1

MINISTRY OF EDUCATION                MINISTRY OF DEFENCE                AND TRAINING

MILITARY MEDICAL UNIVERSITY

NGUYEN TIEN DZUNG

STUDYING SOME CHARACTERISTICS OF CHONIC

WOUND AND EFFICIENCY OF AUTOLOGOUS

ADIPOSE TISSUE DERIVED STEM CELLS

TRANSPLANTATION

Specilty: BURNS

Code: 62.72.01.28

SUMMARY OF  DOCTORAL THESIS

2

HA NOI ­ 2018

3

THIS THESIS HAD FINISHED AT THE MILITARY­

MEDICAL UNIVERSITY

Instructors:

1. Ass.Prof. PhD. Đinh Van Han 2. Ass.Prof. PhD. Quan Hoang Lam

Reviewer 1: Prof.PHD. DO Trung  Phan

Reviewer 2: Prof.PHD. NGUYEN Manh Khanh

Reviewer 3: Prof.PHD. NGUYEN The Hoang

I’am   presenting   this   thesis   before   the   judge’s   council   of   Military

Medical University at   /     / 2018

This thesis is available at:

­ National library

­ Library of Military Medical University

1

INSTRODUCTION

Chronic wound (CW) include, but are not limited, to diabetic

foot   ulcers,   venous   leg   ulcers,   and   pressure   ulcers.   They   are   a

challenge to wound care professionals and consume a great deal of

healthcare   resources   around   the   globe.   This   review   discusses   the

patho­physiology   of   complex   CW   and   the   means   and   modalities

currently available to achieve healing in such patients.  Underlying

pathologies, which result in the failure of these wounds to heal, differ

among   various   types   of   CW.   A   better   understanding   of   the

differences   between   various   types   of   CW   at   the   molecular   and

cellular levels should improve our treatment approaches, leading to

better   healing   rates,   and   facilitate   the   development   of   new   more

effective therapies.

Recently, stem cell therapy has emerged as a new approach

to accelerate wound healing. Adipose­derived stem cells (ASCs) hold

great   promise   for   wound   healing,   because   they   are   multipotential

stem cells capable of differentiation into various cell lineages and

secretion of angiogenic growth factors

At   the   National   Institute   of   Burns,   cell   therapy   (such   as  fibroblast sheet, fibroblast secretion) was applied for burns treatment.

However, autologous   adipose   tissue   derived   stem   cells

transplantation in CW treatment has never been studied. That is cause

we conducted this thesis, which has two subjects as follows:

1. Describing some clinical and para­clinical characteristics

and histology of  chronic wound

2.   Evaluating   the   effective   of   autologous   adipose   tissue

derived stem cell transplation in chronic wound treatment.

* The new contents of thesis:

2

CW   are  a  challenge   to  wound   care   professionals.   This   study   had

provided a detail clinical and para­clinical signs,       CW are rich in

characteristics and difficult to treat. With the use of modern research

facilities, this topic has set the subject of research and provided a

detailed,   detailed   clinical   profile   of   the   CW   characteristics,

pathological   lesions   in   the   lesion,   wound   healing,   pH   and   CW

surface lesions, structural image and CW superstructure . In addition,

the topic of the study was the effect of stem cell transplantation from

adipose tissue on clinical presentation and structural morphology and

CW   superstructure.   By   transplanting   ADSC   into   CW,   ADSC

stimulate   the   regeneration   of   extracellular   matrix,   as   well   as

stimulating   proliferation,   epithelial   cell   migration   and   new   blood

vessel formation at the site of CW. *  The layout of thesis: This thesis has 126 pages (not including  references): Introduction (2 pages), chapter 1. Overview (31 pages),

chapter 2. Patients and medthods (14 pages), chapter 3. Results (40

pages), chapter 4. Discussion (35 pages), conclution (2 pages) and

recommendation (1 page). This thesis has also 22 tables, 7 figues,

50   images   and   148   documents   in   reference   (10   vietnames

documents and 138 english documents).

