Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

LOGO

Nội dung

1. Tại sao tiền tệ có giá trị theo thời gian 2. Lãi suất và cách tính lãi

CHƯƠNG 2

3. Giá trị tương lai và giá trị hiện tại của một khoản tiền 4. Giá trị tương lai và giá trị hiện tại của một dòng tiền 5. Một số ứng dụng của thời giá tiền tệ

GIÁ TRỊ TIỀN TỆ THEO THỜI GIAN

ThS. Đặng Thị Quỳnh Anh

1

2. Lãi suất

Chi phí cô hoäi cuûa tieàn

Khaùi nieäm

Ruûi ro trong töông lai

Taïi sao tieàn teä coù giaù trò theo thôøi gian?

 Laõi laø soá tieàn ngöôøi söû duïng voán (ngöôøi vay) traû cho ngöôøi sôû höõu voán (ngöôøi cho vay) ñeå ñöôïc söû duïng voán trong moät thôøi gian nhaát ñònh.

Laïm phaùt

 Laõi suaát laø tyû soá giöõa laõi phaûi traû trong moät ñôn vò thôøi gian vôùi soá voán vay.

Các loại lãi suất

Laõi ñôn (simple interest) Laø soá tieàn laõi ñöôïc tính döïa vaøo voán goác ban ñaàu maø khoâng tính ñeán phaàn laõi phaùt sinh ôû thôøi kyø tröôùc.

I = C. i. n  Lãi suất công bố (Annual percentage rate – APR) là lãi suất mà các ngân hàng sử dụng để tính lãi cho các khoản tiền gửi hoặc cho vay, thường được biểu hiện bằng tỷ lệ % theo năm. I: Laõi thu ñöôïc trong thôøi gian n

 Laõi suaát tương đương theo năm (Equivalent Annual Rate – EAR) là lãi suất thực tế có được sau khi điều chỉnh lãi suất công bố theo số lần ghép lãi trong năm.

C: Löôïng tieàn teä ñaàu tö (cho vay) ban ñaàu i: Laõi suaát n: thôøi gian ñaàu tö (cho vay) Laõi gheùp (compound interest)

Laø phương pháp tính laõi mà tiền lãi mỗi kỳ ñöôïc tính treân voán goác ban đầu vaø soá tieàn laõi phaùt sinh cuûa caùc kyø tröôùc. Nghóa laø voán ñeå tính laõi ôû thôøi kyø sau bao goàm voán ôû ñaàu kyø tröôùc coäng vôùi phaàn laõi cuûa kyø tröôùc.

ThS. Đặng Thị Quỳnh Anh

1

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

Chuyển lãi suất công bố (APR) sang lãi suất tương đương theo năm (Equivalent Annual Rate – EAR)

3. Giá trị tương lai và giá trị hiện tại của một khoản tiền

m

EAR

1

1

 Giaù trò töông lai cuûa moät khoaûn tieàn

APR m

  

  

 Giaù trò hiện tại cuûa moät khoaûn tieàn

m: số kỳ ghép lãi trong năm

m =1: ghép lãi 1 năm 1 lần m = 2: ghép lãi 1 năm 2 lần m = 4: ghép lãi 1 quý 1 lần m = 12: ghép lãi 1 tháng 1 lần m = 365: ghép lãi 1 ngày 1 lần

3.1 Giaù trò töông lai cuûa moät khoaûn tieàn

3.2 Giaù trò hieän taïi cuûa moät khoaûn tieàn

Coâng thöùc toång quaùt:

FV

PV

i

 1

n

Giaù trò hieän taïi cuûa moät khoaûn tieàn laø giaù trò cuûa moät khoaûn tieàn thu ñöôïc trong töông lai ñöôïc quy veà thôøi ñieåm hieän taïi.

n

Töø coâng thöùc

PV : Giaù trò hieän taïi cuûa soá löôïng tieàn teä ban ñaàu

FV

PV

i

 1

n

n

i

: Laõi suaát

Suy ra

FVn : Giaù trò töông lai sau n naêm

PV

FV

 1

 n  i

n

n : thôøi gian ñaàu tö

(1+i)n : thöøa soá laõi suaát töông lai, kyù hieäu laø FVF (i,n)

