SÁNG KIẾN KINH NGHIỆM
ỨNG DỤNG TOÁN XÁC SUẤT VÀO
GIẢI NHANH MỘT SỐ BÀI TP
QUY LUẬT DI TRUYỀN
I. LÝ DO CHỌN ĐỀ TÀI
Xuất phát từ thực tiễn dạy học phổ thông học phải đi đôi vi hành, tình
hình đổi mới phương pháp dạy học ngày nay. Việc dạy học sinh học lớp 12 các
bài vquy luật di truyền, đặc biệt là các bài tập trắc nghiệm đòi hi phải tính
chính xác nhanh, nhưng nếu dùng phương pháp truyn thống thì đòi hỏi mất
khá nhiều thời gian, đôi khi không chính xác và hiu quả mang lại không cao.
Xuất phát tthực tin đó, tôi xin gii thiệu các thầy giảng dạy môn sinh học
lớp 12 chuyên đề ứng dụng toán xác suất vào gii nhanh một số bài tập quy luật
di truyền”.
II. NỘI DUNG SÁNG KIẾN KINH NGHIỆM:
1. Cơ sở lý luận:
Theo quan điểm dạy học: học phải đi đôi với hành, thuyết phải gắn liền
với thực tiễn đó phương cm giảng dạy mọi cấp học nói chung và bậc
THPT nói riêng. Do đó mục đích của quá trình dy học không chỉ đơn thuần cung
cấp cho học sinh thuyết, mà n phi hướng dẫn học sinh vận dụng kiến thức
vào vn đề giải bài tập gii quyết một số vấn đề thực tế có liên quan, đồng thời
phát huy tính chủ động sáng tạo của học sinh.
Trong thực tế giảng dạy các bài vquy lut di truyền ở lớp 12, đặc biệt là khi
hướng dẫn học sinh giải c bài tập thuộc quy luật di truyền, sẽ không tránh khỏi
hiện tượng đa số các em không thể vận dụng tốt kỹ năng giải bài tập trong khoảng
thời gian cho phép làm i trắc nghiệm. Do đó sẽ rất cần thiết nếu cung cấp cho
các em kng giải nhanh các bài trắc nghiệm quy luật di truyền. Nhưng để giải
nhanh các quy luật di truyền sẽ không thể thiếu phần vận dụng toán xác suất.
Trong qtrình thực hiện chuyên đề, được squan tâm của nhà trường, sự
phối hp hoạt động của các em học sinh, tđó ng cao tính khthi của đề tài,
giúp đề tài diễn ra cách tốt đẹp, đó là mặt thuận lợi của đề tài. Tuy nhiên, do điều
kiện nhà trường nằm ở khu vực vùng u, nhn thức về mặt học tập của đa số học
sinh n chưa cao, do đó rất để các em được những knăng giải bài tập quy
luật di truyền.
Tnhững thuận lợi kkhăn đó, i muốn đưa ra mt số kng về giải
nhanh các i tập quy luật di truyền, để làm các bài tập đơn giản trở thành quá dễ,
những bài tập khó trở thành đơn giản. Tđó giúp các em ttin hơn trong quá
trình làm bài thi ở những kì thi khác nhau.
Các kiến thức về quy luật di truyền gồm:
Quy luật phân ly và phân ly độc lập của Menden.
Quy luật tương tác gen.
Quy luật liên kết gen và hoán vị gen.
Quy luật di truyền liên kết với giới tính.
Một số nội dung vtoán liên quan đến đề tài: toán thợp và xác suất, cùng
các công thức liên quan
2. Nội dụng, bin pháp thực hiện các giải pháp của chuyên đề.
2.1. Chuẩn bị.
Để chuẩn btốt cho việc thực hiện chuyên đề, giáo viên cn chun bkvề
mặt kiến thức toán học đặc biệt là thợp và xác suất. Về Sinh học là nhng kiến
thức về quy luật di truyền.
