6/6/2022

Chapter 3 Fix Effect Model (FEM)

37

Mr U_KHOA TOÁN KINH TẾ

Objectives

38

(1) Introduce about Fix Effect Model

(2) Estimates the slope paramaters in FEM by Within Estimator, Between

Estimator

(3) Estimates FEM by Least Square Dummy Variables (LSDV) method

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

3.1 Introduce about FEM

39

Notations

;b =

yi =

;Xi =

yi1 yi2 ... yiT

b1 b2 ... bK

... x Ki1 ... x Ki2 ... ... ... x KiT

x 2i1 x 2i2 ... x 2iT

Let us denote ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

T´1

K´1

T´K

x1,i,1 x1i2 ... x1iT Let us denote e a unit vector and εi the vector of errors

e =

;ei =

1 1 ... 1

æ ç ç ç ç è

ö ÷ ÷ ÷ ÷ ø

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

T´1

ei1 ei2 ... eiT

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

T´1

We consider the fix effect model:

40

yi = α0 + eαi + Xiβ+ εi. (i = 1, .., n) (3.1)

where

αi is assumed to be a constant term or have correlation with the explanatory

variables

Assumption 3.1 The error term εit are i.i.d ( it) with:

E (εit) = 0 E (εitεis) = σ2

ε when t =s and = 0 if t ≠ s or E (εiε’

i) = σ2

εIT here IT denotes

the identity matrix (T,T)

i ≠ j,

E (εitεjs) = 0 ,

(ts), or E (εiε’

j)= 0T here 0T denotes the identity

matrix (T,T)

Theorem 3.1 Under assumption (3.1), OLS estimator of parameters (β) is

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

the best linear unbiased estimator (BLUE)

3.2 Estimates the slope paramaters

41

Case 1. Single regression

Method 1. Within Estimator

(3.1)

yi = eαi + Xiβ+ εi. (i = 1, .., n)

(3.1)

yit = αi + xit β+ εit ( it)

Taking mean of this equation (3.1) over time for each cross section unit i,

we have

(3.2)

(3.3)

yi = ai + x ib + ei Again by taking average Eq. (3.2) across individuals, we have y.. = a i + x..b + e..

Subtracting Eq. (3.2) from Eq. (3.1) for each t to get

(3.4)

yit - yi

(

( ) = b x it - x i

( ) + eit - ei

)

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

Remark. (3.4) can be estimated by applying OLS, also calling the name

42

“Within Estimator”

Method 2. Between estimator (BE)

y

(3.6)

x

x

e-

b

-

-

=

y ..

..

..

i

i

i

( + e

)

(

Subtracting (3.2) from (3.3) for each t to get ) ) ( Between estimation (3.6) by OLS

Example 3.1 Using file “Data_Ch1.xlsx” to run the following model

_

it = 0 + 2

it + 𝑖𝑡

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

45

Remark. OLS estimates by Pooled OLS can be looked as the

Case 2. Multiple regression

Method 1. Within estimation

(3.8)

yit = αi + xit β + εit

here

-

β’= (β1, β2, …, βk) ;

-

x’it = (x1it, x2it, …, xkit);

-

αi is a scalar intercepts representing the unobserved effects which are

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

same over time;

weight sum of within estimates and between estimates

- The error term, εit , represents the effects of omitted variables 46 that will change across the individual units and time periods.

Assumption. εit is not uncorrelate with xit and εit ~ N(0, σ2 ε)

=

+

+

yi1 yi2 ... yiT

a i a i ... a i

x1i1 x1i2 ... x1iT

x 2i1 x 2i2 ... x 2iT

... x ki1 ... x ki2 ... ... ... x kiT

b1 b2 ... bk

ei1 ei2 ... eiT

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

(3.9)

Or, yi = ea i + Xib + ei e is a vector of oder T, e’ = (1, 1, …,1)

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

In vector form, (3.8) can expressed for unit i as

ee'

Q = IT -

47

1 T

Set

Pre multiplying Eq. (3.9) by Q, we have

Qyi = Qeαi + QXiβ+ Qεi

...

1-

-

-

yi1 - yi.

...

-

1-

-

ee'

=

1 T 1 T

1 T

æ Qyi = IT - èç

ö ø÷ yi =

...

yi1 yi2 ... yiT

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

yi2 - yi. ... yiT - yi.

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

-

-

... 1-

1 T 1 T ... 1 T

... 1 T

1 T 1 T ... 1 T

æ ç ç ç ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷ ø

Now,

Eq. (3.9) can show that Qe =0 → Qyi = QXiβ+ Qεi (3.10)

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

We can apply OLS to find β parameter of Eq. (3.10)

48

For all cross section units N and over time T, Eq. (3.10) can be

expressed in the following matrix form:

Y =

,D =

,X =

,e =

e 0 ... 0

0 ... 0 ... 0 e ... ... ... e 0 ...