4. Thôøi giaù cuûa doøng tieàn teä

4.1 Caùc loaïi doøng tieàn teä

PVF(i,n)=(1+i)-n : thöøa soá laõi suaát hieän taïi cuûa khoaûn tieàn teä

 Doøng tieàn teä (Cash Flows) laø moät chuoãi caùc khoaûn thu nhaäp hoaëc chi traû xaûy ra qua moät soá thôøi kyø nhaát ñònh.  Doøng tieàn ñeàu (annuity): laø doøng tieàn bao goàm caùc khoaûn baèng nhau xaûy ra qua moät soá thôøi kyø nhaát ñònh  Doøng tieàn ñeàu cuoái kyø (ordinary annuity)  Doøng tieàn chi (outflow) coøn goïi laø doøng tieàn ra, laø chuoãi caùc khoaûn chi traû (tieàn göûi, chi phí…)  Doøng tieàn ñeàu ñaàu kyø (annuity due)  Doøng tieàn ñeàu voâ haïn (perpetuity)  Doøng tieàn thu (inflow) coøn goïi laø doøng tieàn vaøo, laø chuoãi caùc khoaûn thu nhaäp (doanh thu baùn haøng, lôïi töùc ñaàu tö…)  Doøng tieàn khoâng ñeàu (Multiple cash flow)  Doøng tieàn roøng (Net Cash Flow) laø doøng tieàn coù ñöôïc khi laáy doøng tieàn thu tröø doøng tieàn chi.

ThS. Đặng Thị Quỳnh Anh

2

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

Caùch bieåu dieãn caùc doøng tieàn teä

Caùch bieåu dieãn caùc doøng tieàn teä

Doøng tieàn cuoái kyø

0

1

2

n-1

n

Loaïi doøng tieàn 0 1 2 3 ... n-1 n

A1

A2

An-1

An

Doøng tieàn ñeàu cuoái kyø A A A … A A

Doøng tieàn ñaàu kyø

Doøng tieàn ñeàu ñaàu kyø A A A A ... A

0

1

2

n-1

n

Doøng tieàn ñeàu voâ haïn A A A A ... A A…

A1

A2

An-1

An

Doøng tieàn khoâng ñeàu A0 A1 A2 A3 ... An-1 An

4.2 Giaù trò töông lai cuûa doøng tieàn khoâng ñeàu

4.2 Giaù trò töông lai cuûa doøng tieàn khoâng ñeàu

Doøng tieàn toång quaùt CF0 CF1 CF2 CF3 ... CFn-1 CFn

Giaù trò töông lai cuûa chuoãi tieàn teä khoâng ñeàu laø toång giaù trò töông lai cuûa töøng khoaûn tieàn teä A1, A2…An xaûy ra ôû töøng thôøi ñieåm khaùc nhau.

Coâng thöùc toång quaùt: Tröôøng hôïp doøng tieàn cuoái kyø

FVAc = A1 (1+i)n-1 + A2 (1+i)n-2 + A3 (1+i)n-3 +... + An (1+i)0

Ví duï:

Tröôøng hôïp doøng tieàn ñaàu kyø

FVAñ = A1(1+i)n + A2(1+i)n-1 + A3(1+i)n-2 +... + An (1+i)1

Một người dự ñịnh vaøo cuối mỗi năm gửi vaøo ngaân haøng một khoản tiền tương ứng vôùi caùc năm từ năm 1 đến năm 4 như sau: 150, 200, 220, 300 triệu đồng. Hỏi sau 4 năm người đoù nhận được cả gốc vaø laõi bao nhieâu tieàn, bieát raèng laõi suaát tieàn göûi laø 10%/naêm?

Moái quan heä giöõa doøng tieàn ñaàu kyø vaø cuoái kyø

4.3 Giaù trò töông lai cuûa doøng tieàn ñeàu

4.3 Giaù trò töông lai cuûa doøng tieàn ñeàu

FVAñ = FVAc (1+i)

Laø toång giaù trò töông lai cuûa töøng khoaûn tieàn teä A xaûy ra ôû töøng thôøi ñieåm khaùc nhau.