Học sinh được ly t4 lớp 12A1, 12A2, 12A3, 12A4. Được chia thành 2
nhóm, trong đó nhóm thứ nhất 12A1 12A2 được áp dụng cách giải theo
phương pháp truyền thống. Nm th 2 gồm 12A3 12A4 được hướng dẫn
cách giải bài tập theo phương pháp của đề tài.
Trong một số di có trình y 2 cách để thấy được việc giải theo ch
sử dụng xác suất nhanh hơn, hiệu quả hơn
2.2. Một số dạng bài tp điển hình.
A. Tìm số loại kiểu gen từ một gen hoặc một số gen
Trong 1 quần thể xét 1 gen gồm (n) alen thì sloại kiểu gen là
2
)1(
nn .
Trong 1 quần thể xét gen
z; gen I gm 1
n alen, gen II gm 2
n alen nằm trên
NST thường thì số loại kiểu gen là
2
)1(
2
)1( 2211 nn
x
nn .
Trong 1 quần thể xét gen
z; gen I gm 1
n alen, gen II gm 2
n alen nm trên NST
giới tính X. Khi đó gọi gen M có salen là tích salen của gen I và gen II: 1
n
2
n=m
+ Suy ra số kiểu gen của giới XX: m(m+1)/2
+ Số kiểu gen của gii XY: 1
n + 2
n
+ Vậy số kiểu gen chung là: m(m+1)/2 + 1
n + 2
n
Ví dụ 1: Gen I và II lần lượt có 2, 4 alen. Các gen PLĐL.c định trong quần
thể:
a) Có bao nhiêu loi kiểu gen trong quần thể?
b) Có bao nhiêu kiu gen đồng hợp về tất cả các gen?
c) Có bao nhiêu kiu gen dị hợp?
d) Số KG tối đa có thể, biết gen I ở trên NST thường và gen II trên NST X
đoạn không tương đồng với Y
Giải
Đề bài không cho biết gen nằm trên nhim sắc thể thường hay nhiễm sắc thể gii
tính, nhưng ta hiểu đây là trường hợp các gen nằm trên nhim sắc thể thường:
a) Số loại kiểu gen trong quần thể:
Số KG =
2
)1(
2
)1( 2211 nn
x
nn = 2(2+1)/2 . 4(4+1)/2 = 30
b) Số KG đồng hợp về tất cả các gen trong quần thể:
Số KG đồng hợp = n1. n2 = 2.4 = 8
c) Số kiểu gen dị hợp trong quần thể:
Số KG dị hợp = số KG - Số KG đồng hợp = 30 8 = 24
d) Số KG tối đa trong quần thể:
Xét gen I: số KG = 2(2+1)/2=3
Xét gen II: Vì gen II nằm trên X, nên số KG = 4(4+1)/2 + 4 = 14
Số KG tối đa = 3.14=42.
Ví dụ 2: Trong quần thể của một loài thú, xét hai lôcut: lôcut một có 3 alen là A1,
A2, A3; lôcut hai có 2 alen B và b. Chai lôcut đều nằm tn đon không tương
đồng của nhiễm sắc thể giới tính X và các alen của hai lôcut này liên kết không
hoàn toàn. Biết rằng không xảy ra đột biến, tính theo lí thuyết, skiểu gen tối đa
về hai lôcut trên trong qun thể này là:
A.18 B. 36 C.30 D. 27
Cách 1: C2 alen A va B cùng nm trên 1 NST X nên chúng ta xem thợp 2
alen này một gen (gọi là gen M)Khi gen M số alen bằng tích số 2 alen
của A và B=3x2=6 alen..
ở giới XX số KG sẽ là 6(6+1)/2=21 KG ( áp dụng công thức như NST thường
r(r+1)/2 trong do r là salen
- Ở giới XY
Số KG= r=Số alen=6.