CHAPTER 1: OVERVIEW

1.1 Some CW characteristics   CW are those that last for more than 6 weeks and relapse. Common

CW are ulcers caused by vascular disease (including arterial, venous

and lymphatic diseases), ulcers from diabetes, and ulcers. Although

there   is   a   difference   in   origin   at   the   molecular   level,   CW   have

3

common   traits:   excessive   proinflammatory   cytokines   and  enzymes

that   break   down   proteins,   cells   in   the   CW   site   age   ,   persistent

infection   and   deficiency   of   stem   cells   (usually   due   to   these

dysfunctional   cells).   In   acute   wounds,   enzymes   that   break   down

proteins and inhibitors are balanced. But for CW this loss of balance.

Protein­degrading enzymes are higher than those that inhibit it. In

CW,   hypoxia   predominates,   which   damages   the   proteins   in   the

extracellular environment and causes cell damage. In addition, CW

are   characterized   by   the   accumulation   of   aging   cell   populations,

which decrease in proliferation and migration, not responding to the

stimulation of wound healing. In addition to aging fibroblasts, CW

also include  horn  cells,  endothelial  cells,  and  aging,  dysfunctional

macromolecules.

1.2. Stem cells and  adipose tissue derived stem cell transplation

in CW treatment  1.2.1. Some stem cells in wound healing 1.2.1.1. Mesenchymal stem cells treat wounds: Mesenchymal stem  cells are a type of multicentre, derived from mesenchymal stem cells,

found in many different tissues of the body such as blood, umbilical

cord, fatty tissue, bone marrow, pulp, muscle. and skin. Their multi­

potential nature allows them to easily differentiate into different cell

types such as horn cells, epithelial cells, bone cells, cartilage, adipose

tissue, tendons and muscle cells. All three stages of wound healing

are inflammation, proliferation, and scarring. 1.2.1.2. Epithelial stem cells: Epithelial stem cells are usually found

in   the   epidermis,   hair   follicles   and   sebaceous   glands.   In   the   hair

follicle there are two populations of epithelial stem cells located in

the hair follicles, under the bulge and located just at the bulge of the

4

hair follicle. These stem cells are activated at the beginning of the

hair growth cycle and when injured to provide cells to repair and

repair the hair follicles and epidermis.

1.2.1.3. The endothelial progenitor cells: Endothelial progenitor cells

can   be   isolated   from   peripheral   blood   or   bone   marrow.   Vascular

endothelial   growth   factors,   granulocyte   colony­stimulating   factors

and tissue­derived factors are the most important factors contributing

to angiogenesis and mobilization of endothelial stem cells involved

in the process. new blood vessels in the wound process.

1.2.2. Adipose tissue derived stem cell transplation in CW treatment   1.2.2.1. Some characteristics of Adipose tissue derived stem cell: In  2001,   Zuk   PA   and   colleagues   isolated   the   cells   as   stem   cells   in

adipose   tissue.   These   cells   can   differentiate   into   different   cells.

According to Meliga E et al. (2007), fatty tissue can be obtained in

large numbers in different parts of the body. On average, every 100

ml   of   fat   tissue   can   isolate   106   ADSC   have   fibroblasts,   with

intracellular   development,   large   nuclei.   ADSC   have   the   same

immunity pattern as the mesenchymal stem cells isolated from bone

marrow, skeletal muscle. Over 80% of the fatty acid pattern of the

stem cell­like mesenchyma is expressed by surface antibodies.

1.2.2.2.   Adipose   tissue   derived   stem   cell   transplation   in   CW   treatment:  Most studies now suggest that ADSC is involved in the  wound repair process by differentiating into the tissue of the tissue at

the   wound   site.   ADSC   secrete   some   soluble   elements.   These   are  growth factors and cytokines that affect wound healing, such as EGF,

β β FGF­ , IGF, PDGF, TGF­  and VEGF. ADSC also participates in

immune   regulation   through   the   secretion   of   growth   factors,

proinflammatory cytokines and anti­inflammatory drugs such as IL­

5

α β 6,   IL­8,   IL­12,   TNF­ ,   IL­10,   HGF   and   TGF.   ­ ...   In   addition

ADSC also has the ability to promote macrophage transduction from

phenotypes M0 and M1 (causing inflammation at the site of CW)

into M2 (inflammatory) ). During proliferation, ADSC has a positive

effect by stimulating the formation of new vascular protuberances.

