Chapter 3
Fix Effect Model (FEM)
6/6/2022
Mr U_KHOA TOÁN KINH T37
Objectives
(1) Introduce about Fix Effect Model
(2) Estimates the slope paramaters in FEM by Within Estimator, Between
Estimator
(3) Estimates FEM by Least Square Dummy Variables (LSDV) method
Mr U_KHOA TOÁN KINH T6/6/2022
38
3.1 Introduce about FEM
Notations
Let us denote
Let us denote e a unit vector and εithe vector of errors
39
y
i
=
y
i1
y
i2
...
y
iT
æ
è
ç
ç
ç
ç
ç
ö
ø
÷
÷
÷
÷
÷
T´1
;X
i
=
x
1,i,1
x
2i1
... x
Ki1
x
1i2
x
2i2
... x
Ki2
... ... ... ...
x
1iT
x
2iT
... x
KiT
æ
è
ç
ç
ç
ç
ç
ö
ø
÷
÷
÷
÷
÷
T´K
;b =
b
1
b
2
...
b
K
æ
è
ç
ç
ç
ç
ç
ö
ø
÷
÷
÷
÷
÷
K´1
e=
1
1
...
1
æ
è
ç
ç
ç
ç
ö
ø
÷
÷
÷
÷
T´1
;ei=
ei1
ei2
...
eiT
æ
è
ç
ç
ç
ç
ç
ö
ø
÷
÷
÷
÷
÷
T
´
1
6/6/2022
Mr U_KHOA TOÁN KINH T
We consider the fix effect model:
yi= α0+ eαi+ Xiβ+ εi. (i = 1, .., n) (3.1)
where
αiis assumed to be a constant term or have correlation with the explanatory
variables
Assumption 3.1 The error term εit are i.i.d ( it) with:
E it) = 0
E itεis) = σ2εwhen t =s and = 0 if t s or E iεi) = σ2εIThere ITdenotes
the identity matrix (T,T)
E itεjs) = 0 , i j, (ts), or E iεj)= 0There 0Tdenotes the identity
matrix (T,T)
Theorem 3.1 Under assumption (3.1), OLS estimator of parameters (β) is
the best linear unbiased estimator (BLUE)
40
6/6/2022
Mr U_KHOA TOÁN KINH T
3.2 Estimates the slope paramaters
Case 1. Single regression
Method 1. Within Estimator
yi= i+ Xiβ+ εi. (i = 1, .., n) (3.1)
yit =αi+ xit β+ εit ( it) (3.1)
Taking mean of this equation (3.1) over time for each cross section unit i,
we have
Again by taking average Eq. (3.2) across individuals, we have
Subtracting Eq. (3.2) from Eq. (3.1) for each t to get
41
y
i
= a
i
+x
i
b + e
i
(3.2)
y
it
-y
i
(
)
= bx
it
-x
i
(
)
+ e
it
- e
i
(
)
(3.4)
y
..
= a
i
+x
..
b + e
..
(3.3)
6/6/2022
Mr U_KHOA TOÁN KINH T