2)L × U (1)Y × GF (gọi tắt là mô hình đối xứng vị), trong đó GF là nhóm đối xứng vị [51–53]. Nhóm đối xứng vị có thể là nhóm đối xứng liên tục hoặc gián đoạn và có thể là Abel hay không Abel. Tuy nhiên, nhóm đối xứng gián đoạn không Abel luôn được xem là sự lựa chọn ưu tiên hơn các nhóm gián đoạn khác khi thêm vào mô hình chuẩn mở rộng trong các hướng nghiên cứu về neutrino. Do chúng có ưu điểm là có hữu hạn biểu diễn bất khả quy và thường được xét với số chiều nhỏ hơn 4 (để chúng có sự đồng nhất với 3 thế hệ trong mô hình chuẩn), ví dụ với các nhóm GD = {S3 , S4 , A4 , A5 , T 7, ∆(27), ...} [54–58]. Ngoài ra, trong mô hình đối xứng vị sẽ không có thêm boson Goldstone hoặc boson gauge phát sinh trái với đối xứng gauge trong MHC và còn có thể làm cho việc tính toán các phần trộn của quark và lepton được thuận tiện hơn. Trong các mô hình chuẩn mở rộng với đối xứng vị gián đoạn thì mô hình với đối xứng vị A4 là được quan tâm nghiên cứu nhiều nhất vì nó là nhóm nhỏ nhất chứa biểu diễn bất khả quy 3 chiều và để có thể cho mô tả 3 thế hệ. Ý tưởng này xuất phát từ các công trình thời kỳ đầu xây dựng mô hình đối xứng vị của G. Altarelli, F. Feruglio, Ernest Ma, Steve King [59–63] và một số nhà vật lý khác, khi các mô hình này đã mô tả chính xác ma trận trộn dạng tribimaximal (TBM) do Harrison- Perkins-Scott đưa ra trong năm 2002 [64] mà không áp đặt lên mô hình bất kỳ điều kiện nào và khá phù hợp với thực nghiệm thời kỳ đó. Ma trận TBM có dạng  q q  2 1 3 3 0  q q q  UT BM =  − 16 1 − 12 . (2)    q q3 q  − 16 1 3 1 2 Ma trận UT BM chính là ma trận UP M N S khi sin2 θ12 = 1/3, sin2 θ23 = 1/2 và θ13 = 0, chúng ta có thể thấy rằng UT BM chênh lệch rất bé so với ma trận UP M N S mà thực nghiệm hiện tại xác định. Ngoài ra mô hình có đối xứng A4 là một trong mô hình mở rộng khá tiết kiệm về số lượng các trường bổ sung mở rộng và biểu diễn của A4 là khá phù hợp với các thế hệ của neutrino. Đây là lý do chính chúng tôi chọn hướng mở rộng này khi nghiên cứu khối lượng và chuyển hoá neutrino. 6
  15. Mở đầu Mục tiêu của luận án Xây dựng và khảo sát mô hình chuẩn mở rộng với đối xứng vị A4 , trong đó tính toán khối lượng và chuyển hoá neutrino bằng phương pháp nhiễu loạn cho các kết quả phù hợp với thực nghiệm và thu được biểu thức giải tích liên hệ giữa pha Dirac vi phạm CP δCP với các góc trộn θij . Mô hình xây dựng có khả năng tiên đoán giá trị δCP và khối lượng hiệu dung trong phân rã beta kép không neutrino (khối lượng hiệu dụng) |hmee i| phù hợp giới hạn thực nghiệm hiện tại. Vấn đề đặt ra của luận án Hiện nay có rất nhiều đề xuất phát triển mô hình đối xứng vị A4 khác nhau để giải quyết các vấn đề còn tồn tại về khối lượng neutrino, θ13 , δCP và khối lượng hiệu dung |hmee i|. Nhưng hầu hết các mô hình đều bộc lộ những hạn chế nhất định chưa giải quyết được như có mô hình tính được θ13 nhưng không tính được δCP [71, 72] hoặc ngược lại [73–77], có mô hình tính