ADSC   also   stimulates   proliferation   and   increases   the   ability   of

fibroblasts to migrate through the secretion of growth factors such as

β FGF­ ,   EGF,   and   PDGF­AA.   ADSC   also   promotes   epithelial

regeneration, thanks to the secretion of cytokines such as KGF­1 and

PDGF­BB. At the stage of scarring, ADSC is said to have a positive

effect to reduce scar size, improve the color of scar, reduce the rate of

keloids,   scissors   scissors.   Thanks   to   the   ability   to   stimulate   the

activity of enzyme­degrading enzymes MMPs.

In  wound healing,  ADSC  can  be  injected  directly  into the wound

area, injected onto the wound surface, or placed on the ADSC surface

and then applied to the wound surface.

1.3. Some studies in Viet Nam A number of ADSC applications in treatment of various therapies

such   as   "Study   on   the   use   of   stem   cell   derived   stem   cells   from

adipose   tissue   and   bone   marrow   for   the   treatment   of   chronic

obstructive   pulmonary   disease"   is   being   conducted   at   Bach   Mai

Hospital   according   to   Decision   No.   949   /   QD­BKHCN   dated   25

April 2016. Topic: "Test for treatment of degenerative diseases of

knee joint by stem­cell transplantation from fatty tissue and plasma  Plutoconazole is extracted with Kit Extracttion and PRP Pro "is being

performed   at   the   hospital   of   the   University   of   Medicine   and

Pharmacy, Ho Chi Minh City. In 2012, at the National Burn Institute,

the topic: "Research on the process of fat cell stem cell extraction and

6

bio­product testing for wound healing, burns", this is a potential topic

in the chapter. KC10 has been developed and accepted. The research

team of the project successfully isolated the ADSC,  identified the

characteristics   of   the   ADSC,   successfully   fabricated   the   ADSC.

Continuing the results of the KC10 project, in 2014 the Ministry of

Health   approved   the   National   Institute   of   Burns   to   carry   out   the

project   "Research   on   the   development   of   mesenchymal   stem   cell

transplantation from chronic fat tissue ", The subject will be accepted

in the fourth quarter of 2017. In 2016, the Department of Science and

Technology   of   Hanoi   approved   for   the   Institute   of   Burns

implementation   of   the   topic:"   Study   of   treatment   of   long­lasting

ulcers with platelet rich plasma in combination with adipose tissue

stem cells, "which will be tested in the fourth quarter of 2017.

CHAPTER 2. PATIENTS AND METHODE

2.1. Patients:

­   Patients   were   alduls   over   the   age   of   16   with   CW,

addmissiion of Department of Wound Healing, NIB, from October

2014 to June 2016.

Exclusion:     ­ Patients with radiation ulcers or cancer ulcer.

­ Patients with HIV, HbsAg, HCV positive.

2.2. Methode 2.2.1. Studying design:   ­   For   objective   1:   We   accomplish   this   by   the   cross­sectional

descriptive research method.

7

­ For objective 2: In order to determine the efficacy of ADSC in CW

management, we conducted a comparative research approach.

2.2.2. Number of patients studied ­ For Objective 1: Apply the formula to calculate the sample size to

estimate   a   proportion   of   the   descriptive   study   to   characterize   the

clinical characteristics of patients with CW. We randomly

selected 56 patients for this purpose.

­ For Objective 2: Apply the formula to calculate the therapeutic

effect of a solution (in this study, the solution is to use the ADSC

itself). We randomly selected 30 patients in 56 patients in Objective

1 to achieve Objective 2.

2.2.3. Methodes for studying clinical characteristics Timelines:

T0: During the first 72 hours of hospitalization

­ T1: is the time immediately before the ADSC

­ T2: is the seventh day from the date of ADSC transplant

­ T3: is the 15th day from the date of ADSC transplant

­ T4: is the 20th day from the date of ADSC transplant.

For Objective 1: To determine the clinical and laboratory

characteristics at T0.

