6/6/2022
Chapter 4 Random effect model (REM)
57
Mr U_KHOA TOÁN KINH TẾ
58
Objectives
(1) Introduce about Random Effect Model
(2) Estimates the slope paramaters in FEM by Within Estimator, Between
Estimator
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
(3) Estimates FEM by Least Square Dummy Variables (LSDV) method
59
Notes. There are too many parameters in the fixed effects model and the
i can be assumed
loss of degrees of freedom can be avoided if the α*
random
* + u it i = 1,N; t = 1,T (4.1)
4.1 Introduce Random effect model yit = x itb + a i
Here,
i is assumed to be random
α*
i are supposed to have non zero mean, with
If the individual effects α*
i)= α0
E (α*
i= α0 + αi
Then we can define cross section units effects α*
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
Pre Eq. (4.1)
60
2
( ,V a i
( ,E a ix it
) = 0,
( ) = E a i
) = sm 2 ,
( ,E a ia j
) = 0
( ,V u it
) = s u 2 ,
) = 0 for i ¹ j and t ¹ s
4.1.1 The assumptions on the components of errors About a i, ) = 0, ( E a i u it , About ( 2( ) = E u it ) = 0, ( ,E u itu js E u it The components of the error are not correlated
E (αiuit) =0
Remark. The αi are independent of the error term uit and the regressors
xit, for all i and t
2
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
2 + s u
4.1.2 Mean and variance of errors
( ,V eit
) = sa
) = 0,
The mean and variance of the component errors are ( ) = V yit ( E eit
61
The covariance of the composite error,
Cov (εit, εjs ) = E(εitεjs)= E(αi+ uit) (αj+ ujs)
= E (αiαj + uit αj + αi ujs + uitujs)
Or
α + σ2
u
i = j, t= s
α
i = j, t ≠ s Case 1. Cov (εit, εjs ) = σ2 Case 2. Cov (εit, εjs ) = σ2
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
i ≠ j, t ≠ s Case 3. Cov (εit, εjs ) = 0
62
'
... eiT
ei2
ei1
( E eiei
) = E
For cross section unit i, Eq. (4.1) can be written as
(
)
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
ei1 ei2 ... eiT
ö ÷ ÷ ÷ ÷ ÷ ø
æ ç ç ç ç ç è
The variance- covariance matrix of εi (for individual i) is ö æ ÷ ç ÷ ç ÷ ç ÷ ç ÷ ç è ø
2
...
63
2
= E
ei1 ei2ei1 ... eiTei1
ei1ei2 ei2 ... eiTei2
ei1eiT ... ei2eiT ... ... 2 ... eiT
æ ç ç ç ç ç è
ö ÷ ÷ ÷ ÷ ÷ ø
2
2
2
...
s a
2
2
2
...
s a s a
=
2
2 + s u
2 + s u sa ... 2 sa
sa 2 + s u sa ... 2 sa
... ... sa
æ ç ç ç ç ç è
ö ÷ ÷ ÷ ÷ ÷ ø
ee'
ee'
1 T
æ 2 Q + èç
ö 2 1 ø÷ + Tsa T
2
(4.2)
= s u
2 + Tsa
2IT + sa = U = s u ( 2Q + s u
2 ee' = s u )P
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
here P =
64
e' = IT - Q
(4.3)
1 T (4.2) Þ U -1 =
)-1 )
2
(4.4)
where q =
2
)
(
P (4.5)
Therefore, U -1/2 =
Q +
2
ee' = e e'e( 1 ( 2 Q + qP s u s u 2 + Ts a s u 1 s u
1 2 + Tsa s u
(
)
(4.6)
Q + P
Or, U -1/2 =
2
1 s u
ö ÷ ÷ ø
2
) (4.7)
And U = s u
( 2 + Tsa
æ ç ç è ( 2(T-1) s u
1 2 + Tsa s u )
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
65
By taking all cross section units in the sample, the variance - covariance
matrix of the error term (ε) will be of order NT x NT
) = E
( E ee'
æ ç ç ç ç è
ö ÷ ÷ ÷ ÷ ø
( 2 J T Ä IN
) = W (4.8)
0 U 0 ... 0 0 U ... ... ... ... ... 0 U 0 0 ) + sa ( 2 IT Ä I N = U Ä I N = s u where J T = ee'
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
66
4.2 GLS estimation
Idea. The generalised least squares (GLS) is used in estimating a
random effects model when U is known.
Suppose that the variance – covariance matrix (U) is known
Pre multiply Eq. (4.1) by U-1/2 to get
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
Homework. Proving why reason Eq. (4.10) equal with IT
67
With Eq. (4.9) we can apply OLS to estimate parameter (γ)
The GLS estimators of γ are
B
B
(4.13)
W + qSXX
)-1
(
(
)
W + qSXy Eq. (4.12) = SXX SXy Homework. Expanding detail (4.12) to finding why (4.12) can similar (4.13)
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
Eq. (4.12) can be written in expanded form as
68 If θ = 1, then GLS estimator is equivalent to OLS pooled estimator.
Remark.
-
If θ = 0, then GLS estimator will be equal to LSDV -
- The parameter θ measures the weight given to between-group
variation.
- If U is unknown, we can use a two-step GLS estimation known with
name is called FGLS (Feasible Generalized Least Squares)
4.3 FGLS estimator
α & σ2
u are unidentifed. We
Note. When U is unknown as means as σ2
can use two-step GLS estimation known as FGLS
Step 1. We estimate the “within” estimation and “between” estimation
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
model to find out
69
α & σ2
u are obtained from the ”between ” effect estimation, the
The σ2
“within” effect estimation, etc.
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
Then, we have to caculate
70
Step 2. We have to estimate the following model:
4.4 Testing of Hypotheses
Introduction. In a panel regression model, either fixed or random effect
is an issue of unobserved variables measuring heterogeneity across the
entities which renders the bias in pooled regression estimation.
4.4.1 Measuring of Goodness Fit
W) ,
Panel data can be utilities to calculate within-entity variation (R2
B ) and overall variation (R2).
between-entity variation (R2
Option 1. Testing for Pooled Regression
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
yi =α+ Xiβ+ εi. (i = 1, .., n)
71
ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε
Pre Example (3.1) with model
Option 2. Testing for Fix Effects
yi = eαi + Xiβ+ εi. (i = 1, .., n)
Method 1. Fix effects model is only valid when we could test the joint
significance of the dummies by:
H0: α1 = α2 =…= αN = 0
H1: αi ≠ 0
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
The F test is calculated by the following formular:
72
ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε
Pre Example (3.1) With model
Method 2. F test can alse check by xtreg with option fe in Stata
α = 0
Option 3. Testing of Random Effects
α > 0
H0: σ2 H1: σ2
To test this hypothesis, we can use Lagrange Multiplier (LM) test
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
developed by Bresuch and Pagan (1980)
73
ROAA = f(HHI, L_A, SIZE, ASSET_GRO, GDP, INF) + ε
Pre Example (3.1) With model
4.4.2 Fix or Random effect: Hausman Test
yi = eαi + Xiβ+ εi. (i = 1, .., n) (FE)
H0: E (εit|Xit) = 0
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
H1: E (εit|Xit) ≠ 0
74
Using this fact, we have
Therefore,
With
Then
The test statistic is
6/6/2022
Mr U_KHOA TOÁN KINH TẾ
Hausman test (H) = q’ (Var(q))-1q