Chapter 4
Random effect model (REM)
6/6/2022
Mr U_KHOA TOÁN KINH T57
Objectives
(1) Introduce about Random Effect Model
(2) Estimates the slope paramaters in FEM by Within Estimator, Between
Estimator
(3) Estimates FEM by Least Square Dummy Variables (LSDV) method
Mr U_KHOA TOÁN KINH T6/6/2022
58
Notes. There are too many parameters in the fixed effects model and the
loss of degrees of freedom can be avoided if the α*ican be assumed
random
4.1 Introduce Random effect model
Here,
α*iis assumed to be random
If the individual effects α*iare supposed to have non zero mean, with
E *i)= α0
Then we can define cross section units effects α*i= α0+ αi
Pre Eq. (4.1)
6/6/2022
Mr U_KHOA TOÁN KINH T
59
y
it
= x
it
b + a
i
*
+u
it
i =1,N; t =1,T (4.1)
4.1.1 The assumptions on the components of errors
The components of the error are not correlated
E (αiuit) =0
Remark. The αiare independent of the error term uit and the regressors
xit, for all i and t
4.1.2 Mean and variance of errors
The mean and variance of the component errors are
60
About ai,
Eai
( )
=0, ,V ai
( )
=Eai
2
( )
= sm
2, ,E aixit
( )
=0, ,E aiaj
( )
=0
About uit ,
E uit
( )
=0, ,V uit
( )
=E uit
2
( )
= su
2, ,E uitujs
( )
=0 for i ¹j and t ¹s
Eeit
(
)
=0, ,V eit
(
)
=V yit
(
)
= sa
2+ su
2
6/6/2022
Mr U_KHOA TOÁN KINH T
The covariance of the composite error,
Cov it, εjs ) = E(εitεjs)= E(αi+ uit) j+ ujs)
= E iαj+ uit αj+ αiujs + uitujs)
Or
Case 1. Cov it, εjs ) = σ2α+ σ2ui = j, t= s
Case 2. Cov it, εjs ) = σ2αi = j, t s
Case 3. Cov it, εjs ) = 0 i j, t s
61
6/6/2022
Mr U_KHOA TOÁN KINH T