For Objective 2: Identify clinical and laboratory characteristics at

T1, T2, T3 and T4.

2.2.4. Studying the clinical characteristics

o Identify   criteria   such   as   age,   sex,   history   of   disease,  pathologies that cause CW or indirect impact on the wound. Duration

of wounds, number of wounds and location of each wound.

8

o Periwound   skin:   Determination   of   acute   inflammation,  epithelialisation,   wound   healing,   scarring   of   the   wound   edges,

moisture and temperature of the affected skin.

o CW   surface:   Determination   of   wound   size,   wound   depth,  tissue properties, serum pH, wound surface pH. o Adipose tissue derived stem cell transplation:  Indication: CW has the following conditions:

­ Necrotic wound, no bone, tendon.

­ The wounds show no clinical signs of infection.

­ The wound does not have a tunnel, a frog's jaw.

In place of CW, clean wounds and healthy skin around the wound

with 4% Clohexidine solution. Then rinse with 0.9% sterile solution

of Natriclorid. Soak the wound with sterile gauze. Spreading aseptic.

Cut the ADSC sheet from the transwell, flip the ADSC face towards

the   wound   surface,   gently   insert   the   ADSC   sheet   itself   onto   the

wound surface, so that the cell sheet covers the entire wound surface,

the ADSC sheet overlapping each other. Place sterile Vaselin gauze

and 6 sterile gauze patches on the ADSC sheet, then bandage the

wound with a bandage or bandage Urgocrèpe.

2.2.5. Studying the paraclinical characterictics At   the   time   of   study   T0,   T1,   T2   T3   and   T4   conducted:

­  Determination of  peripheral  blood  biochemical  markers:

Number of red blood cells, hemoglobin, white blood cells, protein,

albumin and liver enzymes: SGOT, SGPT.         ­ CW surface imaging: Identification and quantify ­cation of

bacteria / cm2.

­ Determination of structural change on H & E staining and

wound stain on transfer electron microscope.

9

2.3. Data analysis: Statistical analysis and processing using Intercool  Stata 12.0 software.

CHAPTER 3. RESULTS

3.1. Some clinical and para­clinical characteristics of CW

3.1.1. General characteristics Table 3.1 and chart 3.1: 56 patients had 71 CW, the average age was  52.96  ±  18.19   (19­88   years   old).   Male/   female   ratio   was   1.67.  94.64%   patients   had   co­morbidities   (the   first   was   cord   injury

(37.5%). The second was heart­related diseases and diabetes mellitus

(9.64%). The CW were usually pressure ulcer (49.30%), soft tissue

infection (29.58%), diabetic ulcer/ trauma wounds (7.04%).

3.1.2 Clinical chracteristics of CW 3.1.2.1. General cheracteristics Chart   3.2+   Table   3.2   +   3.3:   CW   observed   usually   at   lower  extremities   (43,66%),   pilonidal   area   (39,44%),   trochanter   area

(5,63%). 14.29% patients had 2 CW, 7.15% patients had more than 3

CW. Almos CW hadn’t acute inflammative signs (76.06%).

3.1.2.2. Characteristics of peri­wound skin  Table 3.4 +3.5 +3.6: Characteristics of peri­wound skin

Characteristics

Fibrotic Wounds 53 % 74.65

Hyperkeratosis 48 67.61

Moist at peri­wound skin 18 25.35

Dry at peri­wound skin 23 32.39

Without epithelialization 64 90.14

Temperature was lower 42 59.15

than normal skin area

10

Comment: At the peri­wound skin of CW usually manifests fibrotic,  tempreture   and   without  lower   hyperkeratosis   moist/dry,

epithelialization.

3.1.2.3. Clinical characteristics Table   3.7+   3.8:   Average   size   of   chronic   wouds   was   25.71   cm2.  56.34% of CW size was lower than 20 cm2. 90.14% of CW were the  third degree. Table 3.7+ 3.8: Tissue and exudate of CW:

Characteristics Oedema of granulation Wound 19 % 26.76

Epithelial tissue 3 4.23

Necrosis 8 11.27

Soft tissue under skin 27 38.03

Large amount of exudate 47 66.20

Milky exudate 40 56.34

Alkaline pH 68 95.77

Comment: CW were characterized by full thickness wounds, oedema  granulation, necrosis, large amount of exudate and alkaline pH on

wound surface.

