
Tuyºn tªp c¡c chuy¶n · v k¾ thuªt t½nh nguy¶n hm,t½ch ph¥n. Nguy¹n Duy «ng
MËT SÈ K THUT "PHN TCH " M TA TH×ÍNG GP KHI I TM
NGUYN HM HOC TNH TCH PHN.
Th½ dö 1
: T¼m nguy¶n hm
A1=Zdx
(x+ 1) (x+ 2)
Ta gi£ sû r¬ng :
1
(x+ 1) (x+ 2) =α
x+ 1 +β
x+ 2
Ta i t¼m 2 h» sè
α , β
theo ba c¡ch nh÷ sau :
C¡ch 1 :
α= lim
x→−1
x+ 1
(x+ 1) (x+ 2) = lim
x→−1
1
x+ 2 =1
−1+2 = 1
β= lim
x→−2
x+ 2
(x+ 1) (x+ 2) = lim
x→−2
1
x+ 1 =1
−2+1 =−1
C¡ch 2 :
Cho
x= 0
ta câ :
1
(0 + 1) (0 + 2) =α
0+1+β
0+2 ⇔1
2=α+1
2β
x= 1
ta câ :
1
(1 + 1) (1 + 2) =α
1+1+β
1+2 ⇔1
6=1
2α+1
3β
Do â m ta suy ra 2 h» sè
α , β
b¬ng c¡ch i gi£i h» :
α+1
2β=1
2
1
2α+1
3β=1
6
⇔(α= 1
β=−1
C¡ch 3 :
Ta gi£ sû r¬ng :
1
(x+ 1) (x+ 2) =α
x+ 1 +β
x+ 2
⇔1
(x+ 1) (x+ 2) =α(x+ 2) + β(x+ 1)
(x+ 1) (x+ 2) =x(α+β)+2α+β
(x+ 1) (x+ 2)
C¥n b¬ng c¡c h» sè 2 v¸ m ta câ h» :
(α+β= 0
2α+β= 1 ⇔(α= 1
β=−1
Do â m ta suy ra :
1
(x+ 1) (x+ 2) =1
x+ 1 −1
x+ 2
Vªy :
Zdx
(x+ 1) (x+ 2) =Zdx
x+ 1 −Zdx
x+ 2 = ln |x+ 1| − ln |x+ 2|+c= ln
x+ 1
x+ 2+c
Th½ dö 2
: T¼m nguy¶n hm
A2=Zx+ 2
x(x−2) (x+ 5)dx
Ta gi£ sû r¬ng :
x+ 2
x(x−2) (x+ 5) =α
x+β
x−2+χ
x+ 5
C¡ch 1 :
α= lim
x→0
x(x+ 2)
x(x−2) (x+ 5) = lim
x→0
x+ 2
(x−2) (x+ 5) =0+2
(0 −2) (0 + 5) =−1
5
β= lim
x→2
(x−2) (x+ 2)
x(x−2) (x+ 5) = lim
x→2
x+ 2
x(x+ 5) =2+2
2 (2 + 5) =2
7
χ= lim
x→−5
(x+ 5) (x+ 2)
x(x−2) (x+ 5) = lim
x→−5
x+ 2
x(x−2) =−5+2
−5 (−5−2) =−3
35
C¡ch 2 :
Cho
x=−1
ta câ :
−1+2
−1 (−1−2) (−1 + 5) =α
−1+β
−1−2+χ
−1+5 ⇔ −α−1
3β+1
4χ=1
12
x= 1
ta câ :
1+2
1 (1 −2) (1 + 5) =α
1+β
1−2+χ
1+5 ⇔α−β+1
6χ=−1
2
1