Ví duï:

Töø coâng thöùc toång quaùt:

FVAn = A (1+i)n-1 + A (1+i)n-2 + A (1+i)n-3 +... + A (1+i)0 Moät ngöôøi döï ñònh cuoái moãi naêm göûi vaøo ngaân haøng moät khoaûn tieàn laø 100 trieäu ñoàng. Hoûi sau 4 naêm toång soá tieàn ngöôøi ñoù nhaän ñöôïc laø bao nhieâu, bieát raèng laõi suaát tieàn göûi laø 10%/naêm? Suy ra

n

1

FVA

 A

n

  i1  i

1

thöøa soá laõi suaát töông lai cuûa doøng tieàn ñeàu

FVFA(i,

n)

  n   i1 i

ThS. Đặng Thị Quỳnh Anh

3

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

4.4 Giaù trò hieän taïi cuûa doøng tieàn khoâng ñeàu

4.4 Giaù trò hieän taïi cuûa doøng tieàn khoâng ñeàu

Tröôøng hôïp doøng tieàn cuoái kyø

Giaù trò hieän taïi cuûa chuoãi tieàn teä khoâng ñeàu laø toång giaù trò hieän taïi cuûa töøng khoaûn tieàn teä A1, A2 …An xaûy ra ôû töøng thôøi ñieåm khaùc nhau.

Ví duï:

Tröôøng hôïp doøng tieàn ñaàu kyø

Coâng ty A mua chòu moät

PVAc = A1 (1+i)-1 + A2 (1+i)-2 +... + An (1+i)-n

Moái quan heä giöõa doøng tieàn ñaàu kyø vaø cuoái kyø

PVAñ = A1 + A2 (1+i)-1 + A3 (1+i)-2 +... + An (1+i)-(n-1)

löôïng haøng hoaù vôùi phöông thöùc traû tieàn nhö sau: cuoái naêm thöù nhaát traû 300 trñ, cuoái naêm thöù hai traû 200 trñ, cuoái naêm thöù ba traû 150 trñ vaø cuoái naêm thöù tö traû 100 trñ. Vaäy trong tröôøng hôïp traû tieàn ngay thì coâng ty coù theå mua haøng vôùi giaù naøo bieát raèng laõi suaát chieát khaáu laø 10%/naêm?

4.5 Giaù trò hieän taïi cuûa doøng tieàn ñeàu

4.5 Giaù trò hieän taïi cuûa doøng tieàn ñeàu

Ví duï:

Laø toång giaù trò hieän taïi cuûa töøng khoaûn tieàn teä A xaûy ra ôû töøng thôøi ñieåm khaùc nhau.

Töø coâng thöùc toång quaùt:

PVAñ = PVAc (1+i)

PVAn = A (1+i)-1 + A (1+i)-2 +... + A (1+i)-n

Suy ra

-n

Coâng ty X mua moät daây chuyeàn maùy moùc thieát bò theo phöông thöùc thanh toaùn nhö sau: vaøo cuoái moãi naêm coâng ty phaûi traû cho ngöôøi baùn moät khoaûn tieàn laø 200 trñ bao goàm caû goác vaø laõi trong 5 naêm. Hoûi giaù trò cuûa daây chuyeàn ñoù töông ñöông ôû hieän taïi laø bao nhieâu, bieát raèng laõi suaát chieát khaáu laø 12%/naêm

PVA

A

n

  i1-1 i

Giaûi

n

5

1

1

0,12

 1

(1

 i1-1

PVA

A

200

720,95trñ

thöøa soá laõi suaát hieän taïi cuûa doøng tieàn ñeàu

PVFA(i,

n)

 i) i

 0,12

 -n i

4.6 Giaù trò hieän taïi cuûa doøng tieàn ñeàu voâ haïn

Giaù trò töông lai vaø hieän taïi vôùi n naêm vaø m kyø gheùp laõi moät naêm

Töø coâng thöùc toång quaùt:

n.m

1(PV

)

FV n

 Giaù trò töông lai

i m

PVAn = A(1+i)-1 + A(1+i)-2 +... + A(1+i)-n n ->∞

Suy ra

n.m

)