P.aeruginosa S.aureus (33.96%),

3.1.3. Para­clinical characteristics at T0 3.1.3.1 Infection on CW surface Table 3.11 + 3.12: 77.36% of CW were positive bacteria. Common  bacteria   were (13.21%),  K.pneumonia  and  Aci.baumanii  (5.66%). Amount of bacteria per 1  cm2  of wound surface of   P.aeruginosa, S.aureus, Aci.baumanii  và  K.pneumonia was more than 105 /1cm2.

3.1.3.2. CW structure on H&E staining

11

60   CW   of   56   patients   had   been   involved   in   performing   wound

biopsies   for   H&E   staining,   CW   structure   was   characterized   by

hyperproliferative epidermis. In addition presence of hyperkeratosis

(a thick cornified layer) and parakeratosis were additional hallmarks

portraying   epidermal   keratinocytes   of   CW.   Besides,   capillary   and

fibroblast density were very low. In epidermis and dermis layer, the

principal   leukocytes   were   polymorphonuclear leukocytes   and

macrophages

3.1.3.3. CW ultra­structure on TEM 25   CW   of   25   patients   had   been   involved   in   performing   wound

biopsies for TEM. In ultrastructure image, the tissue was swelling.

Collagen fibers were degraded and not bind (interact).   There were

many   poly­morphonuclear   leukocytes   and   lymphocytes   in   the

extracellular matrix (ECM).

3.2.   Effectiveness   of   autologous   ADSC   transplantation   in  treatment of CW: 38 CW of 30 patients already existed for 4.2 ±  2.68   months.   CW   cause   were   infection   (39.47%),   pressure   ulcer

(31.58%), diabetic ulcer (10.53%). CW was grafted the autologous

ADSC which had average size 23.73 ± 19.85 cm2. 97.37% CW with

full thickness injury were autologous ADSC transplantation. 60.53%

of CW were lower extrimities and  31,58% were pilonidal area.

3.2.1. Peri­wound of CW after ADSC transplantation

Table 3.14+3.15:Peri­wound changement after ADSC

transplantaion:

Time

12

T1 T2 T3 T4

Characteristics (n=38) (n=38) (n=35) (n=28)

Fibrotic W % W % W % 23 60.53 34.21 13 14.29 5 W 3 % 10.71

Hyperkeratosis 19 50 14 36.84 6 17.14 2 7.14

Moist at peri­ 8 21.05 2 5.26 0 0 0 0

wound skin

3 7.89 1 2.86 11 28.95 0 0 Dry at peri­

wound skin

26 92.85 6 15.79 28 73.68 29 82.86 Epithelialization

0 0 19 50 9 23.68 1 2.86 Temperature

was lower than

normal skin area

Commen:  After   the   autologous   ADSC   transplantation:   Ratio   of  epithlialization increased. Ration of adverse signs (such as gibrotic,

hyperkeratosis, moist/dry) decreased clearly through the time.

3.2.2. CW surface after ADSC transplantation Table 3.16+3.17: Wound surface after ADSC transplantation

Time

T1 T2 T3 T4 Characteristics (n=38) (n=38) (n=35) (n=28)

Good granulation W % W % W % 0 31.58 12 25 71.43 0 W 25 % 89.29

Large exudate 12 31.58 6 15.79 0 0 0 0

Milky exudate 17 44.74 10 26.32 6 17.14 1 3.57

Alkaline pH 38 100 30 78.95 10 28.57 4 14.29

Comment: After the autologous ADSC transplantation, CW clearly  improved:  Ratio of wound with good granulation increased. Amount

13

of exudate decreased and pH shifted from alkaline to acid. Table 3.18. Changement of wound size after ADSC transplantation

Time T1 T2 T3 T4

(n=38) (n=38) (n=35) (n=28)

Characteistics (1) (2) (3) (4)

23.72 ± 17.69 ± 12.8 ± 11.56 7.44 ± 7.68

Size (cm2) ( X ± SD) (Min­Max) 19.85 15.31 (1 ­ 47.42) (0.45­33.53)

(2.86 ­ 88.96) (1 ­ 65.4)

P (Wilcoxon P1­2 < 0.001;         P2­3 < 0.001;          P3­4 < 0.001

Test)

Comment:   Wound   size   decreased   significantly   after   autologous

ADSC transplantation (P < 0.001).

