Tuyºn tªp c¡c chuy¶n · v thuªt t½nh nguy¶n hm,t½ch ph¥n. Nguy¹n Duy «ng
MËT K THUT "PHN TCH " M TA TH×ÍNG GP KHI I TM
NGUYN HM HOC TNH TCH PHN.
Th½ 1
: T¼m nguy¶n hm
A1=Zdx
(x+ 1) (x+ 2)
Ta gi£ r¬ng :
1
(x+ 1) (x+ 2) =α
x+ 1 +β
x+ 2
Ta i t¼m 2
α , β
theo ba c¡ch nh÷ sau :
C¡ch 1 :
α= lim
x→−1
x+ 1
(x+ 1) (x+ 2) = lim
x→−1
1
x+ 2 =1
1+2 = 1
β= lim
x→−2
x+ 2
(x+ 1) (x+ 2) = lim
x→−2
1
x+ 1 =1
2+1 =1
C¡ch 2 :
Cho
x= 0
ta :
1
(0 + 1) (0 + 2) =α
0+1+β
0+2 1
2=α+1
2β
x= 1
ta :
1
(1 + 1) (1 + 2) =α
1+1+β
1+2 1
6=1
2α+1
3β
Do â m ta suy ra 2
α , β
b¬ng c¡ch i gi£i :
α+1
2β=1
2
1
2α+1
3β=1
6
(α= 1
β=1
C¡ch 3 :
Ta gi£ r¬ng :
1
(x+ 1) (x+ 2) =α
x+ 1 +β
x+ 2
1
(x+ 1) (x+ 2) =α(x+ 2) + β(x+ 1)
(x+ 1) (x+ 2) =x(α+β)+2α+β
(x+ 1) (x+ 2)
C¥n b¬ng c¡c 2 v¸ m ta :
(α+β= 0
2α+β= 1 (α= 1
β=1
Do â m ta suy ra :
1
(x+ 1) (x+ 2) =1
x+ 1 1
x+ 2
Vªy :
Zdx
(x+ 1) (x+ 2) =Zdx
x+ 1 Zdx
x+ 2 = ln |x+ 1| ln |x+ 2|+c= ln
x+ 1
x+ 2+c
Th½ 2
: T¼m nguy¶n hm
A2=Zx+ 2
x(x2) (x+ 5)dx
Ta gi£ r¬ng :
x+ 2
x(x2) (x+ 5) =α
x+β
x2+χ
x+ 5
C¡ch 1 :
α= lim
x0
x(x+ 2)
x(x2) (x+ 5) = lim
x0
x+ 2
(x2) (x+ 5) =0+2
(0 2) (0 + 5) =1
5
β= lim
x2
(x2) (x+ 2)
x(x2) (x+ 5) = lim
x2
x+ 2
x(x+ 5) =2+2
2 (2 + 5) =2
7
χ= lim
x→−5
(x+ 5) (x+ 2)
x(x2) (x+ 5) = lim
x→−5
x+ 2
x(x2) =5+2
5 (52) =3
35
C¡ch 2 :
Cho
x=1
ta :
1+2
1 (12) (1 + 5) =α
1+β
12+χ
1+5 α1
3β+1
4χ=1
12
x= 1
ta :
1+2
1 (1 2) (1 + 5) =α
1+β
12+χ
1+5 αβ+1
6χ=1
2
1
Tuyºn tªp c¡c chuy¶n · v thuªt t½nh nguy¶n hm,t½ch ph¥n. Nguy¹n Duy «ng
x= 3
ta :
3+2
3 (3 2) (3 + 5) =α
3+β
32+χ
3+5 1
3α+β+1
8χ=5
24
º t¼m ÷ñc c¡c
α , β , χ
ta gi£i ph÷ìng tr¼nh :
α1
3β+1
4χ=1
12
αβ+1
6χ=1
2
1
3α+β+1
8χ=5
24
α=1
5
β=2
7
χ=3
35
C¡ch 3 :
Gi£ r¬ng :
x+ 2
x(x2) (x+ 5) =α
x+β
x2+χ
x+ 5
x+ 2
x(x2) (x+ 5) =α(x2) (x+ 5) + βx (x+ 5) + χx (x2)
x(x2) (x+ 5)
x+ 2
x(x2) (x+ 5) =x2(α+β+χ) + x(3α+ 5β2χ)10α
x(x2) (x+ 5)
C¥n b¬ng c¡c 2 v¸ m ta :
α+β+χ= 0
3α+ 5β2χ= 1
10α= 2
α=1
5
β=2
7
χ=3
35
Do â :
x+ 2
x(x2) (x+ 5) =1
5x+2
7 (x2) 3
35 (x+ 5)
Vªy :
Zx+ 2
x(x2) (x+ 5)dx =1
5Zdx
x+2
7Zdx
x23
35 Zdx
x+ 5
=1
5ln |x|+2
7ln |x2| 3
35 ln |x+ 5|+c
Th½ 3
: T¼m nguy¶n hm
A3=Zx2
(3x22x+ 5) (x+ 1) dx
