6/6/2022

Chapter 4 Random effect model (REM)

57

Mr U_KHOA TOÁN KINH TẾ

58

Objectives

(1) Introduce about Random Effect Model

(2) Estimates the slope paramaters in FEM by Within Estimator, Between

Estimator

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

(3) Estimates FEM by Least Square Dummy Variables (LSDV) method

59

Notes. There are too many parameters in the fixed effects model and the

i can be assumed

loss of degrees of freedom can be avoided if the α*

random

* + u it i = 1,N; t = 1,T (4.1)

4.1 Introduce Random effect model yit = x itb + a i

Here,

i is assumed to be random

α*

i are supposed to have non zero mean, with

If the individual effects α*

i)= α0

E (α*

i= α0 + αi

Then we can define cross section units effects α*

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

Pre Eq. (4.1)

60

2

( ,V a i

( ,E a ix it

) = 0,

( ) = E a i

) = sm 2 ,

( ,E a ia j

) = 0

( ,V u it

) = s u 2 ,

) = 0 for i ¹ j and t ¹ s

4.1.1 The assumptions on the components of errors About a i, ) = 0, ( E a i u it , About ( 2( ) = E u it ) = 0, ( ,E u itu js E u it The components of the error are not correlated

E (αiuit) =0

Remark. The αi are independent of the error term uit and the regressors

xit, for all i and t

2

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

2 + s u

4.1.2 Mean and variance of errors

( ,V eit

) = sa

) = 0,

The mean and variance of the component errors are ( ) = V yit ( E eit

61

The covariance of the composite error,

Cov (εit, εjs ) = E(εitεjs)= E(αi+ uit) (αj+ ujs)

= E (αiαj + uit αj + αi ujs + uitujs)

Or

α + σ2

u

i = j, t= s

α

i = j, t ≠ s Case 1. Cov (εit, εjs ) = σ2 Case 2. Cov (εit, εjs ) = σ2

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

i ≠ j, t ≠ s Case 3. Cov (εit, εjs ) = 0

62

'

... eiT

ei2

ei1

( E eiei

) = E

For cross section unit i, Eq. (4.1) can be written as

(

)

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

ei1 ei2 ... eiT

ö ÷ ÷ ÷ ÷ ÷ ø

æ ç ç ç ç ç è

The variance- covariance matrix of εi (for individual i) is ö æ ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç è ø

2

...

63

2

= E

ei1 ei2ei1 ... eiTei1

ei1ei2 ei2 ... eiTei2

ei1eiT ... ei2eiT ... ... 2 ... eiT

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

2

2

2

...

s a

2

2

2

...

s a s a

=

2

2 + s u

2 + s u sa ... 2 sa

sa 2 + s u sa ... 2 sa

... ... sa

æ ç ç ç ç ç è

ö ÷ ÷ ÷ ÷ ÷ ø

ee'

ee'

1 T

æ 2 Q + èç

ö 2 1 ø÷ + Tsa T

2

(4.2)

= s u

2 + Tsa

2IT + sa = U = s u ( 2Q + s u

2 ee' = s u )P

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

here P =

64

e' = IT - Q

(4.3)

1 T (4.2) Þ U -1 =

)-1 )

2

(4.4)

where q =

2

)

(

P (4.5)

Therefore, U -1/2 =

Q +

2

ee' = e e'e( 1 ( 2 Q + qP s u s u 2 + Ts a s u 1 s u

1 2 + Tsa s u

(

)

(4.6)

Q + P

Or, U -1/2 =

2

1 s u

ö ÷ ÷ ø

2

) (4.7)

And U = s u

( 2 + Tsa

æ ç ç è ( 2(T-1) s u

1 2 + Tsa s u )

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

65

By taking all cross section units in the sample, the variance - covariance

matrix of the error term (ε) will be of order NT x NT

) = E

( E ee'

æ ç ç ç ç è

ö ÷ ÷ ÷ ÷ ø

( 2 J T Ä IN

) = W (4.8)

0 U 0 ... 0 0 U ... ... ... ... ... 0 U 0 0 ) + sa ( 2 IT Ä I N = U Ä I N = s u where J T = ee'

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

66

4.2 GLS estimation

Idea. The generalised least squares (GLS) is used in estimating a

random effects model when U is known.

Suppose that the variance – covariance matrix (U) is known

Pre multiply Eq. (4.1) by U-1/2 to get

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

Homework. Proving why reason Eq. (4.10) equal with IT

67

With Eq. (4.9) we can apply OLS to estimate parameter (γ)

The GLS estimators of γ are

B

B

(4.13)

W + qSXX

)-1

(

(

)

W + qSXy Eq. (4.12) = SXX SXy Homework. Expanding detail (4.12) to finding why (4.12) can similar (4.13)

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

Eq. (4.12) can be written in expanded form as

68 If θ = 1, then GLS estimator is equivalent to OLS pooled estimator.

Remark.

-

If θ = 0, then GLS estimator will be equal to LSDV -

- The parameter θ measures the weight given to between-group

variation.

- If U is unknown, we can use a two-step GLS estimation known with

name is called FGLS (Feasible Generalized Least Squares)

4.3 FGLS estimator

α & σ2

u are unidentifed. We

Note. When U is unknown as means as σ2

can use two-step GLS estimation known as FGLS

Step 1. We estimate the “within” estimation and “between” estimation

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

model to find out

69

α & σ2

u are obtained from the ”between ” effect estimation, the

The σ2

“within” effect estimation, etc.

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

Then, we have to caculate

70

Step 2. We have to estimate the following model:

4.4 Testing of Hypotheses

Introduction. In a panel regression model, either fixed or random effect

is an issue of unobserved variables measuring heterogeneity across the

entities which renders the bias in pooled regression estimation.

4.4.1 Measuring of Goodness Fit

W) ,

Panel data can be utilities to calculate within-entity variation (R2

B ) and overall variation (R2).

between-entity variation (R2

Option 1. Testing for Pooled Regression

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

yi =α+ Xiβ+ εi. (i = 1, .., n)

71

ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε

Pre Example (3.1) with model

Option 2. Testing for Fix Effects

yi = eαi + Xiβ+ εi. (i = 1, .., n)

Method 1. Fix effects model is only valid when we could test the joint

significance of the dummies by:

H0: α1 = α2 =…= αN = 0

H1: αi ≠ 0

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

The F test is calculated by the following formular:

72

ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε

Pre Example (3.1) With model

Method 2. F test can alse check by xtreg with option fe in Stata

α = 0

Option 3. Testing of Random Effects

α > 0

H0: σ2 H1: σ2

To test this hypothesis, we can use Lagrange Multiplier (LM) test

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

developed by Bresuch and Pagan (1980)

73

ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε

Pre Example (3.1) With model

4.4.2 Fix or Random effect: Hausman Test

yi = eαi + Xiβ+ εi. (i = 1, .., n) (FE)

H0: E (εit|Xit) = 0

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

H1: E (εit|Xit) ≠ 0

74

Using this fact, we have

Therefore,

With

Then

The test statistic is

6/6/2022

Mr U_KHOA TOÁN KINH TẾ

Hausman test (H) = q’ (Var(q))-1q