ồ 3.2.3. Bacterial changements after ADSC transplantation Chart đ  3.5 + 3.6: Ratio of negative bacterial wound increased over

time   after   ADSC   transplantation   (30%   at   T1   and   72%   at   T4).  Bacterial numbers per 1cm2  decreaed, at T0, P.aeruginosa was 495  x5x103 bacterials /cm2,   and at T4, was 87 x5x103 bacterial/cm2.

ỉ T0, S.aureus was 358 x5x103 bacerials/cm2 at T4 ch  còn 50 x5x103

bacterial/cm2.  Number of Aci.baumanii or K.pneumoniae therapies

decreased over times.

3.2.4.   Structure   and   ultrastructure   of   CW   after   ADSC

transplantation

14

Before transplantation of ADSC, CW structure was characterized by

hyperproliferative epidermis. In addition presence of hyperkeratosis

(a thick cornified layer) and parakeratosis were additional hallmarks

portraying   epidermal   keratinocytes   of   CW.   Besides,   capillary   and

fibroblast density were very low. In epidermis and dermis layer, the

principal   leukocytes   were   polymorphonuclear   leukocytes   and

macrophages.   In   ultrastructure   image,   the   tissue   was   swelling.

Collagen fibers were degraded and not bind (interact).   There were

many   polymorphonuclear   leukocytes   and   lymphocytes   in   the

extracellular matrix (ECM). At T2, after autologous transplantation

of   ADSC,   wound   bed   was   clean   and   had   filled   with   granulation

tissue.   Re­epithelialization   appeared   at   wound   edge.   The   neo­

vascular,   fibroblast   and   collagen   fibers   proliferated   at   the   dermis

layer.   In   ultrastructure   image,   fibroblast   proliferated   strongly,

arranged side by side.  Intracellular of fibroblast,  there were many

active   rough   endoplasmic   reticulum.   Fibroblast   increased   pro­

collagen   production   and   collagen   secretion   (Collagen   fibers   were

arranged   in   compact,   parallel   and  beside   fibroblast).   At   T3   week,

after autologous transplantation of ADSC, keratinocytes proliferated

and  immigrated in epidermis   layer.   However,   this  epidermis   layer

was still thin (which only had stratum basale layer, stratum spinosum

layer and a part of stratum granulosum layer). Connective tissue was

until   densely   infiltrated  with  lymphocytes.   Image   of   neo­vascular,

fibroblast and collagen proliferation were very clear in dermis layer.  In ultrastructure image, the epithelial cells of stratum basale layer

were   close   to   each   other,   without   intercellular   space.   In   ECM,

fibroblast proliferated strongly and increased secretion of collagen.

At T4, after autologous transplantation of ADSC, the epithelial cells

15

covered almost completely wound surface. Structure of the epidermis

layer gradually returned to the epidermis structure of healthy skin.

Neo­vascular, fibroblast and collagen proliferated more powerfully

than that in the previous weeks. The image of lymphocytes infiltrate

into the connective tissues  was decreased.  In ultrastructure image,

there were fibroblasts beside appearance of myofibroblast.  ECM had

been significantly improved with many neo­vascular (which has thin

wall and large endothelial cells).

3.2.6. Side effects of ADSC transplantation  100% patients hadn’t allergy after ADSC transplantation.  Table 3.22: Side effect of ADSC transplantation

Side effect

Non W 33 % 86.84

Pus under ADSC sheet 3 7.89

Hypergranulation 2 5.26

ố T ng sổ 38

100 Comment: Pus under ADSC sheet or hypergranulation was side effect  of ADSC transplantation.

CHAPTER 4. DISCUSSION

4.1. CW characteristics Almost patients with CW were treated the wound before hospitalize

at   National   Institute   of   Burns.   Therefore,   the   CW   usually   existed

longtime and so complex. In this study, exist time of CW was 4.24

months. Patients not only had a wound but also 2 CW (14.29%) or 3

16

CW (7.15%). CW were usually seen at lower extremity or pilonidal

area.