được cả θ13 , δCP nhưng không tính được khối lượng [78–81]. Ngoài ra có rất nhiều mô hình khi xây dựng đã áp đặt các điều kiện lên giá trị trung bình chân không (VEV) của các trường vô hướng theo cách không rõ nguồn gốc, lý do và thậm chí một số không xét đến các tương tác giữa các trường vô hướng nên không đánh giá được ảnh hưởng VEV của chúng lên mô hình, khối lượng và chuyển hoá neutrino [82–86]. Do đó, chúng tôi đã xây dựng mô hình chuẩn mở rộng với đối xứng vị A4 để giải quyết các vấn đề trên. Mô hình này có thể khảo sát được một cách đầy đủ tương tác của các trường vô hướng, sau đó thông qua điều kiện thế năng cực tiểu có thể xác định được VEV của chúng và từ đó đánh giá được những đóng góp, ảnh hưởng của VEV lên khối lượng neutirno, đồng thời xác định được nguồn gốc của những đóng góp vào giá trị θ13 , δCP . Cùng với đó mô hình cũng đã tiên đoán được các giá trị θ13 , δCP và mi (khối lượng neutrino) phù hợp với dữ liệu thực nghiệm. Hơn nữa mô hình mà chúng tôi xây dựng đã đưa ra được biểu thức giải tích liên hệ giữa θij và δCP . Từ biểu thức này sẽ cho tiên đoán giá trị của δCP khá phù hợp với những dữ liệu công bố trong [6, 7] khi sử dụng các giá trị thực nghiệm θij . Tuy nhiên, kết quả trên đạt được lại phụ thuộc vào việc chéo hoá ma trận khối lượng neutrino Mν . Đây là công việc thực sự khó khăn không chỉ với mô hình của chúng tôi mà còn với các mô hình khác. Khó khăn ở đây là do ma trận Mν phụ thuộc vào số lượng lớn tham số đầu vào là các hằng số tương tác Yakawa và VEV 7
  16. Mở đầu khác nhau của các trường vô hướng. Nếu cứ tiến hành chéo hoá theo cách thông thường thì chúng ta sẽ nhận được biểu thức khối lượng và ma trận trộn neutrino rất phức tạp gồm nhiều tham số đầu vào chưa biết nên không thể so sánh với số liệu thực nghiệm được (cụ thể giá trị thực nghiệm gồm 3 góc trộn θij , 2 chênh lệch bình phương khối lượng, trong khi đó số lượng tham số đầu vào lớn hơn rất nhiều), do vậy điều này là không khả thi. Để khắc phục khó khăn này, có rất nhiều cách thức, thủ thuật khác nhau chéo hoá Mν như áp đặt các điều kiện để hạn chế các tham số đầu vào hay sử dụng bổ đính vô cùng bé vào khối lượng neutrino, nhưng nhìn chung chưa có cách nào thực sự hiệu quả và triệt để. Câu hỏi đặt ra là cách thức và phương pháp của luận án giải quyết vấn đề này như thế nào? Phương pháp giải quyết Trong luận án chúng tôi đã sử dụng phương pháp nhiễu loạn [87] để thực hiện việc chéo hoá ma trận Mν . Phương pháp này cũng được sử dụng trong công trình [82], khi nhóm tác giả áp dụng mô hình Altarelli-Feruglio [59] trong nghiên cứu của mình nhưng chỉ tính được θ13 (với sai số rất lớn so với giá trị thực nghiệm), mà lại áp đặt tuỳ tiện các điều kiện về VEV của các trường vô hướng (do không xét tương tác giữa các vô hướng nên không đánh giá được VEV) cũng như không xét hết các tương tác Yukawa trong mô hình. Điều đó dẫn đến kết quả tính toán thiếu độ tin cậy, thậm