PV

1/(

FV n

Giaù trò hieän taïi

PVA 

i m

A i

n.ie*PV

FV 

 Gheùp laõi lieân tuïc

ThS. Đặng Thị Quỳnh Anh

4

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

Giaù trò töông lai vaø hieän taïi vôùi n naêm vaø m kyø gheùp laõi moät naêm

5. Một số ứng dụng của thời giá tiền tệ

m

6. Moät soá öùng duïng cuûa thôøi giaù tieàn teä

i laø laõi suaát haøng naêm  Thanh toán nợ  n soá naêm  Ñònh giaù cổ phiếu, trái phiếu m : soá laàn gheùp laõi hay soá laàn traû laõi trong naêm  Định giá doanh nghiệp  i/m: laõi suaát cuûa moãi kyø haïn laõi  Phaân tích, ñaùnh giaù dòng tiền của döï aùn ñaàu tö  m =1: gheùp laõi haøng naêm  m =2: gheùp laõi baùn nieân  m = 4 gheùp laõi haøng quyù  m = 365 gheùp laõi haøng ngaøy  gheùp laõi lieân tuïc

ĐỊNH GIÁ TRÁI PHIẾU

ÖÙng duïng trong thanh toaùn nôï

 Döïa vaøo kyõ thuaät hieän giaù coù theå leân keá hoaïch thanh toaùn caùc khoaûn nôï phaûi traû töøng ñôït.

 Ñaëc ñieåm cuûa phöông thöùc traû nôï naøy laø caùc khoaûn tieàn thanh toaùn ñònh kyø moãi ñôït ñeàu baèng nhau, vieäc traû nôï coù theå ñöôïc thöïc hieän haøng thaùng, quyù, naêm.

a. Trái phiếu vĩnh cửu (consol) b. Trái phiếu tích lũy c. Trái phiếu coupon d. Trái phiếu chiết khấu

46

a. ĐỊNH GIÁ TRÁI PHIẾU VĨNH CỬU

b. ĐỊNH GIÁ TRÁI PHIẾU COUPON

....

P 0

1

2

n

....

P 0

1

2

n

I  r1  d

I  r1  d

I  r1  d

M  r1  d

I r d

I  r1  d

I  r1  d

I  r1  d

I: lãi cố định được hưởng mãi mãi P0: giá trái phiếu rd: tỷ suất lợi nhuận yêu cầu của nhà đầu tư

47

48

I: lãi cố định P0: giá trái phiếu M: mệnh giá trái phiếu n: số năm cho đến khi đáo hạn rd: tỷ suất lợi nhuận yêu cầu của nhà đầu tư

ThS. Đặng Thị Quỳnh Anh

5

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

Ví dụ 1: c. Định giá vào ngày 1/10/2007

Ví dụ 1

Anh Minh mua trái phiếu chính phủ

I

....

P 0

d/365

1

1-n

1-n

1  r1  d

I  r1  d

I  r1  d

FV   r1  d

  

  

.104

723

P 0

20/365

1

có: Mệnh giá: 100.000 đồng · Lãi suất: 8,5%/năm · Thời hạn: 5 năm · Ngày phát hành: 21/10/2003 · · Ngày đến hạn: 21/10/2008 Hỏi giá trái phiếu là bao nhiêu, nếu: a. Định giá vào ngày 21/10/2003 b. Định giá vào ngày 21/10/2004? c. Định giá vào ngày 1/10/2007?

1  12,01

8500  12,01 

100.000   1 12,01

 5008  

  

Biết rằng tỷ suất lợi nhuận nhà đầu tư yêu cầu là 12%/năm

49

50

Giá trái phiếu tính thủ công:

ĐỊNH GIÁ TRÁI PHIẾU COUPON TRẢ LÃI

THEO ĐỊNH KỲ NỬA NĂM

2

n

2/

I

M

P 0

t

2

n

 

t

1 

1

1

r d 2

r d 2

  

  

  

  

Mệnh giá: 100.000 đồng, Kỳ hạn: 5 năm Ngày phát hành: 10/10/03 Ngày đến hạn: 10/10/08 Lãi suất: 9%, Trả lãi định kỳ nửa năm Giả sử nhà đầu tư yêu cầu tỷ suất lợi nhuận là 10%, giá trái phiếu này ngay khi phát hành là bao nhiêu?

n

2 

1

M

r d 2

  

  

P 0

2

n

I 2

1

r d 2

r d 2

  

  

 1     

     

