KH&CNN - 89*09/2009*9<br />
<br />
<br />
toG DraG PHM MEM Jim jom mm P H U ^ ROI XOAY<br />
HAI PHA KHO^G DANG ^ I E I THIET LAP BIEU DO QUAN HE<br />
GICA THAWI P H M CAC PHA VA TOC DO PHM ^ G CHAY<br />
AN APPLICATION OF THE SOFTWARE OF TWO-PHASE SWIRLING TURBULET JETS TO ESTABLISH<br />
THE RELATIONSHIP BETWEEN PHASE COMPOSITIONS AND BURNING REACTION SPEED<br />
<br />
TS. NGUYEN THANH HAO, Dai hoc Cong nghiep TP.HCM<br />
<br />
Bai bao de cap den mgt ung dung ket qua nghien cuu ly thuyet dong<br />
phun roi xoay hai pha khong dang nhiet di tinh toan xac djnh bieu do<br />
quan he glQ'a thanh phan cac pha v&i toe dp phan Crng hoa hgc trong<br />
qua trinh chay, phuc vu tinh toan thiet ke buong dot<br />
<br />
1. Tdng quan v i irng dung dong phun roi Qua trinh chay ddng phun rdi xoay hai pha<br />
xoay hai pha khong dang nhiet khdng dang nhiet la qua trinh phan irng hoa hge<br />
Tif nhu'ng nam 90, khi nghi djnh thir Kyoto manh liet, toa nhiet, phat quang vdi tde do cao<br />
dirge 160 quoc gia tren thi gidi ddng y tham gia va ding thdi cdn kee thee mdt Idat cac qua<br />
eat giam lu'gng khi d nhiem gay hieu irng nha trinh vat ly khac. Do vay qua trinh chay se bao<br />
kinh do eae nha may cdng nghiep thai ra xuing gdm eae qua trinh ly hda nhu': qua trinh sinh<br />
5% so vdi mire nam 1990 thi viec nghien ciru nhiet eiia eae phan irng hda hgc, qua trinh<br />
irng dung ddng phun xoay trong cac thiit bj chuyen ddng, qua trinh truyin nhiet va truyin<br />
buong dit cdng nghiep, dae biet la trong cac khdi giu'a eae ddng vat chit, qua trinh chuyin<br />
tuabin va Id hoi du'gc quan tam dac biet [1], [3]. hda nang lirgng [2], IVluc tieu ciia nghien eiru<br />
Song song vdi nhu'ng cdng trinh nghien eiru nay la xae djnh quan he giu'a nhigt do vdi tic do<br />
thu'c nghiem la nhu'ng cdng trinh nghien ciru ly phan irng hda hgc.<br />
thuyit md phdng s i qua trinh chay trong buong Md hinh toan dugc thiit lap dira tren<br />
dot irng dung ddng phun rii xoay. Phin mim phu-ong trinh lien tuc, he phirong trinh rii k-g,<br />
FLUENT du'gc xay dyng dira tren md hinh toan he phuong trinh can bing ddng lugng va<br />
ciia ddng phun rii xoay mdt pha, md hinh nggn phu'ang trinh he sd hon hgp chay ddng phun rdi<br />
lii'a va cac phu-ong trinh trang thai cung da xoay hai pha khdng dang nhiet dang khdng thir<br />
dugc irng dung rgng rai. Tuy nhien, md hinh nguyen. Thuat toan giai he phu'ang trinh ddng<br />
nay cung chf du'gc irng dung d i md phdng qua phun rii xoay hai pha khdng ding nhiet du'gc<br />
trinh chay ddng phun roi xoay mpt pha hoac hai trinh bay trong cae nghien ciru [4], [5].<br />
pha ding nhlt va dang hu'dng trdng budng dot. Giao dien phan mim tinh toan du'gc thiet lap<br />
Do chi la mdt tru'dng hgp dac biet eiia ddng bao gom 29 thdng s i vat ly (hinh 2.1), gia trj<br />
phun rii xoay hai pha khdng dang nhiet, nen cac thdng sd vat ly nhap vao ily tir thuc<br />
chya thi hien birc tranh toan canh eiia ddng nghiem, kit qua xuit ra la cac ma tran s i tirang<br />