chí có thể sai lệch hoàn toàn. Ngoài ra một số tác giả khác cũng dùng phương pháp nhiễu loạn để tính toán ma trận UP M N S quanh ma trận UT BM nhưng không xuất phát từ mô hình vật lý [88, 89] mà chỉ thuần tuý về mặt tính toán ước lượng, không cho giá trị đại lượng vật lý để so sánh với số liệu thực nghiệm. Do vậy, các công trình này đã bộc lộ những hạn chế không thể giải quyết được. Độc lập cách thức và kết quả của công trình trên, chúng tôi sử dụng phương pháp nhiễu loạn để tính toán và thu được biểu thức giải tích liên hệ giữa các góc trộn θij và pha Dirac vi phạm CP δCP [90–93]. Từ biểu thức giải tích này, với các số liệu thực nghiệm θij , chúng tôi sử dụng phần mềm ROOT (do Trung tâm hạt nhân Châu âu-CERN phát triển) và Matlab để vẽ được đồ thị phân bố của δCP , JCP và đồ thị sự phụ thuộc của δCP vào góc trộn θ13 trong cả hai trường hợp phân bậc khối lượng thuận và ngược của neutrino. Từ những đồ thị đó, chúng tôi xác định được các giá trị trung bình của δCP và JCP và thấy khá gần với dữ liệu trong [6, 7]. Việc xác định được giá trị δCP là rất quan trọng vì nó chứng tỏ được sự khác nhau giữa xác suất quá trình chuyển hoá neutrino P (νl → νl0 ) và quá trình chuyển hoá phản 8
  17. Mở đầu neutirno P (ν l → ν l0 ) trong chân không. Ngoài ra, một điều rất có ý nghĩa nữa đối với mô hình chúng tôi xây dựng, là khi tiến hành tính toán số các đại lượng θ13 , δCP và mi để kiểm định độ tin cậy của mô hình, chúng cho các kết quả rất gần với số liệu thực nghiệm, trong [6, 7], với θ13 ≈ 9◦ , δCP = 1.39π và mi cỡ 0.1 eV. Kết quả này càng khẳng định tính đúng đắn của mô hình xây dựng và phương pháp tính toán mà chúng tôi sử dụng. Ngoài ra, kết quả luận án thu được cũng không thể thiếu các công cụ về cơ sở lý thuyết trường lượng tử, vật lý hạt cơ bản, mô hình chuẩn và lý thuyết nhóm, cụ thể là nhóm A4 , cùng với đó là các công cụ rất hữu dụng khác như phương pháp tính, phần mềm tính toán: ROOT [94] (do CERN phát triển trên nền ngôn ngữ lập trình C++ để phân tích và xử lý số liệu thực nghiệm), Mathematica, Matlab để xử lý số liệu, vẽ đồ thị và so sánh với giá trị thực nghiệm, đánh giá và phân tích kết quả. Kết quả nghiên cứu của luận án Luận án triển khai nghiên cứu hai phiên bản của mô hình chuẩn mở rộng với đối xứng vị A4 . Phiên bản thứ nhất, chúng tôi đề xuất mô hình chuẩn với đối xứng A4 × Z3 × Z4 để xác định khối lượng và chuyển hoá neutrino, trong đó chúng tôi thu được biểu thức giải tích sự liên hệ giữa các góc trộn θij với δCP , và các giá trị số θ13 , δCP và tham số Jarlskog JCP rất gần với các số liệu thực nghiệm [91, 92]. Trong mô hình có thêm đối xứng Z3 × Z4 với mục đích loại trừ các phần tử tương tác không mong muốn và đảm bảo không phá vỡ cấu trúc khối lượng lepton tích. Với phiên bản thứ 2 xuất phát từ ý tưởng xây dựng một mô hình đối xứng A4 chứa neutrino có khối lượng một cách đơn giản và "tự nhiên" hơn. Trong đó, mô hình gồm: 4 trường thành