Ta c¦n nhî ph÷ìng tr¼nh bªc 2 d¤ng :
ax2+bx +c
2 nghi»m
x1, , x2
th¼ ÷ñc biºu di¹n d÷îi
d¤ng :
ax2+bx +c=a(xx1) (xx2)
Do â ta vi¸t :
3x22x+ 5 = 3 (x1) x+5
3
Ta gi£ r¬ng :
x2
(3x22x+ 5) (x+ 1) =x2
3 (x1) x+5
3(x+ 1)
=α
x1+β
x+5
3
+χ
x+ 1
α= lim
x1
x2(x1)
3 (x1) x+5
3(x+ 1)
= lim
x1
x2
3x+5
3(x+ 1)
=1
16
β= lim
x→−5
3
x2x+5
3
3 (x1) x+5
3(x+ 1)
= lim
x→−5
3x2
3 (x1) (x+ 1)=25
48
χ= lim
x→−1
x2(x+ 1)
3 (x1) x+5
3(x+ 1)
= lim
x→−1
x2
3 (x1) x+5
3
=1
4
C¡ch 2 :
2
Tuyºn tªp c¡c chuy¶n · v thuªt t½nh nguy¶n hm,t½ch ph¥n. Nguy¹n Duy «ng
Cho
x= 0
ta :
x2
(3x22x+ 5) (x+ 1) =α
x1+β
x+5
3
+χ
x+ 1 α+3
5β+χ= 0
x= 2
ta :
x2
(3x22x+ 5) (x+ 1) =α
x1+β
x+5
3
+χ
x+ 1 4
33 =α+3
11β+1
3χ
x= 3
ta :
x2
(3x22x+ 5) (x+ 1) =α
x1+β
x+5
3
+χ
x+ 1 9
112 =1
2α+3
14β+1
4χ
º â m ta :
α+3
5β+χ= 0
α+3
11β+1
3χ=4
33
1
2α+3
14β+1
4χ=9
112
α=1
16
β=25
48
χ=1
4
C¡ch 3 :
Gi£ r¬ng :
x2
(3x22x+ 5) (x+ 1) =x2
3 (x1) x+5
3(x+ 1)
=α
x1+β
x+5
3
+χ
x+ 1
x2
3 (x1) x+5
3(x+ 1)
=
αx+5
3(x+ 1) + β(x1) (x+ 1) + χ(x1) x+5
3
(x1) x+5
3(x+ 1)
x2=x2(α+β+χ) + x8
3α+2
3χ+5
3αβ5
3χ
C¥n b¬ng c¡c 2 v¸ ta :
α+β+χ= 1
8
3α+2
3χ= 0
5
3αβ5
3χ= 0
α=1
16
β=25
48
χ=1
4
Do â m ta :
x2
(3x22x+ 5) (x+ 1) =x2
3 (x1) x+5
3(x+ 1)
=1
16 (x1) 25
48 x+5
3+1
4 (x+ 1)
Suy ra :
Zx2
(3x22x+ 5) (x+ 1) dx =1
16 Zdx
x125
48 Zdx
x+5
3
+1
4Zdx
x+ 4
=1
16 ln |x1| 25
48 ln x+5
3+1
4ln |x+ 4|+c
Th½ 4
: T¼m nguy¶n hm
A4=Zx1
(x2+ 4x+ 5) (x24) dx
Ta c¦n chó þ r¬ng ph÷ìng tr¼nh :
ax2+bx +c= 0
vîi
= b24ac < 0
th¼ ta vi¸t :
ax2+bx +c=a(xx1) (xx2)
trong â :
x1=α+βi, x2=αβi, i2=1
Do â m ta :
x2+ 4x+ 5 = (x+2+i) (x+ 2 i)
Ta gi£ r¬ng :
x1
(x2+ 4x+ 5) (x24) =x1
(x+2+i) (x+ 2 i) (x24) =α
x+2+i+β
x+ 2 i+χ
x2+δ
x+ 2
α= lim
x→−2i
(x1) (x+2+i)
(x+2+i) (x+ 2 i) (x24) = lim
x→−2i
x1
(x+ 2 i) (x24) =13
34 1
34i
3
Tuyºn tªp c¡c chuy¶n · v thuªt t½nh nguy¶n hm,t½ch ph¥n. Nguy¹n Duy «ng
β= lim
x→−2+i
(x1) (x+ 2 i)
(x+2+i) (x+ 2 i) (x24) = lim
x→−2+i
x1
(x+2+i) (x24) =13
34 +1
34i
χ= lim
x2
(x1) (x2)
(x2+ 4x+ 5) (x2) (x+ 2) = lim
x2
x1
(x2+ 4x+ 5) (x+ 2) =1
68
δ= lim
x→−2
(x1) (x+ 2)
(x2+ 4x+ 5) (x2) (x+ 2) = lim
x→−2
x1
(x2+ 4x+ 5) (x2) =3
4
Do â m ta :