phun roi xoay hai pha khdng dang nhiet trong irng trong miin tinh toan, cac ma trgn s i nay<br />
buong dot. du'gc bieu dien dudi dang trudng phan b i bao<br />
2. Gio'i thieu phdn mim tinh toan dong gim; Phan b i van tic, phan b i nhi$t dd, phan<br />
phun tdi xoay hai pha khong dang nhiet b i thanh phan pha, phan b i tic dg phan irng.<br />
10*KH&CNN - 89*09/2009<br />
phan bd ap suit, phan bd ddng nang rdi, phan thuan vdi tich sd giua cac ndng do chat tham<br />
bd tic dp tieu tan ddng nang rii, phan bd luc gia phan irng. Ve nguyen tic, ta cd the lay bit<br />
tuang tae, phan bd nhiet nang... ky su thay doi ning do ciia mgt chat nao do<br />
trong phan irng de bieu thi tic dg phan u'ng<br />
hda hgc.<br />
THGNGSODAUVAO<br />
Sif dung phin mim tinh toan ddng phun roi<br />
xday hai pha khdng dang nhiet de tinh toan cho<br />
cae trudng hgp khac nhau eua nong dp cho<br />
thiy su thay doi nhiet do eua pha khi (hinh 3.1)<br />
hoac pha thu hai (hinh 3.2) d i u lam cho tic dp<br />
phan irng thay doi (hinh 3.3). Phan bo nhiet dp<br />
nhien lieu va khdng khi tap trung chu yeu o<br />
vung tam chay, cang ra xa tam chay nhiet dp<br />
nhien lieu va oxy cang giam din (hinh 3.1 va<br />
hinh 3.2).<br />
Ptiia bd'ttiluiiphiaplia kbifi<br />
<br />
Hinh 2.1: Giao di?n mo phong ddng phun rolxoeiy hai<br />
pha khong dang nhi^t<br />
<br />
3. Xay dyng biiu dd quan he giCi'a nhiet<br />
do va tdc do phan u'ng hoa hoc<br />
Qua trinh chay hat nhien lieu long la qua<br />
trinh khuich tan, khi dd t i c do phan irng hda<br />
hge Idn han rat nhiiu so vdi tie do khuich tan<br />
vat chat tdi b i mat chay, ding thdi niu coi<br />
chiiu day be mat nggn lii'a la rlt mdng. Khi hat<br />
nhien lieu di^gc phun vao trong buong dot dang<br />
van hanh d nhiet do cao thi chung se nhan 1.5 2 2.5<br />
Huttog tivc jJRo<br />
3.5 4 4.5 5<br />
<br />
nhiet va boc hai. Hai nhien lieu khuich tan tir<br />
trong ra ngoai, cdn oxy trong pha khi se khuich Hinh 3.1: Phan bo thdnh phan pha khi fg trong m^t cit<br />
tan tif ngoai vao trong hat nhien lieu. Khi thanh chCea 0wiyng tam doi xCeng lihi h^ so xody S = 0,6<br />
phin hai pha h6a trdn vdi nhau din mgt ty le<br />
nhlt djnh va dat dugc nhiet do du cao thi chiing Pfaia UTlidBbpiiiapiu tlL^hu &<br />
<br />
se bdc chay tao thanh mat nggn lira. Tdm lai,<br />
qua trinh chay ddng phun rdi xoay hai pha ed<br />
thi dugc chia thanh eae giai doan nhu' sau:<br />
- Giai doan sly ndng, bdc hai va oxy hda<br />
cham;<br />
- Giai doan bdc hai nhanh, oxy hda nhanh va<br />
tao thanh nggn lira.<br />
Tie do phan irng hda hge bieu thj lugng thay<br />
doi ndng do eua eae chit tham gia phan irng<br />
tren mgt dan vj thdi gian. Vi vay eho du cac 2.5<br />
<br />
diiu kien bien khdng thay doi thi toe dg phan<br />
irng hda hgc cung se thay dii theo thdi gian. Hinh 3.2: PhSn bo thdnh phan pha thir hai fp trong m^t<br />