æ ç ç ç ç è

ö ÷ ÷ ÷ ÷ ø

y1 y2 ... yN

X1 X2 ... X N

e1 e2 ... eN

QY = QDα + QXβ+ Qε = QXβ+ Qε (3.12)

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

Here, æ ç ç ç ç ç è

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

The OLS obtained from Eq. (3.12) is

49

Substituting (3.13) into (3.12)

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

Therefore,

50

Pre Example 3.1 With model

ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε

Requirement:

- The within estimates by OLS

- The between estimates by OLS

Remark. The within estiamates can also obtained by panel

regression by using xtreg command in Stata with option fixed

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

efects denoting by fe

51

yit = αi + xit β+ εit

=

+

+

yi1 yi2 ... yiT

a i a i ... a i

x1i1 x1i2 ... x1iT

x 2i1 x 2i2 ... x 2iT

... x ki1 ... x ki2 ... ... ... x kiT

b1 b2 ... bk

ei1 ei2 ... eiT

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

(3.9)

Or, yi = ea i + Xib + ei

In vector form, for all cross section units , Eq. (3.9) can be

expressed as

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

3.3 Least Squares Dummy Variable (LSDV) Regression

=

+

a1 +

a 2 + ...+

a N +

0 0 ... e

e 0 ... 0

0 e ... 0

æ ç ç ç ç è

ö ÷ ÷ ÷ ÷ ø

æ ç ç ç ç è

ö ÷ ÷ ÷ ÷ ø

æ ç ç ç ç è

ö ÷ ÷ ÷ ÷ ø

y1 y2 ... yN

X1 X2 ... X N

e1 52 e2 ... e N

b1 b2 ... bk

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

Here,

;e =

;e =

yi =

;Xi =

1 1 ... 1

æ ç ç ç ç è

ö ÷ ÷ ÷ ÷ ø

T´1

yi1 yi2 ... yiT

x1i1 x1i2 ... x1iT

x 2i1 x 2i2 ... x 2iT

... x ki1 ... x ki2 ... ... ... x kiT

ei1 ei2 ... eiT

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

ö ÷ ÷ ÷ ÷ ÷ ø

T´1

T´K

T´1

Eq. reduces to Y = α’D + X β + ε

Here, D is the NT x N matrix for dummy regressor and can be

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

expressed as D = IN eTÄ

Ä

53

A Ä B =

...

...

...

a1mB a11B a12B ... a 21B a 22B ... a 2mB ... a n1B a n2B ... a nmB

ö ÷ ÷ ÷ ÷ ÷ ø

nn1´mm1

A Ä B

A Ä B

= A-1 Ä B-1

A Ä B

Kronecker product A B of two matrices A = (aij)nm and B =

(bkl)n1m1 is defined by æ ç ç ç ç ç è )' = A 'Ä B' )-1 ( ) C Ä D

( ( (

) = AC Ä BD

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

54

Assumption 3.1 The error term εit are i.i.d ( it) with:

ε when t =s and = 0 if t ≠ s or E (εiε’

i) = σ2

εIT here IT

• E (εit) = 0 • E (εitεis) = σ2

denotes the identity matrix (T,T)

j)= 0T here 0T denotes the

i ≠ j, • E (εitεjs) = 0 , (ts), or E (εiε’

identity matrix (T,T)

Theorem 3.1 Under assumption (3.1), OLS estimator of

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

parameters (β) is the best linear unbiased estimator (BLUE)

55

N

N

'

S

y

X

e

y

X

(3.15)

=

b

(

) (

)

u

' e e = i i

i

- a - b i

i

i

e - a - i

i

å

å

i 1 =

i 1 =

Taking partial derivates Eq. (3.15) with respect to αi and β setting them to

zero, we have

Pre Example (3.1) With model

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

The OLS estimator of αi and β are obtained by minmising

ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε

Remark. There are too many parameters in the fixed effects model and

56

the loss of degrees of freedom can be avoided if the αi can be assumed

random

Homework. With three research include:

1. Grunfeld Investment Equation (p.21)

2. Gasoline Demand (p.23)

3. Public Capital Productivity (p.25)

a) Estimate parameters ahead of the explanatory variables in those study

by Within estimator, Between estimator, LSDV and FEM by command

xtreg.

b) Comparing results receiving from those models

6/6/2022

c) Explanatory about αi parameters in method LSDV

Mr U_KHOA TOÁN KINH TẾ