
Bài 4. Bất phương trình hữu tỉ và vô tỉ
Giả sử f(x) và g(x) là các hàm số xác định trên các miền D và E tương
ứng. Giải bất phương trình f(x) > g(x) (hay f(x) ≥ g(x)) nghĩa là tìm tất cả
các điểm xo ∈ D ∩ E sao cho f(xo) > g(xo) (hay f(xo ≥ g(xo)) là bất đẳng
thức đúng. Tập hợp các điểm xo như vậy được gọi là tập hợp nghiệm của
bất phương trình.
Hai bất phương trình được gọi là tương đương nếu hai tập hợp nghiệm
tương ứng của chúng là trùng nhau. Ta dùng dấu ⇔ để chỉ sự tương đương
của hai bất phương trình.
1. Bất phương trình hữu tỉ
Trong bất phương trình f(x) > g(x) mà f và g đều là các hàm hữu tỉ thì
nó được gọi là bất phương trình hữu tỉ.
1.1. Bất phương trình bậc nhất
Đó là bất phương trình dạng
ax + b > 0 (1)
(hoặc ax + b > 0, ax + b ≥ 0, ax + b ≤ 0)
a) Nếu a = 0 thì (1) ⇔ 0x + b > 0. Do đó
nếu b > 0 thì (1) nghiệm đúng với ∀x ∈ R
nếu b < 0 thì (1) vô nghiệm.
b) Nếu a > 0 thì (1) ⇔ x > b
a
−
.
Tập nghiệm là b,
a
−∞
c) Nếu a < 0 thì (1) ⇔ x < b
a
−
. Tập nghiệm là b
,a
−∞
.
Ví dụ 1. Giải bất phương trình
(a2 + a + 1)x + a3 − a > 0, (2)
(a là tham số).
Vì a2 + a + 1 > 0 nên (1) ⇔
3
2
aa
x
aa
−
>
1
+
+.