x1
(x2+ 4x+ 5) (x24) =13
34 1
34i
x+2+i+13
34 +1
34i
x+ 2 i+
1
68
x2+
3
4
x+ 2
=13x27
17 (x2+ 4x+ 5) +1
68 (x2) +3
4 (x+ 2)
C¡ch 2 :
Gi£ r¬ng :
x1
(x2+ 4x+ 5) (x24) =αx +β
x2+ 4x+ 5 +χ
x2+δ
x+ 2
Cho
x= 0
ta :
1
5β1
2χ+1
2δ=1
20
x= 1
ta :
1
10α+1
10βχ+1
3δ= 0
x= 3
ta :
3
26α+1
26β+χ+1
5δ=1
65
x= 4
ta :
4
37α+1
37β+1
2χ+1
6δ=1
148
º â m ta ÷ñc :
1
5β1
2χ+1
2δ=1
20
1
10α+1
10βχ+1
3δ= 0
3
26α+1
26β+χ+1
5δ=1
65
4
37α+1
37β+1
2χ+1
6δ=1
148
δ=2
5β+χ+1
10
1
10α1
30β2
3χ=1
30
3
26α27
650β+6
5χ=3
650
4
37α22
555β+2
3χ=11
1110
α=13
17
β=27
17
χ=1
68
δ=3
4
Do â :
x1
(x2+ 4x+ 5) (x24) =13x27β
17 (x2+ 4x+ 5) +χ
68 (x2) +3δ
4 (x+ 2)
C¡ch 3 :
Gi£ :
x1
(x2+ 4x+ 5) (x24) =αx +β
x2+ 4x+ 5 +χ
x2+δ
x+ 2
x1=(αx +β)x24+χx2+ 4x+ 5(x+ 2) + δx2+ 4x+ 5(x2)
x1 = x3(α+χ+δ) + x2(β+ 6χ+ 2δ) + x(4α+ 13χ3δ)+(4β+ 10χ10δ)
C¥n b¬ng c¡c 2 v¸ ta :
α+χ+δ= 0
β+ 6χ+ 2δ= 0
4α+ 13χ3δ= 1
4β10χ+ 10δ= 1
δ=αχ
β+ 6χ+ 2 (αχ) = 0
4α+ 13χ3 (αχ) = 1
4β10χ+ 10 (αχ) = 1
δ=αχ
2α+β+ 4χ= 0
α+ 16χ= 1
10α+ 4β20χ= 1
α=13
17
β=27
17
χ=1
68
δ=3
4
4
Tuyºn tªp c¡c chuy¶n · v thuªt t½nh nguy¶n hm,t½ch ph¥n. Nguy¹n Duy «ng
Do â :
x1
(x2+ 4x+ 5) (x24) =13x27
17 (x2+ 4x+ 5) +1
68 (x2) +3
4 (x+ 2)
Vªy :
Zx1
(x2+ 4x+ 5) (x24) dx =13
34 Z2x+54
13
x2+ 4x+ 5 dx +1
68 Zdx
x2+3
4Zdx
x+ 2
=13
34 Z(2x+ 4)
x2+ 4x+ 5 dx 1
17 Zdx
x2+ 4x+ 5 +1
68 Zdx
x2+3
4Zdx
x+ 2
=13
34 Zdx2+ 4x+ 5
x2+ 4x+ 5 1
17 Zdx
(x+ 2)2+ 1 +1
68 Zdx
x2+3
4Zdx
x+ 2
=13
34 ln x2+ 4x+ 51
17 arctan (x+ 2) + 1
68 ln |x2|+3
4ln |x+ 2|+c
Th½ 5
: T¼m nguy¶n hm
A5=Zx
x3+ 1 dx
Ta gi£ r¬ng :
x
x3+ 1 =x
(x+ 1) (x2x+ 1) =α
x+ 1 +β
x1
23
2i
+χ
x1
2+3
2i
α= lim
x→−1
x
x2x+ 1 =1
3
β= lim
x1
2+3
2i
x
(x+ 1) x1
2+3
2i=1
63
6i
χ= lim
x1
23
2i
x
(x+ 1) x1
23
2i=1
6+3
6i
Do â :
x
x3+ 1 =1
3 (x+ 1) +
1
63
6i
x1
23
2i
+
1
6+3
6i
x1
2+3
2i
=1
3 (x+ 1) +x+ 1
3 (x2x+ 1)
C¡ch 2 :
Gi£ :
x
x3+ 1 =α
x+ 1 +βx +χ
x2x+ 1
Cho
x= 0
ta :
0 = α+χ
x= 1
ta :
1
2=1
2α+β+χ
x= 2
ta :
2
9=1
3α+2
3β+1
3χ
Do â m ta :
α+χ= 0
1
2α+β+χ=1
2
1
3α+2
3β+1
3χ=2
9
α=1
3
β=1
3
χ=1
3
Vªy :
x
x3+ 1 =1
3 (x+ 1) +x+ 1
3 (x2x+ 1)
C¡ch 3 :
Ta công gi£ r¬ng :
x
x3+ 1 =α
x+ 1 +βx +χ
x2x+ 1
x=αx2x+ 1+ (βx +χ) (x+ 1)
5