Dii vdi mdt phan irng hda hge thi tie dg ty l# cat chira dwimg tSm doi xirng khi h§ so xoiy S - 0,6<br />
KH&CNN - 89*09/2009*11<br />
PliiB i)t!i6c d$ cbiy Cttega 4. Ket luan<br />
Sif dung phan mim tinh toan ddng phun rii<br />
•<br />
<br />
<br />
<br />
<br />
:; *1<br />
•<br />
<br />
<br />
<br />
xoay hai pha khdng dang nhiet d i tinh toan cho<br />
cae tru'dng hgp khac nhau cua ning dp cho ta<br />
-••--I '<br />
-t- -1-4- su phan bd cua thanh phin pha va tic dp phan<br />
i.i * Ung hda hgc, tU dd xay dung dirge biiu d i<br />
u quan he giu'a thanh phin pha va van tie phan<br />
^ Ung hda hoe. Nhu' vay, Ung vdi nhien lieu khac<br />
\\" nhau khi biit thanh phin tham gia phan Ung,<br />
; *<br />
blng each tra d i thj du'gc xay dung tif md hinh<br />
s i (hinh 3.4) ta ludn xae djnh du'gc tdc dp phan<br />
Ung hda hge eiia phan Ung. Diiu nay tru'de day<br />
chi thuc hien du'ac thdng qua cdng thUc thuc<br />
Hinh 3.3 : Phan bd toe dp phan Crng trong m?t cat nghiem.<br />
chira dwimg tam doi xu'ng khi h^ so xoay S = 0,6<br />
Abstract:<br />
<br />
This paper mention an application of the<br />
research result on the theory of the two-phase<br />
non-isothermal sv\/irling turbulent jets to define<br />
relationship between phase compositions and<br />
reaction speed in burning process, serving for<br />
combustion chamber design.<br />
<br />
<br />
Tai lieu tham kliao<br />
[1] Schreiber A. A - Gas Turbulent Flows -<br />
0 0.1 0.2 0.3 0.4 0.5 0.6 0,7 0.8 09 1<br />
TbiBh pliin ptu tbiT liai fp Naucova Dumca, 1987.<br />
[2] Nguyen S7 Mao - Ly Thuyet va Thiet<br />
Hinh 3.4: Do thi quan he giira thdnh phan pha<br />
vi toe dp phan irng Bi Chay - Nha xuat ban khoa hoc va ky<br />
thuat, 2002.<br />
Nhu da phan tich tren eho thiy khi ra xa tam [3] M. Luc Vervisch, M. Pierre Sagaut - Large<br />
chay thi nhiet do, thanh phin nhien lieu va Eddy Simulations of Flow and Mixing in Jets<br />
khdng khi diu giam din. Do dd, tic do phan and Swiri Flow Application to a Gas Turbine -<br />
irng khi ra xa tam chay cung giam (hinh 3.3). CERFACS, Toulouse, France, September 2000.<br />
Tif cac kit qua tinh toan phan b i thanh phin [4] K. T. Atanasov, Nguyen Thanh Nam - An<br />
pha va tic do phan irng nhu' tren, xay dung Experimental Investigation Kinetic of Swirling<br />
dugc bieu d i quan he giu'a thanh phan pha va Gas Turbulent Flows in Combustion Chamber -<br />
tic dd phan Ung hda hpc nhu' tren hinh 3.4. Tap chi phat trien khoa hoc cong nghe, 2003.<br />
Dd thi quan he eho thiy Ung vdi cae cacbua [5] Nguyen Thanh Nam - Numerical<br />
hydrd khac nhau thi tie do phan irng cung khac Investigation the Gaseous Flame in Combustion<br />
nhau. Thanh phin pha nhien lieu cang thip thi Chamber with Real Initial Velocity Distribution -<br />
tic do phan ung cung thip, khi tang thanh phan Tap chi phat then khoa hoc cong nghe, 2003.<br />
pha nhien lieu thi tdc do phan Ung cung tang<br />
theo, diiu nay hoan toan phu hgp vdi thuc t i . Phan bien: PGS. TS Le Cdng Cat<br />