Wound   infection   is   usually   described   by   swelling,   heat,

redness and pain. We saw that, 76.06% CW hadn’t these signs. None

of these signs are caused by at CW, the bacterias live in community

ans forme Biofilm membranes. Beside, CW usually exist long time,

patients have many co­morbilities…

Status   of   peri   wound   skin   usually   reflects   the   wound

situation.   The   clinical   characteristics   of   peri   wound   of   CW   were

plentiful   such   as:   fibrotic   (74.65%),   hyperkeratotic   (67.61%).

According to  Harold Brem  (2006) and Olivera Stojadinovic (2005),

in   CW   edge,   the   keratinocytes   usually   concentrate   to   forme

hyperkeratotic and fibrotic around the wound.

At   CW   topical,   the   epithelialization   is   usually   absent   or

cann’t performs for closing wound. In this study, 90.14% CW hadn’t

epithelialization at wound edge. At there, we observed some images

such as edge roll, mines, wound edge did n’t attach to the bottom.

That is why the epithelialization didn’t performe.

Characteristics   of   CW   topical:   CW   usually   have   deep   lesions   of

90.14%   of   lesions   that   damage   the   entire   skin.   This   finding   is

consistent with Robert Numan et al. (2014), who argue that CW is

often a deep­wounds injury. At the site of the wound, it is common

for some tissues such as necrotic tissue (with dry necrosis and wet

necrosis), granulosa, epithelial and subcutaneous tissue. on the color  of the tissue, the specific characteristics of the tissue, as well as on

the anatomical location. Proper localization of tissue in the wound

site   in   general   and   CW   in   particularhelp   to   develop   appropriate

treatment. .

17

Dissolve and pH the surface of CW: In CW the secretion of bacteria,

white   blood   cells,   high   levels   of   inflammatory   mediators   and

enzymes   break   down   proteins,   they   inhibit   the   wound   healing

process. Changes in the color of the secretions are a sign of infection

at the site and need to be treated early. In our study no color bleeding

was found, only 2.82% CW were found in yellow color. CW has a

pH ranging from 7.15 to 8.9. Wounds with alkaline pH often have a

slower   rate   of   wound   healing   than   neutral   pH.   Wounds   that   are

immediately   pH   will   turn   to   acid.   Our   results   reflect   the   typical

features   of   CW   when   95.77% CW   has   an   alkaline   pH.

Microscopic   Structure   and   Superbright   Structural:   CW   has   a

thickened epidermis consisting of multiple layers of dendritic cells,

but is less specialized in the upper layers. The reason for this in CW

β is   because   there   is   an   excess   of   c­Myc   produced   by ­catenin

produced on the CW (c­Myc is a gene involved in the regulation of

the  transcription  of  cells)  . In  the CW superconstructor  image we

obtained an image of extracellular matrix destruction at the bottom of

the   wound   with   extracellular   matrix   inflammation.   Necrotic   cells

with clots. Large fiber fibroblasts. The collagen fibers are broken,

dilated, sparse, destroyed to varying degrees. Occurs inflammatory

cells such as active Lymphocytes, macrophages and leukocytes. In

order to account for CW fibrosis and localized CW, most authors

have suggested that CW local tissue aging is due to severe tissue

oxidation leading to damage. DNA, in the form of stopping the loop  of DNA sequences, or causing abnormal changes in cell metabolism.

Characteristics   of   CW   infection:   Different   from   the   acute   wound,

most   CW   contain   bacteria.   In   CW,   immunodeficiency   or

vasodilatation may mask the symptoms of infection, while necrotic

18

tissue or foreign matter can increase the symptoms of infection. The

highest rates of P.aeruginosa were found with 33.96%, followed by

S.   aureus   with   13.21%   and   the   third   with   K.pneumonia   and

Aci.baumanii with 5.66%. There were 4 positive lesions with two

strains of bacteria occupying 7.55%.