Vậy số kiểu gen tối đa về hai lôcut trên trong quần thể này là: 21+6 = 27 đáp án D
Cách 2:
+ Ta coi cặp NST XX là cp NST tương đồng nên khi viết KG với các gen liên
kết với cặp NST XX sẽ giống với cặp NST thường nên ta 21 loi KG tối đa khi
xét hai lôcut: lôcut một 3 alen là A1, A2, A3; lôcut hai 2 alen là B b.ng
với trường hợp cặp XX là:
1
1
A B
A B
,
1
1
A b
A b
, 1
1
A B
A b
1
2
A B
,
1
2
A b
A b
, 1
2
A B
A b
1
2
A b
A B
, 1
3
A b
A B
, 2
3
A b
A B
2
2
A B
A B
,
2
2
A b
A b
, 2
2
A B
A b
1
3
A B
A B
,
1
3
A b
A b
, 1
3
A B
A b
3
3
A B
A B
,
3
3
A b
A b
, 3
3
A B
A b
2
3
A B
A B
,
2
3
A b
A b
, 2
3
A B
A b
(Có thviết các cặp gen liên kết với cặp XX:
1 1
A A
B B
X X
.....)
+ Vi cặp XY là cặp không tương đồng nên có ti đa 6 loại KG khi xét hai lôcut:
lôcut một có 3 alen là A1, A2, A3; lôcut hai 2 alen là B và b là:
1
A
B
X Y
, 2
A
B
X Y
, 3
A
B
X Y
1
A
b
X Y
, 2
A
b
X Y
, 3
A
b
X Y
Nếu không xảy ra đột biến, tính theo thuyết, số kiểu gen tối đa về hai lôcut
trên trong qun thể này là:21 + 6 = 27 loại KG
→ đáp án là: D. 27
B. Tlệ kiểu gen chung của nhiều cặp gen bằng các tỉ lệ kiểu gen riêng rẽ của
mỗi cặp tính trạng nhân với nhau.
d 1: một li thực vật, alen A quy định thân cao trội hoàn toàn so vi alen
a quy định thân thấp, alen B quy định quả đỏ trội hoàn toàn so với alen b quy
định quả vàng. Cho y thân cao, quđỏ giao phấn vi y thân cao, quả đỏ (P),
trong tng s các cây thu được F1, s cây kiểu hình thân thấp, quả vàng
chiếm tỉ lệ 1%. Biết rằng kng xảy ra đột biến, tính theo thuyết, tỉ lệ kiểu hình
thân cao, quả đỏ có kiểu gen đồng hợp tử về cả hai cặp gen nói trên F1 là:
A.1% B. 66% C. 59% D. 51%
Giải:
+ Vì scây có KG thân thấp, quả vàng thu được F1 chiếm tlệ 1% < 6,25 %
nên ta suy ra: P tthụ phấn ( KG của bố và mnhư nhau KG của bố và m
là dhợp tử chéo:
Ab
aB
*
Ab
aB
), các gen liên kết không hoàn toàn (Hn vị gen).
% 1%
ab
ab
→ % ab * % ab = 10 % * 10 % = 1 % ta suy ra f = 20 % và c hai
thể đực và cái có tn số hoán vị gen như nhau.
+ Vì không xảy ra đột biến, tính theo thuyết, tlệ kiểu hình thân cao, qu đ
có kiu gen đồng hợp tử về cả hai cặp gen nói trên F1 là:
%
AB
AB
( thân cao, quả đỏ) = 10 % AB * 10 % AB = 1 %
→ đáp án đúng là A. 1 %
HD : tlệ KG đồng hợp lặn = tỉ lệ kg đồng hợp tri do đó đáp án là A
d2: phép lai AaBbccDdee x AabbccDdEe ssinh ra kiểu gen Aabbccddee
chiếm tỉ lệ bao nhiêu ?(Vi 5 cặp gen nằm trên 5 cặp NST khác nhau, c tính
trạng đều trội hoàn toàn.)
Giải:
Ở trường hợp này ta xét 5 phép lai độc lập nhau:
Aa x Aa 1/4Aa + 2/4Aa +
4
1aa
Bb x bb
2
1B- +
2
1bb