52

53

c. ĐỊNH GIÁ TRÁI PHIẾU CHIẾT KHẤU

d. ĐỊNH GIÁ TRÁI PHIẾU TÍCH LŨY

P 0

P 0

MI.n   n r1  d

 1

n

M r d

54

55

I: lãi được hưởng P0: giá trái phiếu M: mệnh giá trái phiếu rd: tỷ suất lợi nhuận yêu cầu của nhà đầu tư Ví dụ: Giả sử NH Đầu Tư và Phát Triển Việt Nam phát hành trái phiếu chiết khấu, có thời hạn 10 năm và mệnh giá là 1000$. Nếu tỷ suất lợi nhuận đòi hỏi của nhà đầu tư là 12%, giá bán của trái phiếu này sẽ là bao nhiêu?

ThS. Đặng Thị Quỳnh Anh

6

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

Lợi suất đầu tư trái phiếu

Định giá cổ phiếu ưu đãi

D

p

 Lợi suất đầu tư cho đến khi trái phiếu đáo hạn (Yield to

P 0

r p

0

P

....

2

n

n

1 )

1(

)

1(

)

)

1(

1(

I YTM

I YTM

I YTM

M YTM

maturity)

: Lãi coupon hàng năm : Giá thị trường hiện tại của trái phiếu

I Po M : Mệnh giá trái phiếu n

:Thời hạn còn lại của trái phiếu

57

56

 Dp : cổ tức cổ phiếu ưu đãi  rp : lãi suất yêu cầu của nhà đầu tư Ví dụ: Công ty REE phát hành cổ phiếu ưu đãi mệnh giá 1.000.000 đồng và tuyên bố trả cổ tức hàng năm là 9%. Giả sử bạn là nhà đầu tư đòi hỏi tỷ suất lợi nhuận 14% khi mua cổ phiếu này, giá cổ phiếu này là bao nhiêu?

Định giá cổ phiếu thường

Định giá cổ phiếu thường theo mô hình chiết khấu cổ tức

Mô hình chiết khấu cổ tức

Phương pháp định giá theo tỷ số P/E

0

P

....

2

n

n

1 )

1(

)

1(

)

1(

)

1(

D 1 r  e

D 2 r  e

D n r  e

P n r  e

58

59

 D1, D2, … Dn: cổ tức tương ứng với các năm 1, 2 … n  Pn: giá cổ phiếu tại năm n  re: lãi suất yêu cầu của nhà đầu tư

Mô hình tốc độ tăng trưởng cổ tức không đổi

Mô hình chiết khấu cổ tức

Giả định của mô hình

0

....

P

t

2

 Biết được tốc độ tăng trưởng cổ tức (g)  Biết được tỷ suất yêu cầu của nhà đầu tư (re)

1 )

1(

)

1(

1(

)

t

1 

 1

D 1 r  e

D 2 r  e

D  r  e

D t r  e

• Ví duï: • Moät nhaø ñaàu tö coù yù ñònh mua coå phieáu cuûa coâng ty SACOM, döï kieán coå töùc naêm thöù nhaát ñöôïc chia laø 1.500 ñoàng/cp, naêm thöù hai taêng hôn so vôùi naêm thöù nhaát 5% vaø giaù cuoái naêm thöù hai döï kieán laøø 34.000 ñoàng. Hoûi nhaø ñaàu tö seõ ñoàng yù mua coå phieáu naøy vôùi giaù laø bao nhieâu bieát raèng tyû suaát yeâu caàu laø 18%/naêm? • Giaù coå phieáu cuûa coâng ty SACOM hieän taïi laø:

.26

820

P 0

ñoàng

2

500 18,

.1  01

000 18,

 1.500  18,  01

1,05  2

.34   01

61

62

g = Tỷ lệ lợi nhuận giữ lại x re

ThS. Đặng Thị Quỳnh Anh

7

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

Mô hình tốc độ tăng trưởng cổ tức không đổi

0

P

(

g

)