.

4.2. Adipose tissue derived stem cell transplation                           Intracranial   lesions   of   CW   after   grafting   of   adipose   tissue   from

adipose   tissue:   After   ADSC   grafting,   the   skin   condition   of   the

proximal   area   is   markedly   improved   such   as   reduction   of   cystic

fibrosis, hyperplasia and temperature Skin abnormalities, CW rates

have epithelial narrowed wound size increased. According to Kyoung

Mi Moon et al. (2012), when studying in vitro on the role of ADSC

on   the   proliferation   and   migration   of   horn   cells,   ADSC   excerses

growth   factors   and   cytokines   such   as   HGF,   FGF­1,   G­CSF,   GM­

β CSF, IL­6, VEGF and TGF­ 3 stimulate growth and migration of

horn cells. CW skin lesion status was improved, coupled with CW­

induced hypercholesterolemia. After autologous transplantation, the

ADSC   itself   may   induce   skin   temperature   CW's   lesions   return   to

normal.

CW   wound   transplantation   after   stem   cell   transplantation   from

adipose tissue: After ADSC grafting itself, CW rate has a beautiful

reddening tissue that gradually increases over time. In the study by

Won­Serk, Kim et al. (2007), ADSC and fibroblasts were obtained  from 23 healthy women and then evaluated the effect of ADSC on

fibroblasts   on   Invitro.   The   authors   found   that   ADSC   stimulated

increased proliferation, migration as well as secretion of fibroblasts.

ADSC   stimulates   fibroblast   growth   not   only   by   direct   cell­to­cell

19

contact   but   also   by   the   action   of   paracrine   from   ADSC­induced

factors.   By   acting   on   mRNAs,   ADSC   stimulates   fibroblasts   to

excrete components of extracellular matrix such as collagen types I,

III, fibronectin, and mitochondrial MMP­1. In addition to stimulating

the fibroblasts  to synthesize  the  extracellular  matrix,  an  important

component in the formation of fine red granules, ADSC is involved

in stimulation

CONCLUSION

1. Chronic wound characteristics CW usually appear on patients with combined pathology (94.64%).

Chronic injuries are common in the lower extremities (43.66%), with

the   same   (39.44%) .

­ CW often deep lesions (90.14%), sometimes there is necrosis, the

edge   without   signs   of   epithelialisation                                           .

­   77.36%   CW   infection   (+)   (P.aeruginosa   (33.96%),   S.aureus

(13.21%), P. pneumonia and Aci.baumani) epididymitis, extracellular

matrix is destroyed, fibrosis and aging.

2. Changement of chronic wound after ADSCs transplantation ­ ADSCs help improve the local environment CW, stimulates good

granulation tissue, improves extracellular matrix:

­ Stimulating and increased activity of fibroblasts.

­ Stimulating neo­vascular

­ Reduce of infection on the wound site ­ Reduction of secretions at the wound site

­ ADSCs stimulate epithelialialization. ­ ADSCs transplatation hadn’t allergic reactions, may be found under  the ADSCs (7.89%), hypertrophy (5.26%)

20

LIST OF MY STUDIES RELATE TO THE THESIS

1. Nguyen Tien Dzung, Dinh Van Han, Quan Hoang Lam (2016),  " Studying the effectiveness of autologous transplantation of adipose­ derived   stem   cells   on   ultrastructure   changes   of   CW".  Journal   of   Military Pharmaco­medicine, 41(6), tr. 74­82. 2. Nguyen Tien Dzung, Dinh Van Han, Quan Hoang Lam (2016),  " Studying the topical characteristics and structure of CW”. Journal  of 108­ Clinical Medicine and Pharmacy, 11(5), tr. 80­88.

3. Nguyen Tien Dzung, Dinh Van Han, Quan Hoang Lam (2017),  " Studying the effectiveness of autologous transplantation of adipose­

derived stem cells on topical changes of CW”.  Journal of VietNam

Medicine , 453(2), tr. 213­217.