phần lepton của mô hình chuẩn, 4 trường neutrino và 4 trường vô hướng, mà từng loại này có số trường bằng với số biểu diễn bất khả quy của nhóm A4 . Nói cách khác, cả 3 loại trường này trong đó lần lượt có tương ứng với 4 biểu diễn bất khả 0 00 quy của A4 là 3, 1, 1 , 1 . Do vậy, một cách "tự nhiên", khối lượng neutrino được sinh ra trong mô hình là tổng toàn bộ các quá trình seesaw tương ứng với từng trường neutrino phân cực phải (có cấu trúc gồm tam tuyến và đơn tuyến tương ứng với tất cả các biểu diễn bất khả quy của A4 ) [93]. Ở đây quá trình seesaw thông thường có thể coi như là một quá trình hiệu dụng từ các quá trình thành phần ứng với từng biểu diễn bất khả quy khác nhau của A4 . Cách tiếp cận này khá độc đáo và chưa được xem xét trong các hướng mở rộng mô hình chuẩn có đối xứng vị từng được công bố. Mô hình xây dựng cũng cho các kết quả tính toán về δCP , JCP và |hmee i| 9
  18. Mở đầu khá gần với các kết quả với thực nghiệm [6, 7], nhưng có ưu điểm hơn phiên bản 1 là không cần đưa vào đối xứng Z3 × Z4 . Một sự khác nhau nữa giữa 2 phiên bản là tham số (đối tượng) nhiễu loạn khác nhau: trong phiên bản thứ nhất xử lý nhiễu loạn theo VEV của các trường vô hướng, còn trong phiên bản 2 thì nhiễu loạn theo hệ số tương tác Yukawa và VEV của trường vô hướng đơn tuyến A4 . Cấu trúc luận án Với lý do, mục tiêu nghiên cứu, vấn đề, phương pháp và kết quả đạt được của luận án, chúng tôi đã bố cục luận án thành 5 chương:  Chương Mở đầu: Giới thiệu về neutrino, lý do chọn đề tài, mục tiêu nghiên cứu luận án đạt được, vấn đề đặt ra của luận án và phương pháp giải quyết đề. Cuối cùng là giới thiệu sơ lược kết quả đạt được của luận án.  Chương 1: Trình bày tổng quan nội dung mô hình chuẩn, các vấn đề về khối lượng và chuyển hoá neutrino để làm cơ sở lý thuyết cho việc nghiên cứu mở rộng mô hình chuẩn. (1)  Chương 2: Xây dựng và khảo sát mô hình A4 để nghiên cứu khối lượng và chuyển hoá neutrino. Trong mô hình sử dụng phương pháp nhiễu loạn trung bình chân không của trường vô hướng để khảo sát và tính toán các đại lượng khối lượng, góc trộn neutrino, δCP , JCP , và biểu thức liên hệ giữa δCP với góc trộn θij . (10)  Chương 3: Xây dựng và khảo sát mô hình A4 để nghiên cứu khối lượng và chuyển hoá neutrino. Trong mô hình sử dụng phương pháp nhiễu loạn đối với hằng số tương tác Yukawa của các neutrino phân cực phải để khảo sát và tính toán các đại lượng khối lượng, góc trộn neutrino, δCP , JCP , |hmee i|, và biểu thức liên hệ giữa δCP với góc trộn θij .  Chương Kết luận: Thảo luận kết quả nghiên cứu và định hướng các hướng nghiên cứu tiếp theo của luận án. 10