D 1 r e 

Trường hợp tốc độ tăng trưởng cổ tức bằng 0

1

P

0 

D er

64

63

• Ví duï 1 •Coâng ty Vinamilk vöøa chia coå töùc 14.000 ñoàng/cp, coå phieáu naøy ñöôïc kyø voïng seõ taêng tröôûng vôùi toác ñoä 7% trong töông lai. Xaùc ñònh giaù coå phieáu bieát raèng tyû suaát yeâu caàu cuûa nhaø ñaàu tö laø 20%/naêm. • Ví duï 2 Công ty FPT vừa chi trả cổ tức là 4.000 đồng/cp. Cổ tức công ty này được kỳ vọng có tốc độ tăng trưởng 6% trong 5 năm đầu, sau đó tốc độ tăng trưởng cổ tức chỉ còn 5% mãi mãi. Hỏi giá cổ phiếu là bao nhiêu nếu nhà đầu tư đòi hỏi tỷ suất lợi nhuận là 14%?

Trường hợp tốc độ tăng trưởng cổ tức thay đổi

000.14

115.231 ñoàng

 DP 0

0

 g g

 

  07,01   07,02,0 

 1 r e

66

65

• Ví duï: • Coâng ty Vinamilk vöøa chia coå töùc 14.000 ñoàng/cp, coå phieáu naøy ñöôïc kyø voïng seõ taêng tröôûng vôùi toác ñoä 7% trong töông lai. Xaùc ñònh giaù coå phieáu bieát raèng tyû suaát yeâu caàu cuûa nhaø ñaàu tö laø 20%/naêm.

Các tiêu chuẩn đánh giá hiệu quả tài chính dự án

Tieâu chuẩn giaù trò hieän taïi roøng (NPV)

đầu tư

Giaù trò hieän taïi roøng (Net present value)

Tyû suaát sinh lôøi noäi boä (Internal Rate of return)

NPV

....



CF 0

2

n

1(

1(

CF 1 1 r 

CF 2 ) r 

CF n ) r 

NPV = - CFo + PV

Tieâu chuẩn tyû suaát sinh lôøi noäi boä coù hieäu chænh (MIRR)

r: laõi suaát chieát khaáu cuûa döï aùn CF0 , CF1, CF2… CFn: doøng tieàn töï do töø naêm 0,1,2 …n

ThS. Đặng Thị Quỳnh Anh

8

Bài giảng Tài chính doanh nghiệp

Trường ĐHNH TP.HCM

Tieâu chuẩn giaù trò hieän taïi roøng (NPV)

Tieâu chuẩn giaù trò hieän taïi roøng (NPV)

YÙ nghóa: NPV phaûn aùnh keát quaû loã laõi cuûa döï aùn theo giaù trò hieän taïi (taïi YÙ nghóa: NPV phaûn aùnh keát quaû loã laõi cuûa döï aùn theo giaù trò hieän taïi (taïi

thôøi ñieåm 0) sau khi ñaõ tính ñeán yeáu toá chi phí cô hoäi cuûa voán ñaàu tö. NPV > 0: döï aùn coù laõi NPV = 0: thu nhaäp cuûa döï aùn chæ ñuû buø ñaép chi phí ñaàu tö NPV < 0: döï aùn bò loã thôøi ñieåm 0) sau khi ñaõ tính ñeán yeáu toá chi phí cô hoäi cuûa voán ñaàu tö. NPV > 0: döï aùn coù laõi NPV = 0: thu nhaäp cuûa döï aùn chæ ñuû buø ñaép chi phí ñaàu tö NPV < 0: döï aùn bò loã

Tieâu chuẩn tyû suaát sinh lôøi noäi boä coù hieäu chænh (MIRR)

Tieâu chuẩn tyû suaát sinh lôøi noäi boä (IRR)

Tyû suaát sinh lôïi noäi boä coù hieäu chænh laø tyû suaát sinh lôïi laøm cho hieän giaù cuûa doøng tieàn chi ra cho ñaàu tö döï aùn baèng vôùi hieän giaù giaù trò tôùi haïn (terminal value) cuûa doøng tieàn thu veà töø döï aùn.

....

0

NPV



CF 0

2

n

1(

1(

CF 1 1 r 

CF 2 ) r 

CF n ) r 

CF 0

n

)

1(

TV MIRR

Tyû suaát sinh lôøi noäi boä laø tyû leä chieát khaáu maø taïi ñoù giaù trò hieän taïi roøng cuûa döï aùn baèng 0

ThS. Đặng Thị Quỳnh Anh

9