  19. Chương 1 Mô hình chuẩn và vấn đề khối lượng neutrino 1.1 Mô hình chuẩn Mô hình chuẩn được xây dựng từ những năm 60 và đầu những năm 70 của thể kỉ trước để mô tả tương tác mạnh, điện từ và yếu. Lý thuyết này đã đạt được rất nhiều thành công (như đã trình bày trong chương mở đầu) khi tiên đoán được sự tồn tại của các hạt mới như boson vector W ± , Z, các quark c, b, t (quark duyên, đáy, đỉnh), hạt boson vô hướng Higgs, dòng trung hoà và những tiên đoán này phù hợp rất tốt với thực nghiệm. Đặc biệt, năm 2012 thí nghiệm LHC (máy gia tốc va chạm lớn) tại CERN đã phát hiện và xác định được khối lượng boson Higgs [95, 96], nhưng đến nay chưa có đủ thông tin để xác nhận boson Higgs này có phải là boson Higgs trong mô hình chuẩn tiên đoán hay không, việc này cần thêm thông tin và thời gian để xác định kết quả trên. Một trong những lý do chính cho sự ra đời của mô hình là các nhà vật lý cố gắng xây dựng một lý thuyết tái chuẩn hoá của tương tác yếu (lý thuyết tương tác dòng V-A), như trong lý thuyết điện động lực học lượng tử cùng thời kỳ. Từ đây, ba nhà vật lý Sheldon Glashow, Abdus Salam và Steven Weinberg đã đề xuất lý thuyết tái chuẩn hoá của tương tác yếu xây dựng trên sự thống nhất tương tác điện từ và yếu gọi là lý thuyết Glashow - Weinberg - Salam (GWS) hay lý thuyết mô hình chuẩn (khi có mô tả thêm tương tác mạnh). Sau đó, năm 1971, Gerardus’t Hooft cùng với thầy hướng dẫn nghiên cứu sinh của mình là Martinus Veltman đã chứng minh mô hình chuẩn là lý thuyết tái chuẩn hoá được, đây cũng được coi góp phần vào thành 11
  20. Mô hình chuẩn MHC và vấn đề KL neutrino công của mô hình chuẩn. Mô hình chuẩn được xây dựng trên 2 bước chính: thứ nhất là bất biến gauge đối với các trường không khối lượng, và thứ 2 là phá vỡ đối xứng tự phát và cơ chế Higgs để tạo ra khối lượng của các trường không khối lượng, trừ trường điện từ, nghĩa là mô hình coi trước khi phá vỡ đối xứng tự phát các hạt đều không có khối lượng. Nội dung chương này chúng tôi sẽ lần lượt giới thiệu về bất biến gauge, phá vỡ đối xứng tự phát, cơ chế Higgs, khối lượng các fermion và các hạt mà mô hình đã tiên đoán: W ± , Z và Higgs v.v. 1.1.1 Cấu trúc gauge của mô hình chuẩn Như đã trình bày ở trên, trước hết chúng tôi sẽ trình bày cấu trúc gauge của mô hình chuẩn. Đầu tiên, chúng ta có thể xét Lagrangian tự do của trường ψ(x) L0 = ψ(x) iγ λ ∂λ − m ψ(x),  (1.1) trong đó ψ(x) là lưỡng tuyến của nhóm SU (2). Tiếp theo, chúng ta sẽ xét phép biến đổi gauge SU (2) định xứ 0 ψ (x) = U (x)ψ(x), (1.2) 1 ~ ở đây U (x) = e 2 i ~τ θ(x) , với ~τ = (τ 1 , τ 2 , τ 3 ) là các ma trận Pauli và θi (x) là các hàm tuỳ ý của x. Từ đạo hàm ∂λ ψ(x) và phép biến đổi SU (2) vô cùng bé, thì chúng ta thu được   † 1 ~ 0 ∂λ ψ(x) = U (x) ∂λ − i ~τ ∂λ θ(x) ψ (x). (1.3) 2 Chúng ta thấy, ψ(x) và ∂λ ψ(x) trong (1.2) và (1.3) không cùng phép biến đổi, do vậy Lagrangian (1.1) là không bất biến với phép biến đổi (1.2). Để lý thuyết bất biến với phép biến đổi (1.2), chúng ta có thể giả sử ψ(x) tương tác với trường vector và xét đạo hàm hiệp biến   1 ~ Dλ ψ(x) = ∂λ + ig ~τ Aλ (x) ψ(x), (1.4) 2 ở đây g là hằng số không thứ nguyên và Aiλ (x) là trường vector. 12
ADSENSE

CÓ THỂ BẠN MUỐN DOWNLOAD

 

Đồng bộ tài khoản
2=>2